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ABSTRACT
This paper aims at giving a classification of argumentation
games agents play within a multi-agent setting. We inves-
tigate different scenarios of such argumentation games that
differ in the protocol used for argumentation, i. e. direct,
synchronous, and dialectical argumentation protocols, the
awareness that agents have on other agents beliefs, and dif-
ferent settings for the preferences of agents. To this end
we employ structured argumentation frameworks, which are
an extension to Dung’s abstract argumentation frameworks
that give a simple inner structure to arguments. We also
provide some game theoretical results that characterize a
specific argumentation game as strategy-proof and develop
some argumentation selection strategies that turn out to
be the dominant strategies for other specific argumentation
games.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
Agents

General Terms
Theory

Keywords
Argumentation, Game Theory

1. INTRODUCTION
Argumentation has become a popular choice for reason-

ing with inconsistent information in artificial intelligence [3].
On the one hand, there are a lot of approaches to model ar-
gumentation in different kinds of logics, e. g. classical logic
[4], defeasible logic [11], or possibilistic logic [1]. On the
other hand, abstract argumentation as introduced by Dung
[6] is widely used as an abstract means to talk about argu-
mentation in general. In abstract argumentation, arguments
are represented as atomic entities and the interrelationships
between different arguments are modeled using an attack
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relation. Abstract argumentation has been thoroughly in-
vestigated in the past ten years and there is quite a lot of
work on, e. g. semantical issues [2] and extensions of abstract
argumentation frameworks [9].

In the context of agent and multi-agent systems, there are
mainly two applications of formal argumentation. First, us-
ing argumentation techniques as a non-monotonic reasoning
process within a single agent and second, using argumenta-
tion in dialogues between different agents in order to realize
persuasion, cooperation, planning, or general conflict solv-
ing. Here, we focus on the second application where reason-
ing is performed involving the whole system of agents, see
e. g. [7] for a formalization. In a dialogue, agents take turns
in bringing up arguments for some given claim and depend-
ing on the interrelationships of the arguments the claim is
accepted or rejected by the agents (either individually or
jointly). Up until recently, strategic issues in argumentation
dialogues have been mostly ignored with few exceptions, e. g.
[15]. By considering game theoretical aspects in argumenta-
tion dialogues [13] the interest in strategies for the selection
of arguments and the general connection of game theory
and argumentation has grown. An argumentation dialogue
can be represented as a strategic game involving a set of
self-interested agents and in choosing the “right” arguments
agents can influence the outcome of the argumentation and
reach a more desirable result according to their own prefer-
ences. In [12, 14, 13] Rahwan et al. investigate a specific
argumentation game, in which agents have to state all ar-
guments they wish at once. Because of this simple setting
they were able to prove strategy-proofness of this scenario
under certain circumstances, i. e. the dominant strategy of
each agent is to truthfully report all their arguments. Be-
sides this scenario of direct argumentation there are other
formalizations of specific argumentation games, e. g. [15].
But up till now, to our knowledge there has been no com-
prehensive overview on the different argumentation settings
and the different scenarios where agents can argue with each
other.

The contribution of this paper is twofold. The main con-
tribution lies in a classification of the different argumenta-
tion games agents can play within a multi-agent setting. We
make a first attempt to characterize argumentation games
by means of the used game protocol, the awareness of the
agents on other agents beliefs, and the structure of the pref-
erences of the agents. We use structured argumentation
frameworks, a novel approach which generalizes abstract ar-
gumentation frameworks, to model argumentation between
different agents. The second contribution lies in general-



izing the strategy-proofness result of [12] and investigating
several other settings for argumentation games in terms of
the strategical issues involving argument selection.

The rest of this paper is organized as follows. In Sec. 2 we
give a brief overview on abstract argumentation and intro-
duce the novel approach of structured argumentation. We
continue in Sec. 3 with applying structured argumentation
onto a multi-agent setting. Section 4 develops a classifica-
tion of argumentation games in the multi-agent setting in
terms of game protocol, awareness, and agent types. We
investigate several strategical issues in some instances of ar-
gumentation games in Sec. 5 and conclude in Sec. 6.

2. FORMAL ARGUMENTATION

2.1 Abstract Argumentation
Abstract argumentation frameworks [6] take a very sim-

ple view on argumentation as they do not presuppose any
internal structure of an argument. Abstract argumentation
frameworks only consider the interactions of arguments by
means of an attack relation between arguments.

Definition 1. An abstract argumentation framework AF is
a tuple AF = (Arg, attacks) where Arg is a set of arguments
and attacks is a relation attacks ⊆ Arg × Arg.

For two arguments A,B ∈ Arg the relation (A,B) ∈ attacks
means that argument A attacks argument B. Abstract ar-
gumentation frameworks can be concisely represented as di-
rected graphs, where arguments are represented as nodes
and edges model the attack relation.

Example 1. Consider the abstract argumentation frame-
work AF = (Arg, attacks) depicted in Fig. 1. Here it is
Arg = {A1,A2,A3,A4} and attacks = {(A1,A2), (A2,A3),
(A2,A4), (A3,A2), (A3,A4)}.

A1

A2 A3

A4

1

Figure 1: A simple argumentation framework

Semantics are given to abstract argumentation frameworks
by means of extensions. An extension E of an abstract ar-
gumentation framework AF = (Arg, attacks) is a set of argu-
ments E ⊆ Arg that gives some coherent view on the argu-
mentation underlying AF. In the literature [6] a wide variety
of different types of extensions has been proposed. All these
different types of extensions require some basic properties as
conflict-freeness and admissibility. A set S ⊆ Arg is conflict-
free if and only if there are no two arguments A,B ∈ Arg
with (A,B) ∈ attacks. An argument A ∈ Arg is acceptable
with respect to a set of arguments S ⊆ Arg if and only if for
every argument B ∈ Arg with (B,A) ∈ attacks there is an
argument C ∈ S with (C,B) ∈ attacks. A set S ⊆ Arg is ad-
missible if and only if it is conflict-free and every argument
a ∈ S is acceptable with respect to S.

Extensions of an abstract argumentation framework can
be described using the characteristic function FAF defined

as FAF(S) = {A ∈ Arg | A is acceptable wrt. S} for sets
S ⊆ Arg.

Definition 2. Let AF = (Arg, attacks) be an abstract ar-
gumentation framework and S ⊆ Arg an admissible set.

• S is a complete extension if and only if S = FAF(S).

• S is a grounded extension if and only if it is a minimal
complete extension (with respect to set inclusion).

• S is a preferred extension if and only if it is a maximal
complete extension (with respect to set inclusion).

• S is a stable extension if and only if it is a complete
extension and attacks each A ∈ Arg \ S.

Example 2. We continue Ex. 1. Due to FAF({A1,A3}) =
{A1,A3} the set {A1,A3} is a complete extension. Further-
more it is the only complete extension and also grounded,
preferred, and stable.

Note that the grounded extension is uniquely determined
and always exists, cf. [6].

2.2 Structured Argumentation
In the following, we introduce structured argumentation

frameworks which extend Dung’s abstract argumentation
frameworks and are a slightly modified variant of dynamic
argumentation frameworks [16]. In structured argumenta-
tion frameworks arguments are built using a very simple
propositional language, so let Prop denote a finite and fixed
set of propositions. The basic structure for structured argu-
mentation frameworks are basic arguments which represent
atomic inference rules by connecting some set of propositions
(the support) to another proposition (the claim).

Definition 3. A basic argument A is a tupleA = ({α1, . . . ,
αn}, β) with α1, . . . , αn, β ∈ Prop and β /∈ {α1, . . . , αn}.
For a basic argument A = ({α1, . . . , αn}, β) we abbreviate
supp(A) = {α1, . . . , αn} (the support of A) and cl(A) = β
(the claim of A).

For the rest of this paper, let U be some fixed and finite
set of basic arguments, called the universal set of basic ar-
guments. To keep things simple, we assume that U does
not contain any cyclic dependencies, i. e. there is no infinite
sequence A1,A2, . . . ∈ U with cl(Ai) ∈ supp(Ai+1) for all
i > 0. Together with an attack relation →⊆ U × U the set
of basic arguments form a structured argumentation frame-
work (SAF) F = (U,→).1

Example 3. Consider the SAF F1 = (U,→) given by

U = { A1 = (∅, a), A2 = ({a}, b), A3 = (∅, c)
A4 = (∅, d), A5 = ({d}, e), A6 = ({b}, f)
A7 = (∅, g) }

and

→ = { (A3,A2), (A2,A4), (A5,A6),

(A5,A7), (A6,A7), (A7,A5) } .

The rough structure of F1 is depicted in Fig. 2, where the
attack relation is represented by solid arrows and “support”
by dashed arrows. Notice that Fig. 2 does not contain all
the information represented by F1 as the propositions the
arguments relate to have been omitted.
1Although structured argumentation frameworks have the
same structure as abstract argumentation frameworks, we
deliberately use different notations to avoid ambiguity.
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Figure 2: The SAF F1

A set S ⊆ U is conflict-free if and only if there are no two
basic arguments A,B ∈ S with A → B. A finite sequence
[A1, . . . ,An] of basic arguments is conflict-free if and only if
{A1, . . . ,An} is conflict-free. Basic arguments are used to
form inference chains called argument structures.

Definition 4. Let S ⊆ U be a set of basic arguments
and A ∈ S a basic argument. An argument structure AS
for A with respect to S is a minimal (with respect to set
inclusion) conflict-free sequence of basic arguments AS =
[A = A1, . . . ,An] with {A2, . . . ,An} ⊆ S such that for any
Ai ∈ AS and for any α ∈ supp(Ai) there is a Aj ∈ AS with
j > i and cl(Aj) = α (for 1 ≤ i, j ≤ n). Let ArgStructS(A)
denote the set of argument structures for A with respect to
S and let ArgStructS =

⋃
A∈S ArgStructS(A) be the set of

all argument structures with respect to S.

For an argument structure AS = [A1, . . . ,An] let top(AS) =
A1 denote the first basic argument in AS. The attack re-
lation → on basic arguments can be extended on argument
structures by defining AS1 → AS2 if and only if there is a
A ∈ AS2 with top(AS1) → A for two argument structures
AS1 and AS2. An argument structure AS1 indirectly at-
tacks an argument structure AS2, denoted by AS1 ↪→ AS2

if AS1 → . . .→ AS2 with an odd number of attacks.

Example 4. We continue Ex. 3. In F1 the following se-
quences are some argument structures

AS1 = [A2,A1] AS2 = [A5,A4]

AS3 = [A6,A2,A1] AS4 = [A7]

Due to A2 → A4 it holds AS1 → AS2. Similarly, it holds
AS2 → AS3, AS3 → AS4, AS2 → AS4, AS4 → AS2, and
especially AS1 ↪→ AS4.

Using the extended attack relation, a structured argumenta-
tion framework F induces an abstract argumentation frame-
work AFF = (ArgF, attacksF) with ArgF = ArgStructU and
attacksF = {(AS1, AS2) | AS1 → AS2}. Let Sem denote
one of the Dung-style semantics, cf. Subsec. 2.1. Given a
structured argumentation framework F and a semantics Sem
the output of F denotes the set of all conclusions acceptable
with the semantics Sem in the induced abstract argumen-
tation framework AFF, cf. [5]. More precisely, if E1, . . . , En
are the extensions of AFF under Sem, then OutputSem(F) =
{α ∈ Prop | ∀i : ∃AS ∈ Ei : cl(top(AS)) = α}.

Example 5. A graphical representation of the induced ab-
stract argumentation framework AFF1 of F1 from Ex. 3 is
depicted in Fig. 3. Note that we abbreviated some argument
structures by their names introduced in Ex. 4. The grounded

[A1] AS1

[A3]

[A4] AS2

AS3

AS4
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Figure 3: The induced abstract argumentation
framework of F1 from Ex. 3

extension EG of AFF1 computes to EG = {[A1], [A3], [A4],
AS2} and therefore Outputgrounded(F1) = {a, c, d, e}.

Structured argumentation frameworks are a clear generaliza-
tion of abstract argumentation frameworks as every abstract
argumentation framework can be cast into a structured ar-
gumentation framework while retaining semantics.

Definition 5. Let AF = (Arg, attacks) be an abstract ar-
gumentation framework. For every argument A ∈ Arg intro-
duce a new proposition A ∈ Prop. The equivalent structured
argumentation framework FAF = (U,→) to AF is defined as

U = {(∅,A) | A ∈ Arg}
→ = {((∅,A), (∅,B)) | (A,B) ∈ attacks}

The following theorem states that structured argumentation
frameworks are a clear generalization of abstract argumen-
tation frameworks and can easily be verified.

Theorem 1. Let AF be an abstract argumentation frame-
work with extensions E1, . . . , En under some semantics Sem
and let E′

1, . . . , E
′
m be the extensions of AFFAF under Sem.

Then there is bijective function T : {E1, . . . , En} → {E′
1, . . . ,

E′
m} such that T ({A1, . . . ,Ak}) = {(∅,A1), . . . , (∅,Ak)} for

every Ei = {A1, . . . ,Ak}, 1 ≤ i ≤ n. In particular, it is
n = m.

Usually in a multi-agent setting, the universal set of basic
arguments U is unknown to all agents because of lack of
expertise or just lack of knowledge. When considering a
multi-agent setting, every agent may only have a partial view
on U and the attack relation. When these agents share their
knowledge they dynamically build up a framework which
bases on a subset of U .

Definition 6. A view VF on a structured argumentation
framework F = (U,→) is a structured argumentation frame-
work VF = (U ′,→′) with U ′ ⊆ U and →′= {(A1,A2) ∈→|
A1,A2 ∈ U ′}.

We will omit the subscript of VF when the SAF F is clear
from context.

3. THE MULTI-AGENT SETTING
The scenario we consider can be intuitively described as

follows. At the beginning every agent has some view on
the underlying SAF F and some preferences over the out-
put of the argumentation. The common view considered by
all agents as starting point is empty and the agents take
turn by bringing up some basic arguments from their own



view and incorporating them to the common view. When
no agent can bring up more arguments the argumentation
ends and an abstract argumentation framework is computed
with respect to the final common view. Lastly, this abstract
argumentation framework is used to compute the output of
the argumentation given some predefined semantics. In the
following, we formalize this intuition.

The multi-agent setting is divided into two parts, one de-
scribing the basic contents of the scenario, namely the un-
derlying argumentation framework and the agents, and one
describing the dynamic part of an evolving argumentation.

Definition 7. A structured argumentation system (SAS)
Π is a tuple Π = (F, Ag) with a structured argumentation
framework F and a set of agent identifiers Ag.

As a simplification we assume that the universal set of basic
arguments U of F contains exactly the union of the basic
arguments appearing in the views of the agents. Hence, any
basic argument in U is known by at least one agent. This is
not a restriction as an argument not appearing in any view
cannot be used at all.

Dynamism is introduced by considering evolving states of
Π. At any time the state of Π is determined by a current
common view V 0, the views of each agent V i, and the out-
come of the argumentation.

Definition 8. A state ΓΠ of a SAS Π = (F, Ag) with Ag =
{A1, . . . , An} is a tuple ΓΠ = (V 0, {V 1, . . . , V n}, O) with
views V 0, . . . , V n on F, and a set O ⊆ Prop. Let ∆Π denote
the set of all states of Π.

We will omit the superscripts Π when Π is clear from con-
text. The final component O of a state Γ denotes the out-
put of the argumentation if Γ is the final state. If the fi-
nal state has not been reached yet, we set O = nil, where
nil is a special identifier denoting no output. For a state
Γ = (V 0, {V 1, . . . , V n}, O) we denote V i(Γ) = V i, and
O(Γ) = O. The initial state of a SAS Π is denoted by
ΓΠ

0 with O(ΓΠ
0 ) = nil. The state of a SAS Π evolves over

time when agents bring up new basic arguments from their
own views. If an agent has to take turn in an argumentation
he does so by using its selection function. Given a common
view of a SAF and an agent’s own view a selection function
selects a set of basic arguments of the agent’s view to come
up with. Let P(S) denote the power set of a set S.

Definition 9. Let Ak be an agent identifier. A selection
function selAk for Ak is a function selAk : ∆ → P(U) such
that selAk (Γ) ⊆ (Uk \ U0) for any Γ ∈ ∆ with V k(Γ) =
(Uk,→k) and V 0(Γ) = (U0,→0).

The condition selAk (Γ) ⊆ (Uk \ U0) ensures that the agent
brings up new basic arguments that are not already part
of the common view. Notice also that an agent may bring
up no basic arguments at all via selAk (Γ) = ∅. Intuitively
spoken, a selection function implements the strategy of an
agent in an argumentation in a game theoretical sense. In
game theory, the performance of an agent’s strategy is eval-
uated by using the agent’s preferences on the outcomes of a
game. As in our framework the outcome of the argumenta-
tion game is determined by the output of the final common
view of the underlying F the agent’s utility is determined
by its utility function which maps sets of propositions, i. e.
possible outcomes, to natural numbers, thus describing a
ranking on the output.

Definition 10. An utility function utilA for an agent iden-
tifier A is a function utilA : P(Prop)→ N.

An agent A with a utility function utilA prefers the outcome
(i. e. the output) L1 ⊆ Prop over L2 ⊆ Prop if utilA(L1) >
utilA(L2).

Other agents observe new basic arguments and integrate
these in their own views respectively. As a convenience we
abbreviate this operation as follows.

Definition 11. Let V = (U ′,→′) be a view on F = (U,→)
and A ∈ U a basic argument. The view update of V with A
is a view V ′ = V ⊗ A on F with V ′ = (U ′′,→′′) defined as
U ′′ = U ′ ∪ {A} and

→′′ = →′ ∪{(A,B) ∈→| B ∈ U ′} ∪ {(B,A) ∈→| B ∈ U ′}

Definition 11 suggests that agents are fully aware of attacks
between known arguments. This means that when agents
incorporate new basic arguments into their view, all attacks
between this argument and arguments already known are
incorporated as well. For a set of basic arguments A =
{A1, . . . ,An} ⊆ U we define V ⊗A = (. . . ((V ⊗A1)⊗A2)⊗
. . .)⊗An.

4. ARGUMENTATION GAMES
The type of argument game that agents play directly in-

fluences the strategies agents should use in order to obtain
the best outcomes. In [12] Rahwan and Larson investigate
mechanism design techniques [8] in order to determine suit-
able mechanisms, i. e. types of games, for abstract argumen-
tation. For a special case of mechanism and a special type of
agents they were able to identify this scenario as a strategy-
proof game. As such, the best strategy for the agents is to
be truthful about their views and bring up all arguments
they know of. Although we obtain a similar result as in [12]
of strategy-proofness for a special scenario of a SAS we also
have a look on strategies for non-strategy-proof games, cf.
Sec. 5.

In this section we give an overview on different settings
for argumentation games. To this end we identify three key
parameters as follows.

1. Game protocol : How do agents take turn and when
does the game terminates?

2. Awareness: Does an agent have knowledge on the views
of other agents?

3. Agent types: How are the preferences of an agent or-
ganized?

In general we assume for all scenarios that every action un-
dertaken by any agent is recorded by all other agents, cf.
the notion of perfect information in [15].

4.1 Game Protocol
A protocol describes the extensional rules of an argumen-

tation game and prescribes how agents take turns and which
actions can be undertaken. More formally, we describe ar-
gumentation game protocols by means of state transition
rules as in operational semantics [10] that transform one
state of a SAS Π into a new one. Given a SAS Π and some
initial state ΓΠ

0 of Π the rules of a protocol P are applied
to ΓΠ

0 and its successor state until a final state finalP (ΓΠ
0 )

with O(finalP (ΓΠ
0 )) 6= nil is reached. Note that finalP (ΓΠ

0 ) is



uniquely determined as we do not allow probabilistic deci-
sions in the agents’ strategies. For an agent A its gain for
ΓΠ

0 and P is defined as gainPA(ΓΠ
0 ) = utilA(O(finalP (ΓΠ

0 ))),
i. e. the agents utility for the outcome of the argumentation.
In the following, let Π be a SAS with Π = (F, {A1, . . . , An})
and Γ a state.

4.1.1 Direct Argumentation Mechanism
A direct argumentation mechanism [12] allows only one

single step in the argumentation game. Every agent may
put forth any set of basic arguments at once. After this, the
mechanism terminates. This can be realized with the single
state transition rule T d1 defined as follows.

[T d1 ]
A = selA1(Γ) ∪ . . . ∪ selAn(Γ)

Γ −→ (V 0′ , {V 1′ , . . . , V n′},OutputSem(V 0′))

with: V i
′

= V i(Γ)⊗ A (0 ≤ i ≤ n)

Obviously, the direct argumentation protocol P d = {T d1 }
always terminates after one execution step.

4.1.2 Synchronous Argumentation Mechanism
A generalization of the direct argumentation mechanism

is the synchronous argumentation mechanism. There, every
agent may bring up a set of basic arguments at the same
time but the process is repeated until no agent wants to
bring up any more basic arguments. There are two variants
of this mechanism, one where agents are allowed to bring
up new basic arguments even if they have not done so in
a previous step, and one where agents cannot bring up any
new basic arguments if they previously decided not to do
so. We call the second variant a rigid protocol. When using
a rigid protocol, agents have to carefully deliberate whether
they choose to not bring forward any arguments, because
they do not get any other chance to do so. In this paper due
to lack of space, we only consider the non-rigid variant. The
rigid protocol will be elaborated in an upcoming extended
version of this paper. The non-rigid variant is realized with
the following transition rules.

[T s1 ]
A = selA1(Γ) ∪ . . . ∪ selAn(Γ) and A 6= ∅

Γ −→ (V 0′ , {V 1′ , . . . , V n′}, nil)

with: V i
′

= V i(Γ)⊗ A (0 ≤ i ≤ n)

[T s2 ]
selA1(Γ) ∪ . . . ∪ selAn(Γ) = ∅

Γ −→ ( · , · ,OutputSem(V 0(Γ)))

The synchronous argumentation protocol P s = {T s1 , T s2 } also
clearly terminates after a finite number of steps, because the
number of basic arguments is finite.

4.1.3 Dialectical Argumentation Mechanism
In normal dialogues agents usually alternately take turns

when bringing up arguments. In general, this can be re-
alized by a dialectical argumentation mechanism where we
assume some order of the agents and basic arguments can
be brought up with respect to this order. As for the syn-
chronous argumentation mechanism two variants are possi-
ble with respect to rigidness of the protocol. Anyway, the
protocol needs some extra meta information for the states
to select the next agent appropriately and we have to ensure

that the protocol terminates if no agent wants to bring up
new arguments. To this end we introduce some meta infor-
mation M = (k1, k2) ∈ N2 such that k1 is the index of the
agent that last took turn and k2 counts the number of agents
that skipped bringing up new basic arguments since the last
one that did. For an initial state ΓΠ

0 we set M = (0, 0). Then
this protocol is realized by the following transition rules.

[T t1 ]
k2 < n and A = sel

Ak′
1 (Γ)

Γ −→ (V 0′
, {V 1′

, . . . , V n
′
}, nil)

M = (k1, k2) −→ M ′ = (k′1, k
′
2)

with: V i
′

= V i(Γ)⊗ A (0 ≤ i ≤ n)

k′1 = (k1 mod n) + 1

k′2 =

{
0 if A 6= ∅
k2 + 1 otherwise

[T t2 ]
k2 = n

Γ −→ ( · , · ,OutputSem(V 0))
M = (k1, k2) −→ M

As for the synchronous argumentation protocol the termina-
tion of the dialectical argumentation protocol P t = {T t1 , T t2}
is ensured due to the finiteness of the universal set of basic
arguments U .

Notice that a variant of the rigid version of the dialectical
argumentation mechanism has been previously employed for
an argumentation game in [15].

The general protocols described above allow an agent to
bring forward an arbitrary number of arguments at any step.
For the synchronous and dialectical mechanisms a restricted
variant would be allow an agent to bring forward only a sin-
gle argument at any step. We call such a protocol an atomic
step protocol. Together with the option of rigidness we ob-
tain each four variants of the synchronous and dialectical
mechanisms.

4.2 Awareness
Our definition of selection functions (Def. 9) is quite gen-

eral as it takes the whole state of the system into account
when determining the basic argument that should be brought
forward. In particular, a selection function might be heavily
influenced by the views of other agents. Usually, an agent
does not have complete and accurate knowledge on the sub-
jective views of other agents. One extreme is that an agent
has no awareness of other agents views. More formally, a
selection function selAk of an agent Ak ∈ Ag is ignorant
if for all Γ1,Γ2 ∈ ∆ it holds: If V0(Γ1) = V0(Γ2) and
V k(Γ1) = V k(Γ2), then it is selAk (Γ1) = selAk (Γ2). This
means that the decision of agent Ak is at any time only
dependent on the agent’s own view and the common view.

Usually, an agent has some beliefs of the views of other
agents. Let BelAk (Aj ,Γ) the subjective belief of agent Ak
on the view of agent Aj in state Γ, i. e. BelAk (Aj ,Γ) is
itself a view. Then, a selection function selAk of Ak is belief-
based if for all Γ1,Γ2 ∈ ∆ it holds: If V 0(Γ1) = V 0(Γ2) and
V k(Γ1) = V k(Γ2) and for all j 6= k it is BelAk (Aj ,Γ1) =
BelAk (Aj ,Γ2), then it is selAk (Γ1) = selAk (Γ2). An agent
Ak has full awareness if his selection function selAk is belief-
based and BelAk (Aj ,Γ) = V j(Γ) for every state Γ ∈ ∆ and
j 6= k.



In between no awareness and full awareness there is a wide
range of incomplete and uncertain awareness of other agents’
views, but we will not discuss this topic in the current paper.

4.3 Agent Types
Under the term agent type we understand in this paper the

way the preferences of the agent are organized. The main
reason for arguing with other agents is to persuade other
agents or to prove some statement. This goal is represented
by the agent’s utility function which ranks the possible out-
comes of the argumentation. In the following we identify
some simple utility functions.

The most simple attitude of an agent towards the out-
come of an argumentation is the desire to prove a single
proposition, no matter what else is proven.

Definition 12. Let α ∈ Prop. The utility function utilα is
called an indicator utility function for α if for any L ⊆ Prop
it is utilα(L) = 1 if α ∈ L and utilα(L) = 0 otherwise.

The choice of 0 and 1 as the only values for the indicator
utility function is arbitrary. Any utility function util with
util(L) = k and util(L′) = l for any L,L′ ⊆ Prop with α ∈ L
and α /∈ L′ for some α can be normalized to an indicator
utility function if k > l. Note that the definition of indicator
utility functions resembles the rationale behind focal argu-
ments in [13]. Because of this, if utilα is the utility function
of an agent A we call α the focal element of A.

The definition of an indicator function can be extended to
comprehend for multiple focal elements as follows.

Definition 13. The utility function utilS is called a multi-
ple indicator utility function for S ⊆ Prop if for any L ⊆ Prop
it is utilS(L) = 0 if S * L and utilS(L) = 1 if S ⊆ L.

Notice that it holds util{α} = utilα. This general definition
does not demand that S has to be “consistent”, i. e. there
may be argument structures AS1 resp. AS2 for some α ∈
Prop resp. α′ ∈ Prop such that AS1 → AS2. Another
variant of an agent’s preferences can be characterized by
a counting utility function which is similar in spirit to the
notion of acceptability maximising preferences in [12].

Definition 14. Let S ⊆ Prop. The utility function util#S is
called a counting utility function for S if for any L ⊆ Prop
it is util#S (L) = |L ∩ S|.

Notice that it holds util#{α} = utilα. The difference between

a counting utility function and a multiple indicator utility
function is that for a multiple indicator utility function all
focal elements have to be in the output of an argumentation
in order to yield a better utility than zero. An agent with a
counting utility function tries to prove as many of his focal
elements as possible.

In general, there has to be no direct relationship between
an agent’s view and his utility function. For example, an
agent with an indicator utility function utilα may have no
basic argument for α in his own view or, more drastically,
his view can give reasons to not believe in α. A special
form of views are subjective views in which an agent’s utility
function is consistent with its own view.

Definition 15. Let V be a view on F. V is a subjective
view on F with respect to a utility function util if and only
if util(OutputSem(V )) is a maximum of util.

Furthermore, a view V = (U ′,→′) is globally consistent with
respect to a SAF F if there are no two argument structures
AS1, AS2 in F such that AS1 ↪→ AS2 and AS1 ∩U ′ 6= ∅ and
AS2 ∩ U ′ 6= ∅. This means that no two basic arguments in
V can be used to construct argument structures that are, in
any way, inconsistent to one another.

Figure 4 summarizes the different game parameters we in-
vestigate in this paper, ordered by their “complexity”. Dis-
tance from the origin indicates a more demanding setting
with respect to the complexity of the strategy for argument
selection.

aware
nes

s

game protocol

ag
en

t
ty

p
e

dir
ect

syn
chr

ono
us

dia
lec

tic
al

no awareness

full awarenessind
ica

tor

mult
ipl

e ind
ica

tor

cou
nti

ng

1

Figure 4: Complexity of game parameters

5. STRATEGIES FOR SELECTING ARGU-
MENTS

In the following, we investigate some strategies for argu-
ment selection in different argumentation games as defined
in the previous section. The most simple selection function
one can think of is the one that just reports all basic argu-
ments of the agent’s view. Let Ak ∈ Ag be an agent identi-
fier and Γ a state. Then the truthful selection function selAk

>
is defined as selAk

> (Γ) = Uk \ U0 with V k(Γ) = (Uk,→k)
and V 0(Γ) = (U0,→0). In other words, the selection func-

tion selAk
> always returns all basic arguments of an agent’s

view that aren’t already present in the common view of the
SAS.

In general, we are interested in finding selection func-
tions that maximize an agent’s gain in an argumentation
game. Here, an argumentation game AG is defined as a
tuple AG = (Π, P ) with a SAS Π and a protocol P . The
strongest concept of a selection function that maximizes util-
ity is that of a dominant strategy. Let Π be a SAS and let
Π′ be the same as Π except possibly different selection func-
tions of the agents. Then the selection function selAk of
agent Ak is a dominant selection function if for any such

Π′ it is gainPAk
(ΓΠ

0 ) ≥ gainPAk
(ΓΠ′

0 ). This means, regardless
of how the other agents select their arguments, the selec-
tion function selAk maximizes the gain of agent Ak.2 The
truthful strategy is of special interest in game theory, as it

2Notice that agent Ak may have the same selection function
selAk in Π and Π′.



({e}, d)

(∅, e) (∅, a)

({d}, f) ({b}, c)

({a}, b)({d}, c)

1

({a}, d)

(∅, a)

({d}, f) ({b}, c)

({a}, b)({d}, c)

1

(a) (b)

Figure 5: The structured argumentation frame-
works (a) F2 from Ex. 6 and (b) F3 from Ex. 8

is the dominant strategy for strategy-proof games. There-
fore, given a strategy-proof argumentation game it is the
best choice for each agent to truthfully report all their basic
arguments. In [12] Rahwan and Larson identified a special
type of direct argumentation game as strategy-proof. We
can restate and extend their result in our framework as fol-
lows.

Theorem 2. Let Π = (F, Ag) be a SAS. If the initial view
V i(ΓΠ

0 ) of each agent Ai ∈ Ag is subjective and globally
consistent with respect to F and the utility function utilAi of
each agent Ai is a counting utility function, then (Π, P d) is
strategy-proof.

Observe that the above statement is independent of the ac-
tual chosen semantics due to the general definition of Output.
Theorem 2 states that the dominant strategy for subjective
and globally consistent views is to use the truthful selection
function sel>. It is a clear extension of Th. 32 stated in
[12] as our underlying argumentation framework is a struc-
tured argumentation framework. The statement of Th. 2
easily extends to indicator utility functions, multiple indica-
tor utility functions as well as synchronous and dialectical
argumentation protocols. However, the condition of a glob-
ally consistent view is hard to check for an agent who has no
idea of the structure of the underlying framework F. Given
a basic argument A in his view he may not know if A can
be used to construct an argument structure against one of
his “own” arguments. Due to this observation, Th. 2 is only
applicable for an agent if the global consistency is assured
by a trustworthy third party or if the agents have full aware-
ness of the other agent’s views and thus can verify the global
consistency by themselves. Otherwise an agent cannot know
if the best strategy is to be truthful.

In general, full awareness is not a realistic assumption
in argumentation. When agents cannot verify the global
consistency of their view, some strategic deliberations are
mandatory as the following example shows.

Example 6. Consider the following SAF F2 = (U,→).

U = { (∅, a), ({a}, b), ({b}, c), (∅, e),
({e}, d), ({d}, f), ({d}, c) }

→ = { (({d}, f), ({d}, c)), (({d}, f), ({b}, c)) }

An overview of F2 is given in Fig. 5 (a). Let Π = (F2, {A1,
A2}) be a SAS and the initial state ΓΠ

0 = (∅, {V 1, V 2}, nil)
of Π be given as follows.

V 1 = (U \ {({d}, f)}, ·) V 2 = ({({d}, f)}, ∅)

The attack relation of V 1 is omitted but can be determined
via Def. 6. Note that view V 1 is subjective but not glob-
ally consistent. Imagine A1 wants to prove c, i. e., the util-
ity function of Ak is utilc. Note that there are two argu-
ment structures in F2 to prove c while one of them ([({d}, c),
({e}, d), (∅, e)]) enables A2 to bring up an attacker, namely
[({d}, f), ({e}, d), (∅, e)]. From a self-interested point of view
A1 should only bring forward the arguments that do not al-
low A2 to counterargue.

In the following, we develop some simple strategies for argu-
ment selection that generalize the truthful strategy in sce-
narios where the agent may not have a globally consistent
view and that are more cautious in bringing forward argu-
ments. In order to ensure that an agent brings forward only
the arguments that are not harmful for proving his focal
elements, we define the attack set as follows.

Definition 16. Let F = (U,→) be a SAF and α ∈ Prop.
The attack set AttackSetF(α) of α in F is defined as

AttackSetF(α) = { A ∈ U | ∃AS1, AS2 ∈ ArgStructU :

A ∈ AS1 ∧ cl(top(AS2)) = α ∧AS1 ↪→ AS2 }

Intuitively, the set AttackSetF(α) contains all arguments that
can be harmful to α in any way. For example, for any ar-
gument A with claim α, the set AttackSetF(α) contains all
attackers on A. More generally, AttackSetF(α) contains ev-
ery argument that belongs to an argument structure that
indirectly attacks an argument structure for α. Using at-
tack sets we can define a simple strategy that brings only
forward arguments that cannot be harmful in any way.

Definition 17. Let α ∈ Prop and Ak an agent identifier.
Let socα,Ak

be the selection function defined as

socα,Ak
(Γ) = selAk

> (Γ) \ AttackSetV k(Γ)(α)

for every state Γ. The function socα is called the overcautious
selection function for α.

Although the overcautious strategy is more careful in bring-
ing forward arguments one should note that the determina-
tion of AttackSetV k(Γ)(α) depends on the current view of the
agent and might not be complete. The overcautious selection
function can be extended to a belief-based selection function
by incorporating the beliefs of Ak on the views of the other
agents, into the determination of AttackSetV k(Γ)(α). How-
ever, we will not formalize this in the current paper.

Example 7. We continue Ex. 6 but suppose selA1 = socc,Ak
.

Here, A1 will not bring forward arguments (∅, e) and ({e}, d)
as they all belong to AttackSetV1(c). Note that this strategy
is independent of the strategy of any other agent.

Although the overcautious strategy is a very simple strategy
for argument selection it is the dominant strategy in a simple
class of argumentation games. If an agent has a complete
view, i. e., he knows of every argument in the system, but has
no awareness on the other agents beliefs, then its best choice
is to avoid bringing forward possibly harmful arguments.

Theorem 3. Let Π = (F, Ag) be a SAS. For an agent
Ai ∈ Ag, if Vi(Γ

Π
0 ) = F and Ai has no awareness then the

overcautious selection function is a dominant strategy for Ai
in (Π, P d).



The limitations of this simple strategy are reached very
quickly as the following small modification of Ex. 6 shows.

Example 8. Consider the following SAF F3 = (U,→), cf.
Fig. 5 (b).

U = { (∅, a), ({a}, b), ({b}, c), ({a}, d), ({d}, f), ({d}, c) }
→ = { (({d}, f), ({d}, c)), (({d}, c), ({d}, f)) }

Let Π = (F3, {A1, A2}) be a SAS and ΓΠ
0 = (∅, {V1, V2}, nil)

the initial state of Π with V 1 = F3 and V 2 = (U\{({a}, d)}, ·).
Suppose utilA1 = utilc and selA1 = socc,Ak

. Here, A1 will never
bring forward argument (∅, a) as (∅, a) ∈ AttackSetV1(c). As
a consequence, A1 will never be able to proof any argument
for c.

As Ex. 8 showed it is advisable to bring forward arguments
that on the one side may be harmful to one own’s desires
but on the other side necessary to actually reach the desires.
So we refine the overcautious strategy by allowing the agent
to bring forward arguments that are inherently necessary for
constructing an argument structure for his focal element.

Definition 18. Let F = (U,→) be a SAF and α ∈ Prop.
The set of necessary arguments NecArgF(α) for α in F is
defined as

NecArgF(α) =
⋂

A∈U,cl(A)=α,AS∈ArgStructU (A)

AS

Definition 19. Let α ∈ Prop, Ak and agent with a view V
and scα,Ak

be the selection function defined as

scα,Ak
(Γ) = selAk

> (Γ) \ (AttackSetV (α) \ NecArgV (α))

scα,Ak
is called the cautious selection function for α.

Example 9. We continue Ex. 8 but suppose utilA1 = utilc
and selA1 = scc,Ak

. Here, A1 will bring forward argument
(∅, a) because it is inherently necessary to construct any ar-
gument structure for c.

The cautious strategy performs well in the above example
and can be seen as a lower bound for direct argumentation
protocols, i. e. the cautious strategy returns as few argu-
ments as necessary.

6. SUMMARY
In this work we have introduced structured argumentation

frameworks, a formalism that extends Dung’s abstract argu-
mentation frameworks [6] and are a slightly modified variant
of dynamic argumentation frameworks [16]. We have used
structured argumentation frameworks for defining a multi-
agent setting that contains two elements: one describing the
basic contents of the scenario, i. e. the underlying argumen-
tation framework and the set of agents; and a second element
that describes the dynamic part of an evolving argumenta-
tion and determines how the state of the multi-agent system
evolves in time. In our framework every agent has its own
view on the underlying argumentation framework and its
own preferences over the output of the argumentation pro-
cess. We proposed a first attempt to characterize argumen-
tation games by means of the used game protocol, the aware-
ness of the agents on other agents beliefs, and the structure
of the preferences of the agents. We used structured argu-
mentation systems to model argumentation among a group

of agents. We have also presented some properties for the
proposed framework and protocols.
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