
On the Relationship of Defeasible

Argumentation and Answer Set

Programming

Matthias Thimm a Gabriele Kern-Isberner a

a Information Engineering Group, Department of Computer Science
Technische Universität Dortmund, Germany

draft – 2007-12-07

Abstract. This paper investigates the relationship between defeasible
argumentation (DeLP) and answer set programming by transforming a
defeasible logic program into an answer set program. We propose two
types of conversions that differ with respect to the handling of strict
rules. Inference via a dialectical warrant procedure in DeLP turns out
to be stronger than credulous answer set inference in both cases, while
conversions of the second type bring DeLP inference closer to skeptical
answer set inference. Moreover, we investigate some characteristics of
the warrant procedure of DeLP which lead to a better understanding of
the notion of warrant.

Keywords. Argumentation, defeasible logic programming, answer set
programming

1. Introduction

Defeasible Argumentation [8], as proposed with the language DeLP (Defeasible
Logic Programming) by García and Simari in [6] is an approach for logical argu-
mentative reasoning [1,9] based on defeasible logic. In DeLP the belief in literals
is supported by arguments and in order to handle conflicting information a war-
rant procedure decides which information has the strongest grounds to believe
in. In this way, the notion of warrant induces a nonmonotonic inference relation
between a defeasible logic program (consisting of facts as well as strict and de-
feasible rules) and literals. The exploration of this inference relation in terms of
answer set semantics is the topic of this paper.

Indeed, the relationships between defeasible argumentation and other default
reasoning systems, especially the relationship of their particular inference mecha-
nisms, have been investigated only little so far. While in [5] default logic and logic
programming are characterized as instantiations of Dung’s abstract argumenta-
tion framework we are interested in a direct relation between default logic and
DeLP which can also be characterized as an instantiation of an abstract argumen-



tation framework. In [4] the relationship of DeLP with Reiters default logic [10] is
investigated by converting a default logic program into a defeasible logic program
and applying the warrant procedure to determine the extensions of the original
default logic program. In that paper, a special case of DeLP programs is used, so
that the warrant of a literal is equivalent to the sceptical inference of that literal.

In this paper we take the converse point of view by translating a defeasi-
ble logic program into an answer set program (ASP) [7] and applying answer
set techniques to determine the warranted literals of the original defeasible logic
program. First, we investigate some characteristics of the warrant procedure of
DeLP which leads to a better understanding of the notion of warrant. As DeLP

reasoning is paraconsistent, the handling of inconsistencies under the translation
is of major importance. We will propose two approaches to converting a defea-
sible logic program into an answer set program, dealing with inconsistencies in
different ways. The first conversion method respects the substantial difference be-
tween strict and defeasible rules but has to take inconsistencies brought about by
strict rules into account; the resulting warrant semantics is shown to be weaker
than skeptical ASP semantics, but stronger than credulous ASP semantics. The
other type of conversion blurs the distinction between strict and default rules and
yields better results in computing warrant through answer set techniques. More
precisely, we show that all warranted literals are contained in one answer set of
the corresponding logic program. In particular, if the preference relation between
arguments is empty (so that defeating is reduced to attacking), then inference by
a warrant procedure turns out to be even stronger than skeptical inference.

In contrast to [2] this paper does not aim at fixing DeLP regarding some
observed flaws in its inference mechanism; instead, we will interpret the original
DeLP inference mechanism via answer set semantics.

This paper is structured as follows: in Section 2 and 3 brief overviews over
ASP and defeasible logic programming are given. Section 4 investigates the notion
of warrant in detail. Section 5 and 6 propose two alternatives of converting a
DeLP-program into an answer set program and discuss the results. In Section 7
we conclude. All proofs can be found in an extended version of this paper [12].

2. Answer set programming

In this section we give a brief overview over answer set programming and answer
sets as proposed by Gelfond and Lifschitz in [7]. We consider extended logic
programs, which distinguish between classical and default negation.

We use a first-order language without function symbols except constants, so
let L be a set of literals, where a literal h is an atom A or a (classical) negated
atom ¬A. The symbol will be used to denote the complement of a literal with
respect to classical negation, i. e. it is p = ¬p and ¬p = p for a ground atom p.

Definition 1 (Extended logic program). An extended logic program P is a fi-
nite set of rules of the form r : h ← a1, . . . , an, not b1, . . . , not bm where
h, a1, . . . , an, b1, . . . , bm ∈ L. We denote by head(r) the head h of the rule r and
by body(r) the body {a1, . . . , an, not b1, . . . , not bm} of the rule r.



If the body of a rule r is empty (body(r) = ∅), then r is called a fact, abbreviated
h instead of h←.

Given a set X ⊆ L of literals, then r is applicable in X , iff a1, . . . , an ∈ X and
b1, . . . , bm /∈ X . The rule r is satisfied by X , if h ∈ X or if r is not applicable in
X . X is a model of an extended logic program p iff all rules of P are statisfied by
X . The set X ⊆ L is consistent, iff for every h ∈ X it is not the case that h ∈ X .
An answer set is a minimal consistent set of literals that satisfies all rules. This
can be characterized as follows.

Definition 2 (Reduct). Let P be an extended logic program and X ⊆ L a set of
literals. The X-reduct of P , denoted PX , is the union of all rules h← a1, . . . , an

such that h← a1, . . . , an, not b1, . . . , not bm ∈ P and X ∩ {b1, . . . , bm} = ∅.

For any extended logic program P and a set X of literals, the X-reduct of P is a
logic program P ′ without default-negation and therefore has a minimal model. If
P ′ is inconsistent, then its unique model is defined to be L.

Definition 3 (Answer set). Let P be an extended logic program. A consistent set
of literals S ⊆ L is an answer set of P , iff S is a minimal model of PS .

3. Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [6] is a logic programming language which
is capable of modelling defeasible knowledge. With the use of a defeasible argu-
mentation process it is possible to derive conclusive knowledge.

The basic elements of DeLP are facts and rules. The set of rules is divided
into strict rules, i. e. rules which derive certain knowledge, and defeasible rules,
i. e. rules which derive uncertain or defeasible knowledge. We use the same set L

of literals as in Section 2 to define the elements of a DeLP-program.

Definition 4 (Fact, strict rule, defeasible rule). A fact is a literal h ∈ L. A strict
rule is an ordered pair h ← B, where h ∈ L and B ⊆ L. A defeasible rule is an
ordered pair h−�B, where h ∈ L and B ⊆ L.

As in ASP we use the functions body/1 and head/1 to refer to the head resp.
body of a defeasible or strict rule.

Definition 5 (Defeasible Logic Program). A Defeasible Logic Program P = (Π, ∆),
abbreviated de.l.p., consists of a (possibly infinite) set Π of facts and strict rules
and of a (possibly infinite) set ∆ of defeasible rules.

Example 1 ([6], example 2.1). Let P = (Π, ∆) be given by

Π =







chicken(tina) scared(tina)
penguin(tweety) (bird(X)← chicken(X))
bird(X)← penguin(X)) (¬flies(X)← penguin(X)







,

∆ =















flies(X)−� bird(X)
¬flies(X)−� chicken(X)
flies(X)−� chicken(X), scared(X)
nests_in_trees(X)−� flies(X)















.



In the following examples we abbreviate the above predicates by their first letters,
e. g. in the following the predicate c/1 stands for chicken/1.

A de.l.p. P = (Π, ∆) describes the belief base of an agent and therefore contains
not all of its beliefs. With the use of strict and defeasible rules it is possible to
derive other literals, which may be in the agent’s state of belief.

Definition 6 (Defeasible Derivation). Let P = (Π, ∆) be a de.l.p. and let h ∈ L. A
(defeasible) derivation of h from P , denoted P |∼h, consists of a finite sequence
h1, . . . , hn = h of literals (hi ∈ L) such that hi is a fact (hi ∈ Π) or there exists
a strict or defeasible rule in P with head hi and body b1, . . . , bk, where every bl

(1 ≤ l ≤ k) is an element hj with j < i. Let F(P) denote the set of all literals
that have a defeasible derivation from P .

If the derivation of a literal h only uses strict rules, the derivation is called a strict
derivation.

As facts and strict rules describe strict knowledge, it is reasonable to assume
Π to be non-contradictory, i. e. there are no derivations for complementary literals
from Π only. But if Π∪∆ is contradictory (denoted Π∪∆ |∼ ⊥), then there exist
defeasible derivations for complementary literals.

Definition 7 (Argument, Subargument). Let h ∈ L be a literal and let P = (Π, ∆)
be a de.l.p.. 〈A, h〉 is an argument for h, iff A ⊆ ∆, there exists a defeasible
derivation of h from P ′ = (Π,A), the set Π ∪ A is non-contradictory and A is
minimal with respect to set inclusion. The literal h will be called conclusion and
the set A will be called support of the argument 〈A, h〉. An argument 〈B, q〉 is a
subargument of an argument 〈A, h〉, iff B ⊆ A.

Example 2. In the de.l.p. P from Example 1 f(tina) has the two arguments
〈{f(tina)−� b(tina)} , f(tina)〉 and 〈{f(tina)−� c(tina), s(tina)} , f(tina)〉.

Definition 8 (Disagreement). Let P = (Π, ∆) be a de.l.p.. Two literals h and h1

disagree, iff the set Π ∪ {h, h1} is contradictory.

Two complementary literal p und ¬p disagree trivially, but two literals which are
not contradictory, can disagree either. For Π = {(¬h ← b), (h ← a)} the literals
a and b disagree, because Π ∪ {a, b} is contradictory.

Definition 9 (Counterargument). An argument 〈A1, h1〉 is a counterargument to
an argument 〈A2, h2〉 at a literal h, iff there exists a subargument 〈A, h〉 of
〈A2, h2〉, such that h and h1 disagree.

If 〈A1, h1〉 is a counterargument to 〈A2, h2〉 at a literal h, then the subargument
〈A, h〉 of 〈A2, h2〉 is called the disagreement subargument. If h = h2, then 〈A1, h1〉
is called a direct attack on 〈A2, h2〉 and indirect attack, otherwise.

Example 3. In P from Example 1 there is 〈{¬f(tina)−� c(tina)}, ¬f(tina)〉 a di-
rect attack to 〈{f(tina)−� b(tina)}, f(tina)〉. Furthermore 〈{¬f(tina)−� c(tina)},
¬f(tina)〉 is an indirect attack on 〈{(n(tina)−� f(tina)), (f(tina)−� b(tina))},
n(tina)〉 with the disagreement subargument 〈{(f(tina)−� b(tina))}, f(tina)〉.



A central aspect of defeasible argumentation is a formal comparison criterion
among arguments. For some examples of preference criterions see [6]. For the rest
of this paper we use an abstract preference criterion ≻ defined as follows.

Definition 10 (Preference Criterion ≻). A preference criterion among arguments
is an irreflexive, antisymmetric relation and will be denoted by ≻. If 〈A1, h1〉
and 〈A2, h2〉 are arguments, 〈A1, h1〉 will be strictly preferred over 〈A2, h2〉, iff
〈A1, h1〉 ≻ 〈A2, h2〉.

Example 4. A possible preference relation among arguments is Generalized Speci-
ficty [11]. According to this criterion an argument is preferred to another ar-
gument, iff the former one is more specific than the latter, i. e. (informally) iff
the former one uses more facts or less rules. For example, 〈{c−�a, b}, c〉 is more
specific than 〈{¬c−� a},¬c〉. For a formal definition see [11,6].

As≻ is antisymmetric by definition, there is no equipreference among an argument
and its counterargument. So we only have to consider the cases, that one argument
is better than the other or that two arguments are incomparable.

Definition 11 (Defeater). An argument 〈A1, h1〉 is a defeater of an argument
〈A2, h2〉, iff there is a subargument 〈A, h〉 of 〈A2, h2〉, such that 〈A1, h1〉 is a
counterargument of 〈A2, h2〉 at literal h and either 〈A1, h1〉 ≻ 〈A, h〉 (proper
defeat) or 〈A1, h1〉 ⊁ 〈A, h〉 and 〈A, h〉 ⊁ 〈A1, h1〉 (blocking defeat).

When considering sequences of arguments, then the definition of defeat is not
sufficient to describe a conclusive argumentation line. Defeat only takes an argu-
ment and its counterargument into consideration, but disregards preceeding ar-
guments. But we expect also properties like non-circularity or concordance from
an argumentation sequence. See [6] for a more detailed description of acceptable
argumentation lines.

Definition 12 (Acceptable Argumentation Line). Let P = (Π, ∆) be a de.l.p. and
let Λ = [〈A1, h1〉, . . . ,An, hn〉] be a sequence of arguments. Λ is called acceptable
argumentation line, iff 1.) Λ is a finite sequence, 2.) every argument 〈Ai, hi〉 with
i > 1 is a defeater of his predecessor 〈Ai−1, hi−1〉 and if 〈Ai, hi〉 is a blocking
defeater of 〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 exists, then 〈Ai+1, hi+1〉 is a proper
defeater of 〈Ai, hi〉, 3.) Π ∪ A1 ∪ A3 ∪ . . . is non-contradictory (concordance of
supporting arguments), 4.) Π ∪ A2 ∪ A4 ∪ . . . is non-contradictory (concordance
of interfering arguments), and 5.) no argument 〈Ak, hk〉 is a subargument of an
argument 〈Ai, hi〉 with i < k.

Let + denote the concatenation of argumentation lines and arguments, e. g.
[〈A1, h1〉, . . . , 〈An, hn〉] + 〈B, h〉 stands for [〈A1, h1〉, . . . , 〈An, hn〉, 〈B, h〉].

In DeLP a literal h is warranted, if there exists an argument 〈A, h〉 which
is non-defeated in the end. To decide whether 〈A, h〉 is defeated or not, every
acceptable argumentation line starting with 〈A, h〉 has to be considered.

Definition 13 (Dialectical Tree). Let 〈A0, h0〉 be an argument of a de.l.p. P =
(Π, ∆). A dialectical tree for 〈A0, h0〉, denoted T〈A0,h0〉, is defined by



1. The root of T is 〈A0, h0〉.
2. Let 〈An, hn〉 be a node in T and let Λ = [〈A0, h0〉, . . . , 〈An, hn〉] be the

sequence of nodes from the root to 〈An, hn〉. Let 〈B1, q1〉, . . . , 〈Bk, qk〉 be
the defeaters of 〈An, hn〉. For every defeater 〈Bi, qi〉 with 1 ≤ i ≤ k,
such that the argumentation line Λ′ = [〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is
acceptable, the node 〈An, hn〉 has a child 〈Bi, qi〉. If there is no such 〈Bi, qi〉,
the node 〈An, hn〉 is a leaf.

In order to decide whether the argument at the root of a given dialectical tree is
defeated or not, it is necessary to perform a bottom-up-analysis of the tree. There
every leaf of the tree is marked “undefeated” and every inner node is marked
“defeated”, if it has at least one child node marked “undefeated”. Otherwise it is
marked “undefeated”. Let T ∗

〈A,h〉 denote the marked dialectical tree of T〈A,h〉.

Definition 14 (Warrant). A literal h ∈ L is warranted, iff there exists an argument
〈A, h〉 for h, such that the root of the marked dialectical tree T ∗

〈A,h〉 is marked

“undefeated”. Then 〈A, h〉 is a warrant for h.

The notion of warrant is the topic of the next section.

4. Some interesting properties of warrant

The warrant procedure of DeLP is a way to compute the strongest beliefs of an
agent. Thus the set of warranted literals (including all facts as they are trivially
warranted using the empty argument) can be characterized as a belief set. One
important property of belief sets is consistency. In this section we investigate the
relationships between warranted literals and especially the consistency of the set
of warranted literals.

If a literal h is warranted and an argument 〈A, h〉 is a warrant for h, then
〈A, h〉 is considered a “good” argument for h. But the quality of 〈A, h〉 depends
on its position in argumentation lines. If 〈A, h〉 is at the beginning of an argu-
mentation line, then it will be undefeated, as it is a warrant. It is also a “good” ar-
gument for h, if it is at second position in an argumentation line, as the following
proposition shows.

Proposition 1. If an argument 〈A, h〉 is undefeated in the dialectical tree T〈A,h〉,
then it is undefeated in every dialectical tree T〈A′,h′〉, where 〈A, h〉 is a child of
〈A′, h′〉.

But Proposition 1 can not be generalized to “If an argument 〈A, h〉 is undefeated
in the dialectical tree T〈A,h〉, then it is undefeated in every dialectical tree”, as the
following example shows:

Example 5. Consider the following de.l.p. P = (Π, ∆) with Π = {a1, a2, a3} and
∆ = {(c−� b), (¬c−�¬d), (¬d−� a1), (d−� a1, b), (b−�a1, a3), (b−� a2), (¬b−� a3)}.
Let Generalized Specificity [11] be the preference relation among arguments. The
dialectical tree T〈A,d〉 for the argument T〈A,d〉 withA = {(d−�a1, b), (b−� a2)} con-
sists only of one argumentation line [〈A, d〉, 〈{(¬b−� a3)},¬b〉, 〈{(b−� a1, a3)}, b〉].



Observe that the argument 〈{(¬d−� a1)},¬d〉 is not an attack on 〈A, d〉 in
T〈A,d〉, because 〈A, d〉 is strictly more specific. Thus the argument 〈A, d〉 is un-
defeated in T〈A,d〉. Let T〈B,c〉 be the dialectical tree for the argument 〈B, c〉 with
B = {(c−� b), (b−� a1, a3)}. In T〈B,c〉 there is the (incomplete) argumentation
line Λ′ = [〈B, c〉, 〈{(¬c−�¬d), (¬d−� a1)},¬c〉, 〈A, d〉]. As in T〈A,d〉 the argument
〈A, d〉 has exactly one attack in T〈B,c〉 after Λ′, namely 〈{(¬b−� a3)},¬b〉. But dif-
ferent from the situation in T〈A,d〉 the argumentation line Λ′ + 〈{(¬b−�a3)},¬b〉
cannot be extended by the argument 〈{(b−� a1, a3)}, b〉 as 〈{(b−�a1, a3)}, b〉 is a
subargument of 〈B, c〉 and thus violates the properties of acceptable argumenta-
tion lines. Thus 〈A, d〉 is defeated in T〈B,c〉.

Proposition 1 implies an interesting relationship between warranted literals: if an
argument 〈A, h〉 is a warrant, every argument 〈A′, h′〉 such that 〈A, h〉 is an attack
on 〈A′, h′〉, cannot be a warrant. Furthermore due to the definition of warrant,
no two warranted literals can disagree.

Proposition 2. Let P be a de.l.p.. If h and h′ are warranted literals in P, then h
and h′ cannot disagree.

Although warranted literals cannot pairwise disagree, the set of all warranted
literals might be inconsistent with the strict knowledge as the following example
shows:

Example 6. Consider the de.l.p. P = (Π, ∆) with Π = {a, (h← c, d), (¬h← e, f)}
and ∆ = {(c−� a), (d−� a), (e−� a), (f −� a)}. In P the literals c, d, e, f are war-
ranted, because for every φ ∈ {c, d, e, f} there is the argument 〈{φ−� a}, φ〉, which
has no counterarguments. But Π ∪ {c, d, e, f} is inconsistent, as there are deriva-
tions for h and ¬h. However all pairs and even all triples of {c, d, e, f} are con-
sistent with Π (e. g. Π∪ {c, d} |/∼ ⊥), as there cannot be derivations for h and ¬h
from them.

As we want to translate the notion of warrant into the terms of answer set se-
mantics, this property of warranted literals will become a problem, as the literals
in an answer set are (jointly) consistent. Because this form of disagreement is not
captured in the terms of DeLP we formalize it here as joint disagreement.

Definition 15 (Joint disagreement). Let P = (∆, Π) be a de.l.p. and let h1, . . . , hn

be some literals. If {h1, . . . , hn} ∪ Π |∼ ⊥, then h1, . . . , hn are said to be in joint
disagreement.

If a set W of literals is given, one might want to determine the literals of W that
are not in joint disagreement. The most primitive construction of a set of literals,
that do not jointly disagree, is set up by an argument.

Proposition 3. Let P = (Π, ∆) be a de.l.p., let 〈A, h〉 be an argument such that
{h, h1, . . . , hn} = {head(δ) | δ ∈ A}. Then h, h1, . . . , hn do not jointly disagree.

Joint disagreement will play a crucial role when converting a de.l.p. into an answer
set program in the next two sections.



When considering the set of all warranted literals, another relationship of
interest between literals (more precisely between arguments warranting literals)
is the subargument relation.

Proposition 4. Let P be a de.l.p. and 〈B, h′〉 an argument. If 〈B, h′〉 is defeated in
a dialectial process, i. e. 〈B, h′〉 is marked “defeated” in T ∗〈B, h′〉, every argument
〈A, h〉, such that 〈B, h′〉 is a subargument of 〈A, h〉, is also defeated in a dialectical
process.

Due to contraposition Proposition 4 implies directly the following corollary.

Corollary 1. Let P be a de.l.p.. If h is a warranted literal in P and 〈A, h〉 is a
warrant for h, then h′ is warranted in P for every subargument 〈B, h′〉 of 〈A, h〉.

Current algorithms for computing warrant in DeLP only consider computing war-
rants for one literal [6,3]. If all warranted literals are to be determined, the above
results can prune the set of literals to be considered, when the warrant status for
one literal has been shown.

5. Converting a defeasible logic program into an answer set program

In this section and the next, we present two different conversion techniques to
transform a de.l.p. into an answer set program. The approach in this section
aims at an intuitively correct way to transform defeasible and strict rules into
answer set programming. Since the set of all warranted literals might be in joint
disagreement, the activation of a transformed defeasible rule must be prohibited
when leading to inconsistency. This leads to the notion of minimal disagreement
sets.

Definition 16 (Minimal disagreement set). Let P = (Π, ∆) be a de.l.p.. A minimal
disagreement set X ⊆ F(P) is a set of derivable literals such that X ∪Π |∼ ⊥ and
there is no proper subset X ′ of X with X ′ ∪Π |∼ ⊥. Let furthermore X(P) be the
set of all minimal disagreement sets of P .

Example 7. Consider the de.l.p. P = (Π, ∆) with Π = {a, b, (h← c, d), (¬h← e)}
and ∆ = {(p−� a), (¬p−� b), (c−� b), (d−� b), (e−�a)}. The minimal disagreement
sets are {h,¬h}, {h, e}, {c, d,¬h}, {c, d, e} and {p,¬p}.

Now joint disagreement can be subsumed by minimal disagreement sets: some
literals {h1, . . . , hn} are in joint disagreement, iff there is a minimal disagreement
set X with X ⊆ {h1, . . . , hn}.

Minimal disagreement sets will constrain the derivation of literals in the trans-
lated answer set program. If all but one literal of a minimal disagreement set are
in the state under consideration, then the derivation of the last literal should be
prohibited, in order to maintain consistency of the resulting answer set.

Definition 17 (Guard literals, guard rules). Let P be a de.l.p.. The set of guard
literals GuardLit(P) for P is defined as GuardLit(P) = {αh|h ∈ F(P)} with
new symbols αh. The set of guard rules GuardRules(P) of P is defined as
GuardRules = {αh ← h1, . . . , hn|{h, h1, . . . , hn} ∈ X(P)}.



Example 8. We continue Example 7. Here we have {(αh ← ¬h), (α¬h ←
c, d), (αc ← d,¬h), (αc ← d, e), (αd ← c, e)} ⊆ GuardRules(P)

We are now in the situation to propose our first translation of a de.l.p. into an
answer set program.

Definition 18 (de.lp-induced answer set program). Let P = (Π, ∆) be a de.l.p..
The P-induced answer set program ASP(P) is defined as the minimal extended
logic program satisfying 1.) for every a ∈ Π, a ∈ ASP(P), 2.) for every
r : h ← b1, . . . , bn ∈ Π, r ∈ ASP(P), 3.) for every h−� b1, . . . , bn ∈ ∆,
h← b1, . . . , bn, not αh ∈ ASP(P) and 4.) GuardRules(P) ⊆ ASP(P).

This translation converts strict and defeasible rules in an intuitively correct man-
ner in ASP-rules. Strict rules are applied whenever possible and defeasible rules
are applied whenever consistency is preserved.

Example 9. From the de.l.p. of Example 7, the complete P-induced answer
set program ASP(P) arises as ASP(P) = {a, b, (h ← c, d), (¬h ← e), (p ←
a, not αp), (¬p ← b, not α¬p), (c ← b, not αc), (d ← b, not αd), (e ← a, not αe)}
∪GuardRules(P) where some guard rules of P are as in Example 8.

We now investigate the relationship between arguments in a de.l.p. P and the an-
swer sets of the P-induced answer set program. Let Fα(P) = F(P)∪GuardLit(P)
denote the set of all derivable literals and their guard literals.

Proposition 5. Let P = (Π, ∆) be a de.l.p., let 〈A, h〉 be an argument such that
{h, h1, . . . , hn} = {head(δ) | δ ∈ A}. Let S ⊆ Fα(P) be a maximal subset such
that 1.) {h, h1, . . . , hn} ⊆ S, 2.) for all l ∈ S ∩ F(P), there is an argument 〈B, l〉
such that {head(δ) | δ ∈ B} ⊆ S, 3.) S is consistent, i.e. no subset of S is an
element of X(P) and 4.) αl ∈ S iff there is X ∈ X(P) such that X\{l} ⊆ S. Then
S is an answer set of ASP(P).

Theorem 1. Let P = (Π, ∆) be a de.l.p. and ASP(P) the P-induced answer set
program. If h warranted in P then there exists at least one answer set M of
ASP(P) with h ∈M .

But as the set of all warranted literals might be in joint disagreement, there can
be in general no answer set S such that all warranted literals are in S.

Example 10. Consider the de.l.p. P = (Π, ∆) with Π = {a, (h ← c, d), (¬h ←
e, f)} and ∆ = {(c−�a), (d−� a), (e−�a), (f −� a)}. The literals c, d, e, f are war-
ranted in P , see Example 6. The P-induced answer set program is given by
ASP(P) = {a, (h ← c, d), (¬h ← e, f), (c ← a, not αc), (d ← a, not αd), (e ←
a, not αe), (f −� a, not αf ), (αh ← ¬h), (αh ← c, d), (α¬h ← h), (α¬h ←
c, d), (αc ← d, e, f), (αc ← d,¬h), (αd ← c, e, f), (αd ← c,¬h), (αe ←
c, d, f), (αe ← f, h), (αf ← c, d, e), (αf ← e, h). The answer sets of ASP(P) (with-
out guard literals) are {c, d, e, h}, {c, d, f, h}, {f, e, f,¬h} and {c, e, f,¬h}. Hence,
there is no projected answer set S with c, d, e, f ∈ S.



As strict rules are the cause for minimal disagreement sets with cardinality greater
than two, we can sharpen the above results for the special case that there are no
strict rules.

Corollary 2. Let P = (Π, ∆) be a de.l.p. and ASP(P) the P-induced answer set
program. If Π does not contain any strict rule and M is the set of all warranted
literals of P then there exists an answer set M ′ of ASP(P) with M ⊆M ′.

If we want to model warrant in general DeLP as a credulous inference from the
induced answer set program, then it would be convenient, if we can determine
one specific answer set to infer from (as in Corollary 2). This is the topic of the
next section.

6. A simplified conversion

In this section we present an alternative conversion method to translate a de.l.p.
into an answer set program. The method presented here is very trivial, but leads
to quite stronger results than the above for a special case of preference relation
among arguments and also solves the discrepancy described at the end of the last
section for arbitrary preference relations.

In [4] the empty preference relation is used to translate a default logic program
into a de.l.p.. Then the warrant of a literal is equivalent to the sceptical inference
of that literal in the original default logic program. By translating a de.l.p. into
an answer set program, we present here the other direction of this translation.

Definition 19 (de.l.p∗-induced answer set program). Let P = (Π, ∆) be a
de.l.p.. The P∗-induced answer set program ASP∗(P) is defined as the mini-
mal extended logic program satisfying 1.) for every a ∈ Π it is a ∈ ASP∗(P)
and 2.) for every (strict or defeasible) rule h L99 b1, . . . , bn ∈ Π ∪ ∆
it is h ← b1, . . . , bn, not b′1, . . . , not b′m ∈ ASP∗(P) where {b′1, . . . , b

′
m} =

{b|b and h disagree}.

Note that for this conversion into answer set semantics, only pairwise disagree-
ment relations are taken into account. Moreover, strict and defeasible rules are
treated likewise. This seems reasonable as Example 10 shows, that strict rules
turn out to be the culprits for undercutting a general correspondence between
warrant and sceptical inference.

Example 11. From the de.l.p. of Example 7, the complete P∗-induced answer set
program ASP∗(P) arises as ASP∗(P) = {a, b, (h ← c, d, not ¬h, not e), (¬h ←
e, not h, ), (p ← a, not ¬p), (¬p ← b, not p), (c ← b), (d ← b), (e ← a, not h)}.
The resulting answer sets of ASP∗(P) are {a, b, c, d, e,¬h, p}, {a, b, c, d, e,¬h,¬p},
{a, b, c, d, h, p} and {a, b, c, d, h,¬p}. If the preference relation is Generalized Speci-
ficity [11], then the set of warranted literals of P is {a, b, c, d}.

As one can see for the special case of a de.l.p. P with no strict rules, the P∗- and
the P-induced translations collapse (in the sense of semantic equivalence). For
general DeLP applying the de.l.p.∗-induced translation yields the following result
for warranted literals:



Theorem 2. Let P = (Π, ∆) be a de.l.p.. Let furthermore ASP∗(P) be the P∗-
induced answer set program. If M is the set of all warranted literals of P, then
there exists an answer set M ′ of ASP∗(P) with M ⊆M ′.

This theorem states, that every warranted literal can be inferred credulously from
its ∗-induced answer set program and even more, that the set of all warranted
literals can be inferred credulously using one common answer set. But the inverted
statement “If a literal can be inferred credulously, then it is warranted in the
original de.l.p.” is not always true as Example 11 shows, where e can be inferred
credulously, but is not warranted.

We investigate now the implications of the above results for the special case
DeLP

∅ of defeasible logic programs with empty preference relation.

Proposition 6 (Remark 3.4 in [4]). In DeLP
∅, a literal l is warranted iff there

exists an argument for l that is not attacked.

When the preference relation under consideration is empty, then warranted literals
can be inferred sceptically from the resulting answer set program.

Theorem 3. Let P = (Π, ∆) be a de.l.p. with the empty preference relation. Let
ASP∗(P) the P∗-induced answer set program and M1, . . . , Mn be the answer sets
of ASP∗(P). If M is the set of all warranted literals of P then M ⊆M1∩. . .∩Mn.

Equality of M with the intersection of all answer sets does not always hold.
Consider a de.l.p. P = (Π, ∆) is given by Π = {q, r, h ← p, h ← ¬p} and ∆ =
{p−� q,¬p−� r}. The P-induced answer set program has two answer sets, each of
which contains the literal h. But h is not warranted as every argument for h has
a defeater attacking either the subargument for p or ¬p.

Theorem 3 can also easily give a result for arbitrary preference relations.

Corollary 3. Let P = (Π, ∆) be a de.l.p. with an arbitrary preference relation. Let
furthermore ASP∗(P) be the P∗-induced answer set program and M1, . . . , Mn be
the answer sets of ASP∗(P). If M ′ ⊆ F(P) is the set of all literals that have an
argument which is not attacked at all then M ′ ⊆M1 ∩ . . . ∩Mn.

Sceptical ASP-inference does not cover all warranted literals for a de.l.p. with an
arbitrary preference relation, but so does credulous inference as was shown with
Theorem 2.

7. Conclusion and future work

Defeasible logic programming provides a framework for paraconsistent reasoning
on the basis of dialectical argumentation. Answer set programming is one of the
most popular approaches to default reasoning, which is similar to defeasible rea-
soning in that both methodologies aim at realizing nonmonotonic inferences. In
this paper, we studied transformations of defeasible logic programs into answer
set programs in order to make relationships between inference via a dialectical
warrant procedure, on the one side, and answer set semantics, on the other side,



explicit. We presented two types of conversions that differ with respect to the
treatment of strict rules. We proved that for conversions of both types, warrant
implies credulous inference. For conversions of the second type, we obtained the
stronger result that all warranted literals of the defeasible logic program are con-
tained in one and the same answer set of the transformed logic program. More-
over, in some cases, we were able to show that warranted literals can be inferred
skeptically in the answer set environment. In general, however, conversions of the
first type establish a much weaker relationship between defeasible logic program-
ming and answer set programming, as strict rules may lead to conflicting defeasi-
ble derivations. Of course, in the case that the defeasible logic program does not
contain any strict rules, both conversions coincide.

As part of our ongoing work, we will combine our approach with ideas from
[4] to obtain a complete picture of the links between defeasible argumentative
reasoning in DeLP and answer set semantics. Furthermore it would be interesting
to investigate these links when considering an altered version of DeLP using the
techniques described in [2].

Acknowledgments The authors thank the reviewers for their helpful comments to
improve the original version of this paper.

References

[1] Ph. Besnard and A. Hunter. Towards a logic-based theory of argumentation. In Proc. of
the 17th American Nat. Conf. on Artif. Intelligence (AAAI’2000), pages 411–416, 2000.

[2] Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms.
Artificial Intelligence, 171(5-6):286–310, 2007.

[3] Carlos I. Chesñevar and Guillermo R. Simari. Towards computational models of natu-
ral argument using labelled deductive systems. In Proc. of the 5th Intl. Workshop on
Computational Models of Natural Argument (CMNA 2005), 2005.

[4] Telma Delladio and Guilermo R. Simari. Relating DeLP and default logic. Inteligencia
Artificial, Revista Iberoamericana Inteligencia Artificial, 35:101–109, 2007.

[5] Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. AIJ, 77(2):321–358, 1995.

[6] A. García and G. Simari. Defeasible logic programming: An argumentative approach.
Theory and Practice of Logic Programming, 4(1-2):95–138, 2002.

[7] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[8] Henry Prakken and Gerard Vreeswijk. Logics for defeasible argumentation. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic, volume 4, pages 218–319.
Kluwer Academic Publishers, Dordrecht, 2 edition, 2002.

[9] Iyad Rahwan and Leila Amgoud. An argumentation-based approach for practical reason-
ing. In Gerhard Weiss and Peter Stone, editors, 5th International Joint Conference on
Autonomous Agents and Multi Agent Systems, AAMAS’2006, pages 347–354, 2006.

[10] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
[11] F. Stolzenburg, A. García, C. Chesñevar, and G. Simari. Computing generalized specificity.

Journal of Non-Classical Logics, 13(1):87–113, 2003.
[12] M. Thimm and G. Kern-Isberner. On the relationship of defeasible argumentation and

answer set programming (extended version). Technical report, Technische Universität
Dortmund, 2008.


