
Realizing Argumentation in Multi-Agent Systems using
Defeasible Logic Programming

Matthias Thimm

Information Engineering Group, Department for Computer Science,
Technische Universität Dortmund, Germany

Abstract. We describe a working multi-agent architecture based onDefeasible
Logic Programming(DeLP) by Garcı́a and Simari where agents are engaged in
an argumentation to reach a common conclusion. Due to the distributed approach
personalities and opinions of the individual agents give rise to arguments and
counterarguments concerning a particular query. We establish a sound theoret-
ical framework of a specific type of argumentation in multi-agent systems and
describe the computational issues involved in it. The framework described in this
paper has been fully implemented and a short description of its features is given.

Keywords: Argumentation, Multi-Agent Systems, Defeasible Logic Program-
ming, Implementation

draft – 2009-02-28

1 Introduction

Argumentation has become a very active field in computer science research [10, 4].
There are mainly two issues computational models of argumentation are concerned
with in the context of artificial intelligence, namely describing models of commonsense
reasoning techniques within a single agent and formalizingmeaningful communication
between agents in a multi-agent system, e. g. negotiation and persuasion [17, 2, 18, 5].
In this paper we take a hybrid approach by modeling a multi-agent system where the
agents are capable of argumentation but use argumentation in order to reach a common
conclusion that can be regarded as the whole system’s opinion on the given topic.

As the underlying logical foundation we useDefeasible Logic Programming(DeLP)
[13] which is a form of defeasible argumentation [21].DeLP is an approach to re-
alise non-monotonic reasoning via dialectical argumentation by relating arguments and
counterarguments for a given logical query. A dialectical process that considers all ar-
guments and counterarguments for the query is used in order to decide whether the
query is believed by the agent or not.

This paper proposes and discusses an approach for a distributed system which pro-
vides the capability of argumentation using the notions ofDeLP. In this system agents
exchange arguments and counterarguments in order to answerqueries given from out-
side the system. The framework establishes a border betweenits interior and exterior as
from outside the system it is seen as a general reasoning engine. Internally this reason-
ing is accomplished by defeasible argumentation where every agent tries to support or
defeat the given query by generating arguments for or against it and by generating coun-
terarguments against other agents’ arguments. In the end the most plausible argument

2 Matthias Thimm

prevails and its conclusion is the answer to the original query. We build on previous
work [25–27] but give a much more detailed description of thecomputational issues in
multi-agent argumentation and some description on an implementation.

The paper is organized as follows. In Section 2 we give a briefoverview on defeasi-
ble logic programming adapted to our needs. In Section 3 we formalize the multi-agent
setting and give detailed logical descriptions of the individual components and con-
tinue with computational techniques that implement this formalization. We give a brief
overview on the implementation of the proposed system afterwards in Section 5 and
continue with a short review of related work in Section 6. In Section 7 we conclude
with some final remarks.

2 Defeasible Logic Programming

The basic elements ofDefeasible Logic Programming(DeLP) are facts and rules. Let
L denote a set of ground literals, where a literalh is a ground atomA or a negated
ground atom∼A, where the symbol∼ represents the strong negation. Overlining will
be used to denote the complement of a literal with respect to strong negation, i. e., it is
p =∼p and∼p = p for a ground atomp. A single literalh ∈ L is also called afact.

The set of rules is divided into strict rules, i. e. rules encoding strict consequences,
and defeasible rules which derive uncertain or defeasible conclusions. Astrict rule is
an ordered pairh ← B, whereh ∈ L andB ⊆ L. A defeasible ruleis an ordered
pair h −�B, whereh ∈ L andB ⊆ L. A defeasible rule is used to describe tentative
knowledge as in “birds fly”. We use the functionsbody/1 andhead/1 to refer to the
head resp. body of a defeasible or strict rule. Strict and defeasible rules are ground.
However, following the usual convention, some examples will use “schematic rules”
with variables (denoted with an initial uppercase letter).Let DEFX resp.STRX be the
set of all defeasible resp. strict rules, that can be constructed from literals inX ⊆ L.
We will omit the subscripts when referring to the whole set ofliteralsL, e. g. we write
DEF for DEFL.

Using facts, strict and defeasible rules, one is able to derive additional beliefs as
in other rule-based systems. LetX ⊆ L ∪ STR ∪ DEF be a set of facts, strict rules,
defeasible rules, and let furthermoreh ∈ L. A (defeasible) derivationof h from X ,
denotedX |∼ h, consists of a finite sequenceh1, . . . , hn = h of literals (hi ∈ L) such
thathi is a fact (hi ∈ X) or there is a strict or defeasible rule inX with headhi and body
b1, . . . , bk, where everybl (1 ≤ l ≤ k) is an elementhj with j < i. If the derivation
of a literalh only uses facts and strict rules, the derivation is called astrict derivation.
A setX is contradictory, denotedX |∼ ⊥, iff there exist defeasible derivations for two
complementary literals fromX . Every agent in our framework maintains alocal belief
basethat is comprised of defeasible rules and thus describes theagent’s own (uncertain)
knowledge. Furthermore the framework provides aglobal belief base, consisting of
facts and strict rules, that describes common knowledge to all agents.

Definition 1 (Belief bases).A global belief baseΠ ⊆ L∪ STR is a non-contradictory
set of strict rules and facts. A set of defeasible rules∆ ⊆ DEF is called alocal belief
base.

Realizing Argumentation inMAS usingDeLP 3

Observe, that we require the global belief base to be non-contradictory. This is justi-
fiable as the information stored in the global belief base should be regarded as indis-
putable by the agents. Hence, the agents undertake their argumentation only based on
their own local belief bases, which can be – in general – contradictory to each other.

Example 1.Let a global belief baseΠ and local belief bases∆1 and∆2 be given by

Π =































chicken(tina)
scared(tina)
penguin(tweety)
bird(X) ← chicken(X)
bird(X) ← penguin(X)
∼flies(X) ← penguin(X)































,

∆1 =

{

flies(X) −� bird(X)
flies(X) −� chicken(X), scared(X)

}

,

∆2 =

{

∼flies(X) −� chicken(X)
nests in trees(X) −� flies(X)

}

.

The global belief baseΠ contains the facts, that Tina is a scared chicken and that
Tweety is penguin. The strict rules state that all chickens and all penguins are birds,
and penguins cannot fly. The defeasible rules of the local belief base∆1 express that
birds and scared chickens normally fly. The defeasible rulesof the local belief base∆2

express that chickens normally do not fly and something that flies normally nests in
trees.

As a means to reveal different opinions about certain piecesof information, agents use
their local belief bases to construct arguments.

Definition 2 (Argument, Subargument).Leth ∈ L be a literal and letΠ resp.∆ be
a global resp. local belief base.〈A, h〉 is an argumentfor h, iff 1.) A ⊆ ∆, 2.) there
exists a defeasible derivation ofh fromΠ ∪A, 3.) the setΠ ∪A is non-contradictory,
and 4.)A is minimal with respect to set inclusion. The literalhwill be calledconclusion
and the setA will be calledsupportof the argument〈A, h〉. An argument〈B, q〉 is a
subargumentof an argument〈A, h〉, iff B ⊆ A. LetARGΠ,∆ be the set of all arguments
that can be built fromΠ and∆.

Two literalsh andh1 disagreeregarding a global belief baseΠ , iff the setΠ∪{h, h1} is
contradictory. Two complementary literalsp and∼p disagree trivially, because for every
Π the setΠ ∪ {p,∼p} is contradictory. But two literals which are not contradictory,
can disagree as well. ForΠ = {(∼h ← b), (h ← a)} the literalsa andb disagree,
becauseΠ ∪ {a, b} is contradictory. We call an argument〈A1, h1〉 a counterargument
to an argument〈A2, h2〉 at a literalh, iff there is a subargument〈A, h〉 of 〈A2, h2〉 such
thath andh1 disagree. If〈A1, h1〉 is a counterargument to〈A2, h2〉 at a literalh, then
the subargument〈A, h〉 of 〈A2, h2〉 is called thedisagreement subargument.

In order to deal with counterarguments to other arguments, acentral aspect of defea-
sible logic programming is a formal comparison criterion among arguments. A possible
preference relation among arguments isGeneralized Specificity[24]. According to this

4 Matthias Thimm

criterion an argument is preferred to another argument, iffthe former one is morespe-
cific than the latter, i. e., (informally) iff the former one uses more facts or less rules.
For example,〈{c −� a, b}, c〉 is more specific than〈{∼c −� a},∼c〉. For a formal def-
inition and desirable properties of preference criterionsin general see [24, 13]. For the
rest of this paper we use≻ to denote an arbitrary but fixed preference criterion among
arguments. The preference criterion is needed to decide whether an argument defeats
another or not, as disagreement does not imply preference.

Definition 3 (Defeater).An argument〈A1, h1〉 is a defeaterof an argument〈A2, h2〉,
iff there is a subargument〈A, h〉 of 〈A2, h2〉 such that〈A1, h1〉 is a counterargument of
〈A2, h2〉 at literal h and either〈A1, h1〉 ≻ 〈A, h〉 (proper defeat) or 〈A1, h1〉 ⊁ 〈A, h〉
and〈A, h〉 ⊁ 〈A1, h1〉 (blocking defeat).

When considering sequences of arguments, the definition of defeat is not sufficient to
describe a conclusive argumentation line. Defeat only takes an argument and its coun-
terargument into consideration, but disregards preceeding arguments. But we expect
also properties likenon-circularity or concordancefrom an argumentation sequence.
See [13] for a more detailed motivation of acceptable argumentation lines.

Definition 4 (Acceptable Argumentation Line). LetΠ be a global belief base. Let
Λ = [〈A1, h1〉, . . . , 〈Am, hm〉] be a sequence of some arguments.Λ is called anac-
ceptable argumentation line, iff 1.) Λ is a finite sequence, 2.) every argument〈Ai, hi〉
with i > 1 is a defeater of its predecessor〈Ai−1, hi−1〉 and if〈Ai, hi〉 is a blocking de-
feater of〈Ai−1, hi−1〉 and〈Ai+1, hi+1〉 exists, then〈Ai+1, hi+1〉 is a proper defeater
of 〈Ai, hi〉, 3.)Π ∪ A1 ∪ A3 ∪ . . . is non-contradictory (concordance of supporting
arguments), 4.)Π ∪A2 ∪A4 ∪ . . . is non-contradictory (concordance of interfering ar-
guments), and 5.)no argument〈Ak, hk〉 is a subargument of an argument〈Ai, hi〉 with
i < k. Let SEQ denote the set of all sequences of arguments that can be builtusing
rules fromDEF, STR and facts fromL.

We use the notationΛ+ 〈A, h〉 to denote the concatenation of argumentation lines and
arguments.

In DeLP a literal h is warranted, if there is an argument〈A, h〉 which is non-
defeated in the end. To decide whether〈A, h〉 is defeated or not, every acceptable argu-
mentation line starting with〈A, h〉 has to be considered.

Definition 5 (Dialectical Tree). Let Π be a global belief base and∆1, . . . , ∆n be
local belief bases. Let〈A0, h0〉 be an argument. Adialectical treefor 〈A0, h0〉, denoted
T〈A0,h0〉, is defined as follows.

1. The root ofT is 〈A0, h0〉.
2. Let〈An, hn〉 be a node inT and letΛ = [〈A0, h0〉, . . . , 〈An, hn〉] be the sequence

of nodes from the root to〈An, hn〉. Let 〈B1, q1〉, . . . , 〈Bk, qk〉 be the defeaters of
〈An, hn〉. For every defeater〈Bi, qi〉 with 1 ≤ i ≤ k such that the argumentation
lineΛ′ = [〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is acceptable, the node〈An, hn〉 has a
child 〈Bi, qi〉. If there is no such〈Bi, qi〉, the node〈An, hn〉 is a leaf.

Let DIA denote the set of all dialectical trees with arguments that can be built using
rules fromDEF, STR and facts fromL.

Realizing Argumentation inMAS usingDeLP 5

In order to decide whether the argument at the root of a given dialectical tree is defeated
or not, it is necessary to perform abottom-up-analysis of the tree. Every leaf of the tree
is marked “undefeated” and every inner node is marked “defeated”, if it has at least
one child node marked “undefeated”. Otherwise it is marked “undefeated”. LetT ∗

〈A,h〉

denote the marked dialectical tree ofT〈A,h〉.
We call a literalh warranted, iff there is an argument〈A, h〉 for h such that the root

of the marked dialectical treeT ∗
〈A,h〉 is marked “undefeated”. Then〈A, h〉 is awarrant

for h. Observe that, if a literalh is a fact or has a strict derivation from a global belief
baseΠ alone, thenh is also warranted as there are no counterarguments for〈∅, h〉.
The answer of aDeLP interpreter to a literalh is YES iff h is warranted, NO iffh is
warranted, and UNDECIDED iff neitherh norh are warranted. Notice, that it can not
be the case that bothh andh are warranted [28].

3 The formal Agent Architecture

Our framework consists of several agents and a central moderator, which coordinates
the argumentation process undertaken by the agents. An overview of this system is
depicted in Figure 1. The moderator accepts a query, consisting of a single literal, and
asks the agents to argue about the warrant status of it, i. e.,whether the literal or its
negation can be supported by an ultimately undefeated argument. Agents use the global
belief base of the system, which contains strict knowledge,and their own local belief
bases consisting of defeasible knowledge to generate arguments. Eventually the system
returns an answer to the questioner that describes the final status of the literal based on
the agents’ individual beliefs.

moderator

global
belief base

agent

agent

agent

...

agent

argumentation

query

Fig. 1. An overview of the framework.

We now describe the components of the distributed framework, namely the moder-
ator and the agents, using a functional description of theirintended behaviour. As the

6 Matthias Thimm

framework is flexible, many different definitions of the functions to be presented can be
thought of. But we restrain them on the notions ofDeLP as described above, so we use
the subscript “D” to denote theDeLP specific definition. Furthermore we give specific
algorithms describing the behavior of the system in the nextsection.

When the moderator receives arguments from the agents, he builds up several di-
alectical trees and finally he has to evaluate them using the bottom-up evaluation method
described above.

Definition 6 (Analysis function χD). The analysis functionχD is a functionχD :
DIA → {0, 1} such that for every dialectical treeυ ∈ DIA it holdsχD(υ) = 1 iff
the root argument ofυ∗ is undefeated.

Furthermore the evaluation of dialectical trees makes onlysense, if the tree was built up
according to the definition of an acceptable argumentation line. Hence, the moderator
and the agents as well, have to check whether new arguments are valid in the current
argumentation line.

Definition 7 (Acceptance functionηD,≻). For a given preference relation≻ among
arguments, theacceptance functionηD,≻ is a functionηD,≻ : SEQ → {0, 1} such
that for every argument sequenceΛ ∈ SEQ it holdsηD,≻(Λ) = 1 iff Λ is acceptable
according to Definition 4.

It is possible to assume different acceptance functions fordifferent agents according to
different definitions of an acceptable argumentation line.But in our multi-agent system,
we assumeηD,≻ to be fixed and the same for the moderator and all agents by convention.

At the end of the argumentation process for a queryh, the agents have produced
a set of dialectical trees with root arguments forh or h, respectively. As we have to
distinguish several different cases, the moderator has to decide, whether the queryh is
warranted, the negation ofh is warranted, or none of them are warranted in the frame-
work. LetP(S) denote the power set of a setS.

Definition 8 (Decision function µD). The decision functionµD is a functionµD :
P(DIA) → {YES,NO,UNDECIDED,UNKNOWN}. LetQṗ ⊆ DIA such that all
root arguments of dialectical trees inQṗ are arguments forp or for p, thenµD is de-
fined as

1. µD(Qṗ) = YES, if there is a dialectical treeυ ∈ Qṗ s. t. the root ofυ is an
argument forp andχD(υ) = 1.

2. µD(Qṗ) = NO, if there is a dialectical treeυ ∈ Qṗ s. t. the root ofυ is an argument
for p andχD(υ) = 1.

3. µD(Qṗ) = UNDECIDED, if χD(υ) = 0 for all υ ∈ Qṗ.
4. µD(Qṗ) = UNKNOWN, if p is not in the language (p /∈ L).

The functionµD is well-defined, as it cannot be the case that both conditions1. and 2.
are simultaneously fulfilled, see for example [28].

The above functions are sufficient to define the moderator of the framework.

Definition 9 (Moderator). For a given preference relation≻ among arguments, the
moderatoris a tuple(µD, χD, ηD,≻).

Realizing Argumentation inMAS usingDeLP 7

ex
te

rn
al

co
m

m
un

ic
at

io
n

in
te

rn
al

co
m

m
un

ic
at

io
n

coordination-
module

analysis-
module

query

answer

query

arguments

global
belief base

Fig. 2. The internal components of a moderator

An overview of the moderator is depicted in Figure 2. There, the analysis-module is
responsible for the evaluation of the received arguments while the coordination-module
is responsible for querying the agents for arguments in a systematic way. Furthermore,
the moderator acts as an interface between the outside of thesystem and the system’s
interior by explicitly separating external (with the user)and internal communication
(with the agents).

The agents of the framework provide two functionalities. First, they propose initial
arguments for a given literal (or its negation) submitted bythe moderator of the frame-
work, which will be roots of the dialectical trees to be constructed. For a given queryh
it may be necessary to examine both, all dialectical trees with a root argument forh and
all dialectical trees with a root argument forh, as a query forh can only be answered
with NO if there is a warrant forh. Second, the agents propose counterarguments to
arguments of other agents that are valid in the given argumentation line. We neglect the
case that agents can give counterarguments to their own arguments here for simplicity.
We achieve this by ensuring that each agent’s local belief base is consistent with re-
spect to the global belief base (see below). An agent is not obliged to return all his valid
arguments for a given query or all his counterarguments for agiven argument. There-
fore, it is possible to model different kinds of argumentation strategies given different
instantiations of the following argument functions.

Definition 10 (Root argument function). Let Π be a global belief base and let∆
be a local belief base. Aroot argument functionϕΠ,∆ is a functionϕΠ,∆ : L →

8 Matthias Thimm

P(ARGΠ,∆) such that for every literalh ∈ L the setϕΠ,∆(h) is a set of arguments for
h or for h fromΠ and∆.

Definition 11 (Counterargument function). LetΠ be a global belief base and let∆
be a local belief base. Acounterargument functionψΠ,∆ is a functionψΠ,∆ : SEQ →
P(ARGΠ,∆) such that for every argumentation sequenceΛ ∈ SEQ the setψΠ,∆(Λ)
is a set of attacks fromΠ and∆ on the last argument ofΛ and for every〈B, h〉 ∈
ψΠ,∆(Λ) it holds thatηD,≻(Λ+ 〈B, h〉) = 1.

Here we assume that the root argument and counterargument functions of all agents are
the same and especiallycomplete, i. e, they return all possible arguments for the given
situation and do not omit one.

Given the above definitions an agent of the framework is defined as follows.

Definition 12 (Agent). An agentis a tuple(∆,ϕΠ,∆, ψΠ,∆) with a local belief base
∆, a root argument functionϕΠ,∆ and a counterargument functionψΠ,∆.

in
te

rn
al

co
m

m
un

ic
at

io
n

ar
gu

m
en

ta
tio

n
ge

ne
ra

tio
n

local
belief base

global
belief base

query

arguments

Fig. 3. An agent capable of argumentation

An overview of an agent is depicted in Figure 3.
Finally, the definition of a distributed argumentation system can be given as follows.

Definition 13 (Distributed argumentation system).A distributed argumentation sys-
tem is a tuple(M,Π, {A1, . . . , An}) with a moderatorM , a global belief baseΠ and
agentsA1, . . . , An.

For what is coming we assume that each agent’s local belief base is consistent withΠ ,
i. e., it isΠ ∪∆i |/∼ ⊥ for an agentAi. By doing so, we forbid agents to counterargue
their own arguments. Still, the union of the local belief bases of all agents and the global
belief base may remain inconsistent, i. e.Π ∪∆1 ∪ . . .∪∆n |∼ ⊥ and thus gives rise to
argumentation between the agents. We illustrate the above ideas with a simple example.

Realizing Argumentation inMAS usingDeLP 9

Example 2.Anna and Bob are planning for their holiday trip. They have already nar-
rowed down the possible holiday destinations tohawaii andswitzerland, but as they
can only afford for one trip the two possibilities are mutually exclusive (∼goto(hawaii)
← goto(switzerland) and∼goto(switzerland) ← goto(hawaii)). Also, common
knowledge includes that switzerland is a good place for skiing (skiing(switzerland))
an hawaii has access to the ocean (ocean(hawaii)). But they had already learned that
hawaii also has a dangerous sea life (dangerousSealife(hawaii)). Furthermore, if
they decide to go to switzerland, they can go by train (goByTrain(switzerland)) but
have to get a ski pass (needSkiPass(switzerland)).

In order to decide whether to go to hawaii or switzerland, thedifferent opinions of
the two persons lead to a different structure of there local belief bases. While Anna
likes swimming in the ocean (goto(X) −� swimming(X) and swimming(X) −�
ocean(X)), Bob prefers to ski (goto(X) −� skiing(X)). He thinks also that a cheap
holiday should be preferred (goto(X) −� cheap(X)) and that going by train is a rea-
sonable justification to consider a holiday cheap (cheap(X) −� goByTrain(X)). Anna
insists on her to have the possibility of swimming (∼goto(X) −� ∼swimming(X)),
preferable in an ocean (∼swimming(X) −� ∼ocean(X)) and thinks that the need
of ski pass does not constitute a trip to be cheap (∼cheap(X) −�needSkiPass(X)).
Also, Bob thinks that a dangerous sea life in the ocean shouldprevent someone from
swimming in it (∼swimming(X) −� ocean(X), dangerousSealife(X)).

In summary, the global belief baseΠ and the local belief bases of Bob (∆Bob)
and Anna (∆Anna) that constitute the above described multi-agent system are given as
follows:

Π = { ∼goto(hawaii) ← goto(switzerland).

∼goto(switzerland) ← goto(hawaii).

skiing(switzerland).

ocean(hawaii).

goByTrain(switzerland).

dangerousSealife(hawaii).

needSkiPass(switzerland). }

∆Bob = { goto(X) −� skiing(X).

goto(X) −� cheap(X).

cheap(X) −� goByTrain(X).

∼swimming(X) −� ocean(X), dangerousSealife(X). }

∆Anna = { goto(X) −� swimming(X).

swimming(X) −� ocean(X).

∼goto(X) −� ∼swimming(X).

∼swimming(X) −� ∼ocean(X).

∼cheap(X) −�needSkiPass(X). }

We will continue this scenario in Example 3.

10 Matthias Thimm

Given a systemT and a queryh, the framework produces an answer toh as follows.
First, the moderator ofT asks all agents for initial arguments forh and forh and starts a
dialectical tree with each of them as root arguments. Then for each of these arguments,
the moderator asks every agent for counterarguments and incorporates them into the
corresponding dialectical trees accordingly. This process is repeated for every new ar-
gument until no more arguments can be constructed. Eventually the moderator analyses
the resulting dialectical trees and returns the appropriate answer to the questioner. A
dialectical tree built via this process is called anargumentation product. The answer
behaviour ofT is determined by the decision function of its moderator and is formal-
ized as follows.

Definition 14 (Argumentation product). Let h ∈ L be a query andT = (M,Π,
{A1, . . . , An}) an distributed argumentation system withM = (µD, χD, ηD,≻) and
Ai = (∆i, ϕi, ψi) for 1 ≤ i ≤ n. A dialectical treeυ ∈ DIA is called anargumentation
productof T andh, iff the following conditions hold:

1. there exists aj with 1 ≤ j ≤ n such that the root ofυ is an element ofϕj(h), and
2. for every pathΛ = [〈A1, h1〉, . . . , 〈An, hn〉] in υ and the setK of child nodes of
〈An, hn〉 it holdsK = {〈B, h′〉 | 〈B, h′〉 ∈ ψ1(Λ) ∪ . . . ∪ ψn(Λ) andηD,≻(Λ +
〈B, h′〉) = 1} (K is the set of all acceptable attacks onΛ).

Example 3.We continue Example 2. Assume thatGeneralized Specificityis the cho-
sen preference relation among arguments and letgoto(switzerland) be the query
under consideration. Both agents, Anna and Bob, can put forward initial arguments
for and against the querygoto(switzerland). For example, Bob has the argument
〈A, goto(switzerland)〉 with

A = { goto(switzerland) −� cheap(switzerland),

cheap(switzerland) −� goByTrain(switzerland) }

which makes use of the factgoByTrain(switzerland). When asked for counterargu-
ments to〈A, goto(switzerland)〉 Anna responds with〈B1,∼goto(switzerland)〉 and
〈B2,∼cheap(switzerland)〉 with

B1 = { goto(hawaii) −� swimming(hawaii),

swimming(hawaii) −� ocean(hawaii) }

which makes use of the factocean(hawaii) and the strict rule∼goto(switzerland)
← goto(hawaii) and

B2 = { ∼cheap(switzerland) −�needSkiPass(switzerland) }

which makes use of the factneedSkiPass(switzerland). Observe that both argu-
ments〈B1,∼goto(switzerland)〉 and〈B2,∼cheap(switzerland)〉 are blocking de-
featers for〈A, goto(switzerland)〉. Hence, Bob can only bring forward the proper
attack〈C,∼swimming(hawaii)〉 with

C = { ∼swimming(hawaii) −� ocean(hawaii), dangerousSealife(hawaii)}

Realizing Argumentation inMAS usingDeLP 11

to the argument〈B1,∼ goto(switzerland)〉. All other possible counterarguments to
〈B1,∼goto(switzerland)〉 or 〈B2,∼cheap(switzerland)〉 would result in an unac-
ceptable argumentation line. No other arguments can be brought forward by Anna and
Bob and the resulting argumentation product is shown in Figure 4 (left). The analysis
of the tree states that the root argument〈A, goto(switzerland)〉 is defeated due to its
undefeated defeater〈B2,∼cheap(switzerland)〉.

Bob can bring forward another argument〈D, goto(switzerland)〉 for the initial
querygoto(switzerland) with

D = { goto(switzerland) −� skiing(switzerland)}

that uses the factskiing(switzerland) and is brought forward by Bob. Anna can re-
spond to〈D, goto(switzerland)〉 by stating again〈B1,∼ goto(switzerland)〉. No
other counterarguments can be brought forward by her. And again, Bob responds to
〈D, goto(switzerland)〉 with the proper attack〈C,∼swimming(hawaii)〉 and thus
completes the only argumentation line in the current dialectical tree, see Figure 4 (right).
The analysis of the resulting argumentation product reveals〈D, goto(switzerland)〉 to
be undefeated and thus the answer of the system to the querygoto(switzerland) is
YES.

〈A, goto(switzerland)〉

〈B1,∼goto(switzerland)〉 〈B2,∼cheap(switzerland)〉

〈C,∼swimming(hawaii)〉

〈D, goto(switzerland)〉

〈B1,∼goto(switzerland)〉

〈C,∼swimming(hawaii)〉

Fig. 4. Two argumentation products from Example 3.

4 Realizing Argumentation

After the theoretical elaboration of our framework in the previous section, we are now
going describe the behavior of the agents and the whole system in terms of algorithms
that implement the abstract functions defined above.

The control of the argumentation process is mainly handled by the moderator of the
system. Given a specific query to the system, the moderator starts by asking each agent
for arguments for or against the query’s literal. Afterwards, for each initial argument the
moderator builds recursively a dialectical tree by asking all agents for counterarguments
to the intermediate “leafs” of the trees. If no agent can giveany more counterarguments,

12 Matthias Thimm

Algorithm 1 RootArguments
01 RootArguments(h,∆,Π)
02 queryArguments = Arguments(h,∆,Π);
03 nqueryArguments = Arguments(h,∆,Π);
04 return queryArguments∪ nqueryArguments;

the process finishes and the moderator analyses the given trees and returns the appro-
priate answer to the caller.

What follows is a description of the individual algorithms used in this process by
the agents themselves, in particular implementations of the root argument, counterargu-
ment, and acceptance functions.

4.1 Generating root arguments

The first step in distributed argumentation in our frameworkconsists of the generation
of root arguments, i. e. arguments that form the root of a dialectical tree and directly
refer to the given query. LetΠ be a global belief base and∆ the local belief base of
the agent under consideration. In order to retrieve a well-defined answer to the queryh,
all dialectical trees for both literalsh andh have to be determined, as the non-existence
of undefeated arguments forh does not automatically result in the answer NO. To
distinguish the cases NO and UNDECIDED, one must verify the existence or non-
existence of undefeated arguments forh. Hence, ifh is a query, the moderator asks all
agents for arguments forh and forh. The general algorithm to determine the arguments
for and against the query is depicted in Algorithm 1. The algorithm uses the algorithm
Arguments which is described below.

In order to determine all arguments for a literalh, given a global belief baseΠ
and the local belief base∆, the algorithmArguments has to compute all possible
derivations ofh fromΠ and∆. If h is a fact inΠ thenh has the sole argument〈∅, h〉
[13]. Otherwise the algorithmArguments usesbackward-chaining[9] to construct
all possible arguments. The algorithm starts by searching for strict and defeasible rules
with conclusionh. It then iteratively tries to find derivations of the body literals of the
rules. The algorithm maintains a stackS that consists of tuples(R,L) with a set of rules
R and a set of literalsL. The elementR contains the defeasible rules already added to
this (partial) argument andL contains the literals that have not been derived yet. By
constantly expanding these partial arguments with new rules from the agent’s local
belief base full arguments are being built in the componentR. If L is empty the initial
literal can be derived using the defeasible rules inR and the strict knowledge inΠ . At
the end of the algorithm non-minimal arguments are removed to meet the minimality
condition of arguments. The complete algorithm can be seen in Algorithm 2.

Observe that in line 25/26 only the literalsbi are added to the setL that are not
already derivable from the available rules. Partial arguments that cannot be completed
are automatically dropped by the algorithm as no extension of them is added again to
the stackS.

Realizing Argumentation inMAS usingDeLP 13

Algorithm 2 Arguments
01 Arguments(conclusion,∆,Π)
02 if conclusion is a fact in Π then
03 return {〈∅, conclusion〉}
04 S = ∅
05 arguments = ∅
06 for each rule r : conclusion L99 b1, . . . , bn ∈ ∆ ∪ Π do
07 if r is a defeasible rule then
08 Push ({r}, {b1, . . . , bn}) on S
09 else
10 Push ({}, {b1, . . . , bn}) on S
11 while S not empty do
12 Pop (R,L) from S
13 if L is empty then
14 arguments = arguments ∪ {〈 R, conclusion 〉}
15 else
16 Pop l from L
17 if l is a fact in Π then
18 Push (R,L) on S
19 else
20 for each rule r : l L99 b1, . . . , bn ∈ ∆ ∪ Π do
21 if r is a defeasible rule then
22 R′ = R ∪ {r}
23 L′ = L
24 for each b i with 1 ≤ i ≤ n do
25 if b i is not the head of a rule in R′ then
26 L′ = L′ ∪ {bi}
27 Push (R′, L′) on S
28 for each a ∈ arguments do
29 if there exists a′ ∈ arguments with a 6= a′

30 and a is a subargument of a′

31 arguments = arguments \ {a′}
32 return arguments

Based on the algorithmRootArguments we are able to define the root argument
functionϕΠ,∆ for DeLP.

Definition 15 (ϕΠ,∆). LetΠ be a global belief base,∆ be a local belief base, andh a
literal. Then the functionϕΠ,∆ : L → P(ARGΠ,∆) is defined as

ϕΠ,∆(h) =def RootArguments(h,∆,Π).

The algorithmArguments is sound and complete in the following sense (The proofs
are omitted but can be found in [25]).

Proposition 1 (Soundness).Let h be a literal,∆ a local belief base, andΠ a global
belief base. ThenArguments(h,∆,Π) is a set of arguments forh.

14 Matthias Thimm

Algorithm 3 PCL
01 PCL(〈A, h〉,∆,Π)
02 pcl1 = {h | h −� B ∈ A}
03 pcl2 = {f | Π ∪ ∆ ∪ pcl1 |∼ f, Π ∪ ∆ |/∼ f}
04 return pcl1 ∪ pcl2

Proposition 2 (Completeness).Let h be a literal,∆ a local belief base, andΠ a
global belief base. Then for every argument〈A, h〉 with respect toΠ andA ⊆ ∆ it
is 〈A, h〉 ∈Arguments(h,∆,Π).

The soundness and completeness of the algorithmRootArguments follows directly.

4.2 Generating counterarguments

LetΛ = (〈A1, h1〉, . . . , 〈An, hn〉) be an argumentation line. Another important task of
an agent is to propose counterarguments〈B, b〉 for 〈An, hn〉, such thatΛ′ = Λ+ 〈B, b〉
is an acceptable argumentation line. To describe the generation of counterarguments in
an algorithmic manner we need the notion ofpotentially counterarguing literals. Let
again∆ be the local belief base of the agent under consideration.

Definition 16 (Potentially counterarguing literals).LetΠ be a global belief base,∆
a local belief base, and〈A, h〉 an argument. Then the set ofpotentially counterarguing
literalspclΠ,∆(〈A, h〉) is defined by

pclΠ,∆(〈A, h〉) = {f | Π ∪ A ∪ {f} |∼ ⊥}.

Hence, for every conclusionh′ of a counterargument〈B, h′〉 with B ⊆ ∆ to 〈A, h〉
it must holdh′ ∈ pclΠ,∆(〈A, h〉).Therefore it is sufficient to look only for potential
counterarguments among the arguments with conclusion inpclΠ,∆(〈A, h〉).

The setpclΠ,∆(〈A, h〉) can be characterized as follows. LetA = {h1 −�B1, . . . ,
hm −�Bm}, then all literalsh1, . . . , hm are potentially counterarguing literals, as for
everyhi (1 ≤ i ≤ n), 〈A, h〉 contains a subargument forhi. Furthermore, due to the
derivation of the literals{h1, . . . , hn} by 〈A, h〉 strict rules inΠ might get “fired”.
Negations of the conclusions of these strict rules are also potentially counterarguing
literals. Algorithm 3 describes this computation.
In order to validate the acceptability of potential counterarguments within the given
argumentation line, the algorithmAcceptable (see Algorithm 4) must be applied,
which is a straightforward implementation of Definition 4. In the algorithm,≻ is an
arbitrary preference relation, e. g.Generalized Specificity[24].

Based on the algorithmAcceptable the acceptance functionηD,≻ can be defined
as follows.

Definition 17 (ηD,≻). LetΠ be a global belief base,∆ be a local belief base,Λ be an
argumentation line, and〈A, h〉 be an argument. The functionηD,≻ : Σ(Ω)→ {0, 1} is
defined as

ηD,≻(Λ + 〈A, h〉) =def

{

1 if Acceptable(Λ,〈A, h〉,Π)=true
0 otherwise

.

Realizing Argumentation inMAS usingDeLP 15

Algorithm 4 Acceptable
01 Acceptable([〈A1, h1〉, . . . , 〈An, hn〉],〈B, h〉,Π)
02 let 〈A′, h′〉 be the disagreement sub-argument
03 of 〈An, hn〉 relative to 〈B, h〉
04 if B ⊆ Aj for one 1 ≤ j ≤ n then
05 return false
06 if n is even then
07 if A1 ∪A3 . . . ∪An−1 ∪ B ∪ Π |∼ ⊥ then
08 return false
09 if n is odd then
10 if A2 ∪A4 . . . ∪An ∪ B ∪ Π) |∼ ⊥ then
11 return false
12 if 〈A′, h′〉 ≻ 〈B, h〉 then
13 return false
14 if n > 1 then
15 if 〈An, hn〉 and 〈An−1, hn−1〉 are incomparable with
16 respect to ≻ then
17 if not 〈B, h〉 ≻ 〈A′, h′〉 then
18 return false
19 return true

Algorithm 5 Attacks
01 Attacks((〈A1, s1〉, . . . , 〈An, sn〉),∆,Π)
02 pcl = PCL(〈A n, s n〉,∆,Π)
03 result = ∅
04 for each d ∈ pcl do
05 arguments = Arguments(d,∆,Π)
06 for each 〈B, d〉 ∈ arguments do
07 if Acceptable((〈A1, s1〉, . . . , 〈An, sn〉),〈B, d〉,Π) then
08 result = result ∪ {〈B, d〉}
09 return result

Given a global belief baseΠ , a local belief base∆ and an argumentation lineΛ =
[〈A1, h1〉, . . . , 〈An, hn〉] the algorithmAttacks (see Algorithm 1.5) uses the algo-
rithm Arguments to compute all arguments with conclusions inpclΠ,∆(〈A, h〉). All
these arguments that are acceptable regardingΛ are added to the result set.
Using algorithmAttacks the counterargument functionψΠ,∆ can be defined as fol-
lows.

Definition 18 (ψΠ,∆). LetΠ be a global belief base,∆ be a local belief base, andΛ
be an argumentation line. The functionψΠ,∆ : Σ → P(Ω) is defined as

ψΠ,∆(Λ) =def Attacks(Λ,∆,Π).

The soundness and completeness of the algorithmAttacks follows directly from
Propositions 1 and 2.

16 Matthias Thimm

5 Implementation

The system described in this paper has been fully implemented in Java [14] and can
be directly obtained from the author1. Besides the general argumentation capabilities
described above, also the comparison relationGeneralized Specificity[24] has been im-
plemented. This has been done using its characterization byactivation sets [24]. The
framework also supports the representation ofP-DeLP [1], which is an extension of
DeLP using a possibilistic language. WithinP-DeLP defeasible rules are annotated
with reals that measure the certainty of the rules. The comparison relation for argu-
ments inP-DeLP derives naturally from the annotated numbers by aggregating the
annotations of all rules in an argument and using these as necessity measures. There-
fore, the implemented framework features two powerful representation languages for
defeasible argumentation and two comparison relations forarguments.

The framework allows the specification of local belief basesof an arbitrary number
of agents and the specification of the global belief base within the chosen language.
The user can query the system for the warrant status of literals and the result of the
argumentation process is visualized as a set of dialecticaltrees.

The framework has been applied to a real world example involving two agents act-
ing as accuser and defender in a legal case [25]. There, the specific setting of the multi-
agent scenario in our framework has a real-world analogy (atleast in german law, see
[25]). Both, accuser and defender state arguments for and against a specific claim, for
example the guilt or innocence of a given accused, but these arguments are evaluated
by a neutral moderator, in this case the judge.

6 Related Work

The research on argumentation in multi-agent systems is a very active field, see for ex-
ample the annuallyArgMAS workshop [22, 17]. Current research includes besides oth-
ers argumentation-based negotiation approaches [16, 23, 15, 2], persuasion [5, 19] and
general dialogue formalizations [3, 7, 8]. All these approaches are related to the frame-
work developed here regarding the aim of formalizing agent interaction in form of ar-
gumentation. But, to our knowledge, the framework of Black et al. [7, 8] is the only one
which also uses defeasible logic programming as the underlying representation formal-
ism to model distributed argumentation. Complementary to the proposal in this paper,
the focus of [7] is on modeling communication protocols and strategies for successful
argumentation between agents. They introduce two kinds of inquiry dialogues, one to
generate combined arguments and one for the actual argumentation.

The framework of [11] uses extended logic programs to model an agent’s belief and
defines a notion of distributed argumentation using these extended logic programs. The
framework uses the argumentation semantics from [20] and defines a notion of cooper-
ation, that allows the agents to share their beliefs in orderto construct new arguments.
As this framework uses extended logic programs as the underlying representation for-
malism, it has a declarative semantics in contrast to the dialectical semantics ofDeLP

1 matthias.thimm@tu-dortmund.de

Realizing Argumentation inMAS usingDeLP 17

used here. Yet, in another work [26] we also extended the framework described here by
introducingcollaborationsthat allow the agents to share their beliefs and construct new
arguments.

7 Final Remarks

We have developed a multi-agent architecture that uses argumentation in order to reach
a common conclusion acceptable by all agents. The frameworkusesDefeasible Logic
Programmingas the underlying argumentation mechanism but distributesthe beliefs
among several agents. We have given a functional formalization of the system and
described the computational issues involved in implementing it. The framework has
successfully been implemented and applied to a real world example.

Ongoing research includes collaborations in the multi-agent setting [26], security
issues in agent interactions [6] and a generalization of theframework to abstract argu-
mentation systems. The complex dialectical semantics ofDeLP does not offer a quite
understandable anticipation of the interaction of arguments. Thus we aim at extending
the described framework to abstract argumentation systems[12] in order to enrich it
with a declarative semantics.

References

1. Teresa Alsinet, Carlos I. Chesñevar, Lluis Godo, and Guillermo R. Simari. A logic program-
ming framework for possibilistic argumentation: Formalization and logical properties.Fuzzy
Sets and Systems (FSS), 2008.

2. Leila Amgoud, Yannis Dimopoulos, and Pavlos Moraitis. A general framework for
argumentation-based negotiation. In I. Rahwan, S. Parsons, and C. Reed, editors,Fourth
International Workshop on Argumentation in Multi-Agent Systems, ArgMAS 2007, volume
4946 ofLecture Notes in Computer Science, pages 1–17. Springer, 2007.

3. Katie Atkinson, Trevor Bench-Capon, and Peter McBurney.A dialogue game protocol for
multi-agent argument over proposals for action. InJournal of Autonomous Agents and Multi-
Agent Systems, pages 149–161. Springer, 2004.

4. T. J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence.Artificial
Intelligence, 171:619–641, 2007.

5. T.J.M. Bench-Capon. Persuasion in practical argument using value based argumentation
frameworks.Journal of Logic and Computation, 13(3):429–448, 2003.

6. Joachim Biskup, Gabriele Kern-Isberner, and Matthias Thimm. Towards enforcement of
confidentiality in agent interactions. In M. Pagnucco and M.Thielscher, editors,Proceedings
of the 12th International Workshop on Non-Monotonic Reasoning (NMR’08), pages 104–
112, September 2008.

7. E. Black.A Generative Framework for Argumentation-Based Inquiry Dialogues. PhD thesis,
University College London, 2007.

8. E. Black and A. Hunter. A generative inquiry dialogue system. InProceedings of the Sixth In-
ternational Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’07).
IEEE Press, 2007.

9. C. Chesñevar, G. Simari, and A. Garcı́a. Making argumentsystem computationally attractive.
In Proceedings of the XIII International Conference of the Chilean Society for Computer
Science, 1993.

18 Matthias Thimm

10. Carlos I. Chesñevar, Ana G. Maguitman, and Ronald P. Loui. Logical models of argument.
ACM Comput. Surv., 32(4):337–383, 2000.

11. Iara Carnevale de Almeida and José Júlio Alferes. An argumentation-based negotiation for
distributed extended logic programs. InProceedings of CLIMA VII, pages 191–210, 2006.

12. Phan Minh Dung. On the acceptability of arguments and itsfundamental role in nonmono-
tonic reasoning, logic programming and n-person games.Artificial Intelligence, 77(2):321–
358, 1995.

13. A. Garcı́a and G. Simari. Defeasible logic programming:An argumentative approach.The-
ory and Practice of Logic Programming, 4(1-2):95–138, 2004.

14. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java language specification.
Addison-Wesley, third edition, 2005.

15. Nishan C. Karunatillake, Nicholas R. Jennings, Iyad Rahwan, and Timothy J. Norman.
Argument-based negotiation in a social context. InAAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems, pages 1331–
1332, New York, NY, USA, 2005. ACM.

16. Sarit Kraus. Negotiation and cooperation in multi-agent environments.Artificial Intelligence,
94(1-2):79–97, 1997.

17. Nicolas Maudet, Simon Parsons, and Iyad Rahwan. Argumentation in multi-agent systems:
Context and recent developments. InThird International Workshop on Argumentation in
Multi-Agent Systems, ArgMAS 2006, volume 4766 ofLNCS, pages 1–16. Springer, 2007.

18. Simon Parsons, Carles Sierra, and Nick Jennings. Agentsthat reason and negotiate by argu-
ing. Journal of Logic and Computation, 8(3):261–292, 1998.

19. Laurent Perrussel, Sylvie Doutre, Jean-Marc Thévenin, and Peter McBurney. A persuasion
dialog for gaining access to information. In I. Rahwan, S. Parsons, and C. Reed, editors,
Fourth International Workshop on Argumentation in Multi-Agent Systems, ArgMAS 2007,
volume 4946 ofLecture Notes in Computer Science, pages 63–79. Springer, 2007.

20. Henry Prakken. Dialectical proof theory for defeasibleargumentation with defeasible prior-
ities (preliminary report). InModelAge Workshop, pages 202–215, 1997.

21. Henry Prakken and Gerard Vreeswijk. Logical systems fordefeasible argumentation. In
D. Gabbay and F. Guenthner, editors,Handbook of Philosophical Logic, volume 4, pages
219–318. Kluwer Academic Publishers, second edition, 2002.

22. I. Rahwan, S. Parsons, and C. Reed, editors.Fourth International Workshop on Argumenta-
tion in Multi-Agent Systems, ArgMAS 2007, Honolulu, USA, May 2007. Springer.

23. Sonia V. Rueda, A. Garcia, and Guillermo R. Simari. Argument-based negotiation among
BDI agents.Journal of Computer Science and Technology, 2(7), 2002.

24. F. Stolzenburg, A. Garcı́a, Carlos I. Chesnevar, and G. Simari. Computing generalized speci-
ficity. Journal of Non-Classical Logics, 13(1):87–113, 2003.

25. Matthias Thimm.Verteilte logikbasierte Argumentation: Konzeption, Implementierung und
Anwendung im Rechtswesen. VDM Verlag Dr. Müller, 2008.

26. Matthias Thimm, Alejandro J. Garcia, Gabriele Kern-Isberner, and Guillermo R. Simari.
Using collaborations for distributed argumentation with defeasible logic programming. In
M. Pagnucco and M. Thielscher, editors,Proceedings of the 12th International Workshop on
Non-Monotonic Reasoning (NMR’08), pages 179–188, 2008.

27. Matthias Thimm and Gabriele Kern-Isberner. A distributed argumentation framework using
defeasible logic programming. In P. Besnard, S. Doutre, andA. Hunter, editors,Proceedings
of the 2nd International Conference on Computational Models of Argument (COMMA’08),
pages 381–392. IOS Press, 2008.

28. Matthias Thimm and Gabriele Kern-Isberner. On the relationship of defeasible argumen-
tation and answer set programming. In P. Besnard, S. Doutre,and An Hunter, editors,
Proceedings of the 2nd International Conference on Computational Models of Argument
(COMMA’08), pages 393–404. IOS Press, 2008.

