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Proposition 2. For any causal model C = (K,P), the probability distribution
PC sums up to 1.
Proof. A causal state C ∈ 2U(K) is a configuration of the background atoms. The
probabilities of the background atoms are independent of each other. The proba-
bility of the causal state C is then per definition the product of the probabilities
that each background atom holds true (or false, if u /∈ C). Clearly, since the
causal states span the power set of background atoms, there exists exactly one
causal state per configuration of background atoms and it follows directly that∑
C∈2U(K)

PC(C) = 1.

Proposition 3. For any causal model C = (K,P) and observation ϕ, the prob-
ability distribution PAF sums up to 1.
Proof. From Proposition 2 we know that PC is well defined. Now, per Definition 9
for some framework state S PAF (S) is the sum of probabilities PC(C) over all
causal states C that induce exactly the set of arguments corresponding to the
framework state S. Recall the definition of ArgC(C):

ArgC(C) = {(Φ,ψ) ∈ ArgC | Φ ∪ C ∪ {¬u | u /∈ C} ⊬ ⊥}.

Clearly, every causal state corresponds exactly to set of arguments. Since the set
framework states spans the whole power set of Arg, it follows that every causal
state must correspond to exactly one framework state. If a framework state has
no corresponding causal state its probability is per definition 0. Thus, since PC
sums up to 1 it follows directly that PAF also sums up to 1.

Theorem 1. Let C = (K,P) be a probabilistic causal model and ϕ |∼C ψ is a
causal statement. Then P (ϕ |∼C ψ) = PC(ψ|ϕ).
Proof. Consider the probabilistic causal model C = (K,P). The probability P (ϕ |∼C
ψ) that the statement holds is computed according to (2) as

P (ϕ |∼C ψ) =

∑
S∈S[ψ=true]

PAF (S)∑
C∈C(ϕ)

PC(C)
.
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On the other hand, the conditional probability is computed as PC(ψ|ϕ) = PC(ψ∧ϕ)
PC(ϕ)

.
We show

1. PC(ϕ) =
∑

C∈C(ϕ)

PC(C), and

2. PC(ψ ∧ ϕ) =
∑

S∈S[ψ=true]

PAF (S).

to 1.) This follows directly from Definition 5 and Equation (1), since causal
states correspond directly to valuations of the background variables. The proba-
bility is computed as the sum of probabilities of all valuations (causal states) for
which ϕ is true, which is exactly how the probability PC(ϕ) is computed.

to 2.) The probability PC(ϕ∧ ψ) is defined as the sum of probabilities over
all valuations of the background atoms under which K ⊢ ϕ ∧ ψ.

PC(ϕ ∧ ψ) =
∑

V ∈Vϕ∧ψ

PC(V (U(K)))

where Vϕ∧ψ = {u : U(K) → {true, false} | val(K ⊢ ϕ ∧ ψ, u) = true}

On the other hand, ∑
S∈S[ψ=true]

PAF(S)

amounts to the sum of probabilities over all framework states of the induced PAF
that entails the conclusion ψ. Important to note is that the induced PAF contains
only arguments that are a subset of some causal states C ∈ C(ϕ), i. e., causal
states in which ϕ is evaluated to true. A framework state S is a set of arguments
S ⊆ ArgC to which we assign, according to Def. 9, the probability

PAF(S) =
∑

C∈C(ϕ,S)

PC(C).

In other words, the probability PAF(S) of a framework state S corresponds
to the sum of probabilities over the set of causal states C(ϕ, S) for which ϕ is
evaluated to true and that induce the same set of arguments S. Per Equation (1),
the probability of a causal state C is equal to the probability of the valuation that
evaluates exactly those background atoms to true, that are in the causal state C.

We defined the probability P (ϕ |∼C ψ) via
∑

S∈S[ψ=true]

PAF(S), which is the

probability over those framework states for which every stable extension contains
at least one argument with the conclusion ψ. This is then the sum of probabilities
over exactly those valuations for which ϕ and ψ are true. Thus, it follows that

PC(ψ ∧ ϕ) =
∑

V ∈Vϕ∧ψ

PC(V (U(K))) =
∑

S∈S[ψ=true]

PAF(S).

Therefore, we have that P (ϕ |∼C ψ) = PC(ψ|ϕ) and we have shown that the
argumentation-based approach to probabilistic causal reasoning is equivalent to
that introduced by Pearl. ⊓⊔
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Theorem 2. Let C = (K,P) be a probabilistic causal model. Given a counter-
factual statement ϕ |∼C∗

[v∗=x]
ψ∗, we have that P (ϕ |∼C∗

[v∗=x]
ψ∗) = PC(ψ | ϕ).

Proof. We prove the equivalence by showing the following two things: (1) the
equivalence between our argumentation-based probabilistic twin network approach
and the standard twin network approach and (2) the equivalence between the
standard three-step procedure and the twin network approach.

For (1), we have to show that our approach to computing the probability
P (ϕ |∼C∗

[v∗=x]
ψ∗) in the twin model via the induced probabilistic argumentation

framework is equivalent to computing the conditional probability PC(ψ
∗ | ϕ) via

Pearl’s twin network method. Per Definition 11, the twin model of some causal
model is also a causal model itself with additional atoms representing the twin
world. Thus, it follows directly from the proof of Theorem 1 that computing the
probability via the induced probabilistic argumentation framework of the twin
model is equivalent to the standard way of computing the conditional probability
in that twin causal model.

For (2), the equivalence between the three-step procedure and the twin network
method for evaluating counterfactuals in probabilistic causal models has already
been shown by Pearl.

Hence, it follows that our argumentation-based twin network approach is
equivalent to the three-step procedure for probabilistic counterfactual reasoning.

⊓⊔


