draft — 2009-02-28

Realizing Argumentation in Multi-Agent Systems using
Defeasible Logic Programming

Matthias Thimm

Information Engineering Group, Department for ComputeeSce,
Technische Universitat Dortmund, Germany

Abstract. We describe a working multi-agent architecture base@efeasible
Logic ProgrammingDeLP) by Garcia and Simari where agents are engaged in
an argumentation to reach a common conclusion. Due to tiribdied approach
personalities and opinions of the individual agents gige tio arguments and
counterarguments concerning a particular query. We éslahl sound theoret-
ical framework of a specific type of argumentation in mulieat systems and
describe the computational issues involved in it. The fraork described in this
paper has been fully implemented and a short descriptiots égatures is given.

Keywords: Argumentation, Multi-Agent Systems, Defeasible Logic dtem-
ming, Implementation

1 Introduction

Argumentation has become a very active field in computemseigesearch [10, 4].

There are mainly two issues computational models of argtetien are concerned

with in the context of artificial intelligence, namely deibing models of commonsense
reasoning techniques within a single agent and formaliziegningful communication

between agents in a multi-agent system, e. g. negotiatidrparsuasion [17, 2,18, 5].

In this paper we take a hybrid approach by modeling a mukiragystem where the
agents are capable of argumentation but use argumentatiwdér to reach a common
conclusion that can be regarded as the whole system'’s apamidhe given topic.

As the underlying logical foundation we uBefeasible Logic Programmin@elLP)
[13] which is a form of defeasible argumentation [2DeLP is an approach to re-
alise non-monotonic reasoning via dialectical arguméntdty relating arguments and
counterarguments for a given logical query. A dialecticalgess that considers all ar-
guments and counterarguments for the query is used in codeedide whether the
query is believed by the agent or not.

This paper proposes and discusses an approach for a distribystem which pro-
vides the capability of argumentation using the notionBelEP. In this system agents
exchange arguments and counterarguments in order to angseees given from out-
side the system. The framework establishes a border beftgdaterior and exterior as
from outside the system it is seen as a general reasoningeerigternally this reason-
ing is accomplished by defeasible argumentation whereyeagent tries to support or
defeat the given query by generating arguments for or agaared by generating coun-
terarguments against other agents’ arguments. In the enchdist plausible argument

2 Matthias Thimm

prevails and its conclusion is the answer to the originalrgue build on previous
work [25—-27] but give a much more detailed description ofdbmputational issues in
multi-agent argumentation and some description on an im@ieation.

The paper is organized as follows. In Section 2 we give a bxiefview on defeasi-
ble logic programming adapted to our needs. In Section 3 wadtize the multi-agent
setting and give detailed logical descriptions of the ifdlial components and con-
tinue with computational techniques that implement thisfalization. We give a brief
overview on the implementation of the proposed system\a#tets in Section 5 and
continue with a short review of related work in Section 6. kcon 7 we conclude
with some final remarks.

2 Defeasible Logic Programming

The basic elements defeasible Logic Programmin@eLP) are facts and rules. Let
L denote a set of ground literals, where a litekals a ground atom or a negated
ground atom~A, where the symbol- represents the strong negation. Overlining will
be used to denote the complement of a literal with respedtdog negation, i. e., it is
p =~p and~p = p for a ground atomp. A single literalh € L is also called dact

The set of rules is divided into strict rules, i. e. rules ating strict consequences,
and defeasible rules which derive uncertain or defeasifihelasions. Astrict rule is
an ordered paih — B, whereh € £ andB C L. A defeasible rulés an ordered
pairh — B, whereh € £ andB C L. A defeasible rule is used to describe tentative
knowledge as in “birds fly”. We use the functiobsdy/1 andhead/1 to refer to the
head resp. body of a defeasible or strict rule. Strict angatable rules are ground.
However, following the usual convention, some examples wgé “schematic rules”
with variables (denoted with an initial uppercase letteet DEF x resp.STRx be the
set of all defeasible resp. strict rules, that can be coagdufrom literals inX C L.
We will omit the subscripts when referring to the whole selitefals Z, e. g. we write
DEF for DEF .

Using facts, strict and defeasible rules, one is able tovdexdditional beliefs as
in other rule-based systems. L&t C £ U STR U DEF be a set of facts, strict rules,
defeasible rules, and let furthermdiec L. A (defeasible) derivatioof 4 from X,
denotedX [~ h, consists of a finite sequenae, ..., h, = h of literals (; € £) such
thath; is afact @; € X) orthere is a strict or defeasible ruledawith headh; and body
b1,...,br, where everyy;, (1 < [< k) is an elemenk; with j < 7. If the derivation
of a literal h only uses facts and strict rules, the derivation is callsttiat derivation.
A set X is contradictory denotedX _L, iff there exist defeasible derivations for two
complementary literals fromX. Every agent in our framework maintaingoecal belief
basethat is comprised of defeasible rules and thus describesiet’'s own (uncertain)
knowledge. Furthermore the framework provideglabal belief baseconsisting of
facts and strict rules, that describes common knowledgk égents.

Definition 1 (Belief bases)A global belief basé/ C £USTR is a non-contradictory
set of strict rules and facts. A set of defeasible rules. DEF is called alocal belief
base

Realizing Argumentation iMAS usingDeLP 3

Observe, that we require the global belief base to be notradictory. This is justi-
fiable as the information stored in the global belief baseukhbe regarded as indis-
putable by the agents. Hence, the agents undertake theimargation only based on
their own local belief bases, which can be — in general — eaiittory to each other.

Example 1.Let a global belief basé and local belief based; and A, be given by

chicken(tina)
scared(tina)
penguin(tweety)
bird(X) « chicken(X) ’
bird(X) «— penguin(X)
~flies(X) «— penguin(X)
A — {flies(X) —bird(X) }
L7 flies(X) —chicken(X), scared(X) [
A, — {Nflies(X) — chicken(X) }
27 | nests_in_trees(X) — flies(X)

The global belief basél contains the facts, that Tina is a scared chicken and that
Tweety is penguin. The strict rules state that all chickemd @l penguins are birds,
and penguins cannot fly. The defeasible rules of the locablehseA; express that
birds and scared chickens normally fly. The defeasible mfiéise local belief base,
express that chickens normally do not fly and something tiegt flormally nests in
trees.

As a means to reveal different opinions about certain piete@gormation, agents use
their local belief bases to construct arguments.

Definition 2 (Argument, Subargument).Leth € £ be a literal and let/] resp.A be
a global resp. local belief baséA, k) is anargumentor h, iff 1.) A C A, 2.) there
exists a defeasible derivation bffrom 17 U A, 3.) the setll U A is non-contradictory,
and 4.).A is minimal with respect to set inclusion. The litetalvill be calledconclusion
and the setd will be called supportof the argument.A, h). An argument{B, ¢) is a
subargumertdf an argumen{A, h), iff B C A. LetARGz A be the set of all arguments
that can be built fron77 and A.

Two literalsh andh; disagreeregarding a global belief badé, iff the setITU{h, hi } is
contradictory. Two complementary literalend~p disagree trivially, because for every
II the setlT U {p, ~p} is contradictory. But two literals which are not contradigt
can disagree as well. Faf = {(~h < b),(h < a)} the literalse andb disagree,
becausdTl U {a, b} is contradictory. We call an argumefi;, h;) a counterargument
to an argumentA,, ho) at a literalh, iff there is a subargumeid,) of (As, ha) such
thath andh, disagree. If A;, k1) is a counterargument {4, ho) at a literalh, then
the subargument4, h) of (Aq, ho) is called thedisagreement subargument

In order to deal with counterarguments to other argumeresnaal aspect of defea-
sible logic programming is a formal comparison criteriorosug arguments. A possible
preference relation among argument&eneralized Specificif4]. According to this

4 Matthias Thimm

criterion an argument is preferred to another argumenthéfformer one is morspe-
cific than the latter, i. e., (informally) iff the former one usesmn facts or less rules.
For example{{c —a, b}, ¢) is more specific tha{~c —a}, ~c). For a formal def-
inition and desirable properties of preference criteriongeneral see [24,13]. For the
rest of this paper we use to denote an arbitrary but fixed preference criterion among
arguments. The preference criterion is needed to decidéhehan argument defeats
another or not, as disagreement does not imply preference.

Definition 3 (Defeater).An argument.A;, h;) is a defeateof an argument.Az, ha),
iff there is a subargumenit4, k) of (As, ho) such that{A4,, k1) is a counterargument of
(Aa, h2) atliteral h and either{A;, hq) > (A, h) (proper defegtor (A;, hy) % (A, h)
and (A, h) ¥ (A1, h1) (blocking defeat

When considering sequences of arguments, the definitioefeftlis not sufficient to
describe a conclusive argumentation line. Defeat onlysaikeargument and its coun-
terargument into consideration, but disregards precegealiguments. But we expect
also properties likenon-circularity or concordancérom an argumentation sequence.
See [13] for a more detailed motivation of acceptable arquatmsn lines.

Definition 4 (Acceptable Argumentation Line). Let /7 be a global belief base. Let
A = [(A1, h1), ..., {An, hn)] be a sequence of some argumentss called anac-
ceptable argumentation lindf 1.) A is a finite sequence, 2.) every argumédt, ;)
with ¢ > 1is a defeater of its predecesspd;_1, h;—1) and if (A;, h;) is a blocking de-
feater of(4;_1,h;—1) and (A;;1, hi11) exists, thed A, 11, hi+1) is a proper defeater
of (A4;, h;), 3.) IT U A; U A3 U ... is non-contradictory ¢oncordance of supporting
argumentys 4.) I7 U A> U A4 U. .. is non-contradictorygoncordance of interfering ar-
gument$, and 5.)no argumentAy, hy) is a subargument of an argume,;, ;) with

1 < k. LetSEQ denote the set of all sequences of arguments that can beusinily
rules fromDEF, STR and facts from_.

We use the notatiol + (A, h) to denote the concatenation of argumentation lines and
arguments.

In DeLP a literal h is warranted if there is an argumentA4,) which is non-
defeated in the end. To decide whetkdr 1) is defeated or not, every acceptable argu-
mentation line starting witki4, h) has to be considered.

Definition 5 (Dialectical Tree). Let IT be a global belief base and\,, ..., A, be
local belief bases. LetAy, ho) be an argument. Aialectical tredor (A, ho), denoted
T 40,ho) IS defined as follows.

1. The root of7 is (Ay, ho)-

2. Let(A,, h,)beanodeirl andletAd = [(Ag, ho), . - ., (An, hn)] be the sequence
of nodes from the root tQA,,, h,,). Let (B1,q1), ..., (Bk, qr) be the defeaters of
(A, hy,). For every defeate(B;, ¢;) with 1 < ¢ < k such that the argumentation
line A" = [(Ao, ho), .- ., (An, hn), (Bi, qi)] is acceptable, the noded,,, h,,) has a
child (B;, ¢;). If there is no suchiB;, ¢;), the nodg(A,,, h,,) is a leaf.

Let DIA denote the set of all dialectical trees with arguments tteat be built using
rules fromDEF, STR and facts from_.

Realizing Argumentation iMAS usingDeLP 5

In order to decide whether the argument at the root of a giledectical tree is defeated
or not, it is necessary to perfornbattom-upanalysis of the tree. Every leaf of the tree
is marked “undefeated” and every inner node is marked “defBaif it has at least
one child node marked “undefeated”. Otherwise it is markawtiefeated”. Le’rf&,h)
denote the marked dialectical tree®f ;).

We call a literalh warranted iff there is an argumenit4,) for h such that the root
of the marked dialectical treg”, ,, is marked “undefeated”. Thed, &) is awarrant
for h. Observe that, if a literal is a fact or has a strict derivation from a global belief
baselT alone, them is also warranted as there are no counterargument&)fé.
The answer of DelLP interpreter to a literah is YES iff is warranted, NO iffh is
warranted, and UNDECIDED iff neithér nor h are warranted. Notice, that it can not
be the case that bothandh are warranted [28].

3 The formal Agent Architecture

Our framework consists of several agents and a central ratatewhich coordinates
the argumentation process undertaken by the agents. Awnieweof this system is

depicted in Figure 1. The moderator accepts a query, corgsist a single literal, and

asks the agents to argue about the warrant status of itwhether the literal or its

negation can be supported by an ultimately undefeated agumgents use the global
belief base of the system, which contains strict knowledge, their own local belief

bases consisting of defeasible knowledge to generate amgsEventually the system
returns an answer to the questioner that describes the fatasf the literal based on
the agents’ individual beliefs.

2»" on agent]«—
\“'{\e“ ! |
a‘g

— agent|«—
> =
‘ [

query

global
belief base

7

Fig. 1. An overview of the framework.

We now describe the components of the distributed framewwnnely the moder-
ator and the agents, using a functional description of tinéénded behaviour. As the

6 Matthias Thimm

framework is flexible, many different definitions of the ftions to be presented can be
thought of. But we restrain them on the notion®©&LP as described above, so we use
the subscriptD” to denote theDeLP specific definition. Furthermore we give specific
algorithms describing the behavior of the system in the segtion.

When the moderator receives arguments from the agents,ilis bp several di-
alectical trees and finally he has to evaluate them usingdtiern-up evaluation method
described above.

Definition 6 (Analysis function xp). The analysis functionyp is a functionyp :
DIA — {0, 1} such that for every dialectical tree € DIA it holds xyp(v) = 1 iff
the root argument of* is undefeated.

Furthermore the evaluation of dialectical trees makes semge, if the tree was built up
according to the definition of an acceptable argumentaiien Hence, the moderator
and the agents as well, have to check whether new argumentslt in the current
argumentation line.

Definition 7 (Acceptance functionnp ,-). For a given preference relatios- among
arguments, thecceptance functionp .- is a functionnp .- : SEQ — {0,1} such
that for every argument sequendec SEQ it holdsnp .- (A) = 1 iff Ais acceptable
according to Definition 4.

It is possible to assume different acceptance functiondifterent agents according to
different definitions of an acceptable argumentation IBig.in our multi-agent system,
we assumep - to be fixed and the same for the moderator and all agents byotion.

At the end of the argumentation process for a querthe agents have produced
a set of dialectical trees with root arguments foor h, respectively. As we have to
distinguish several different cases, the moderator haetwd, whether the queryis
warranted, the negation éfis warranted, or none of them are warranted in the frame-
work. Let3(.S) denote the power set of a s@t

Definition 8 (Decision function up). The decision functionup is a functionup :
B(DIA) — {YES,NO,UNDECIDED,UNKNOWN}. Let @, C DIA such that all
root arguments of dialectical trees i), are arguments fop or for p, thenyup is de-
fined as

1. up(Qp) = YES, if there is a dialectical treey € Q) s.t. the root ofv is an
argument forp and xp(v) = 1.

2. 1p(Qp) = NO, ifthere is a dialectical tree € @ s. t. the root ob is an argument
forpandxp(v) = 1.

3. up(Qp) = UNDECIDED, if xp(v) = 0forall v € Q.

4. up(Qp) = UNKNOWN, if pis not in the languagen(¢ £).

The functionup is well-defined, as it cannot be the case that both conditioasd 2.
are simultaneously fulfilled, see for example [28].
The above functions are sufficient to define the moderatdreframework.

Definition 9 (Moderator). For a given preference relatios among arguments, the
moderatois a tuple(up, xp, 7D,)-

Realizing Argumentation iMAS usingDeLP 7

4)
query IS o c query
2 coordination- S
o module S
5 5
£ £
5 g
© o
@ ©
answer c . c arguments
IJ] analysis- g
P module £
\ y

global

belief base

Fig. 2. The internal components of a moderator

An overview of the moderator is depicted in Figure 2. Thehe, analysis-module is
responsible for the evaluation of the received argumeniiewtre coordination-module
is responsible for querying the agents for arguments in &setic way. Furthermore,
the moderator acts as an interface between the outside sf#tem and the system’s
interior by explicitly separating external (with the usar)d internal communication
(with the agents).

The agents of the framework provide two functionalitiesskithey propose initial
arguments for a given literal (or its negation) submittedh®ymoderator of the frame-
work, which will be roots of the dialectical trees to be counsted. For a given query
it may be necessary to examine both, all dialectical tredsafoot argument fok and
all dialectical trees with a root argument fhy as a query foh can only be answered
with NO if there is a warrant foh. Second, the agents propose counterarguments to
arguments of other agents that are valid in the given argtatien line. We neglect the
case that agents can give counterarguments to their owmargs here for simplicity.
We achieve this by ensuring that each agent’s local belisé li& consistent with re-
spect to the global belief base (see below). An agent is Higeabto return all his valid
arguments for a given query or all his counterarguments fyivan argument. There-
fore, it is possible to model different kinds of argumerdatstrategies given different
instantiations of the following argument functions.

Definition 10 (Root argument function). Let IT be a global belief base and let
be a local belief base. Aoot argument functionprr 4 is a functionpgz Ao @ L —

8 Matthias Thimm

P(ARG,4) such that for every literak € L the setp;r A(h) is a set of arguments for
h or for h from IT and A.

Definition 11 (Counterargument function). Let /7 be a global belief base and let
be a local belief base. dounterargument functionr 4 is a functiomy 7, 4 : SEQ —
PB(ARG, 2) such that for every argumentation sequerce SEQ the sety) 7,4 (A)
is a set of attacks frond7 and A on the last argument ofl and for every(B,h) €
¥ A(A) itholds thatnp - (A + (B, h)) = 1.

Here we assume that the root argument and counterargunmetitios of all agents are
the same and especialbpmpletei. e, they return all possible arguments for the given
situation and do not omit one.

Given the above definitions an agent of the framework is défasefollows.

Definition 12 (Agent). An agentis a tuple(A, o7, 4, ¥, 4) With a local belief base
A, aroot argument functiop;;, o and a counterargument functiafyr .

query

local
belief base

argumentation
generation

global
belief base

arguments

internal communication

Fig. 3. An agent capable of argumentation

An overview of an agent is depicted in Figure 3.
Finally, the definition of a distributed argumentation gystcan be given as follows.

Definition 13 (Distributed argumentation system).A distributed argumentation sys-
temis a tuple(M, I1,{ A4, ..., A, }) with a moderator)M/, a global belief basdl and
agentsA,, ..., A,.

For what is coming we assume that each agent’s local belgef isaconsistent witli7,
i.e., itisIT U A; J~ L foran agentd;. By doing so, we forbid agents to counterargue
their own arguments. Still, the union of the local beliefdmef all agents and the global
belief base may remain inconsistent, ilfeU A, U...UA,, v L and thus gives rise to
argumentation between the agents. We illustrate the ableas with a simple example.

Realizing Argumentation iMAS usingDeLP 9

Example 2.Anna and Bob are planning for their holiday trip. They haveady nar-
rowed down the possible holiday destination&tavaii andswitzerland, but as they
can only afford for one trip the two possibilities are mutyakclusive tvgoto(hawaii)

— goto(switzerland) and~goto(switzerland) «— goto(hawaii)). Also, common
knowledge includes that switzerland is a good place fongkikiing(switzerland))

an hawaii has access to the ocearen(hawaii)). But they had already learned that
hawaii also has a dangerous sea lifler{gerousSealife(hawaii)). Furthermore, if
they decide to go to switzerland, they can go by trgwHKy T rain(switzerland)) but
have to get a ski pasadedSkiPass(switzerland)).

In order to decide whether to go to hawaii or switzerland difierent opinions of
the two persons lead to a different structure of there loetiebbases. While Anna
likes swimming in the oceangfto(X) — swimming(X) and swimming(X) —
ocean(X)), Bob prefers to skigoto(X) — skiing(X)). He thinks also that a cheap
holiday should be preferreddto(X) — cheap(X)) and that going by train is a rea-
sonable justification to consider a holiday chedpGp(X) — goByTrain(X)). Anna
insists on her to have the possibility of swimminggoto(X) —< ~swimming(X)),
preferable in an ocean<swimming(X) — ~ocean(X)) and thinks that the need
of ski pass does not constitute a trip to be cheapheap(X) —needSkiPass(X)).
Also, Bob thinks that a dangerous sea life in the ocean shaaldent someone from
swimming in it (vswimming(X) —ocean(X), dangerousSealife(X)).

In summary, the global belief badé and the local belief bases of Bol\)
and Anna A 4..,,.) that constitute the above described multi-agent systengisen as
follows:

I = { ~goto(hawaii) «— goto(switzerland).
~goto(switzerland) «— goto(hawaii).
skiing(switzerland).
ocean(hawaii).
goByTrain(switzerland).
dangerousSeali fe(hawait).
needSkiPass(switzerland). }

Aoy = { goto(X) — skiing(X).
goto(X) — cheap(X).
cheap(X) < goByTrain(X).
~swimming(X) —ocean(X),dangerousSealife(X). }

Apnna = { goto(X) < swimming(X).

swimming(X) —ocean(X).
~goto(X) — ~swimming(X).
~swimming(X) — ~ocean(X).
~cheap(X) —<needSkiPass(X). }

We will continue this scenario in Example 3.

10 Matthias Thimm

Given a system¥” and a queny:, the framework produces an answeritas follows.
First, the moderator df asks all agents for initial arguments foand fork and starts a
dialectical tree with each of them as root arguments. Theadoh of these arguments,
the moderator asks every agent for counterarguments andoimrates them into the
corresponding dialectical trees accordingly. This predesepeated for every new ar-
gument until no more arguments can be constructed. Evéynthalmoderator analyses
the resulting dialectical trees and returns the apprapaaswer to the questioner. A
dialectical tree built via this process is called agumentation productThe answer
behaviour ofl" is determined by the decision function of its moderator anfbimal-
ized as follows.

Definition 14 (Argumentation product). Leth € £ be a query andl’ = (M, I,
{44,...,A,}) an distributed argumentation system with = (up, xp,7D,-) and
A; = (44, pi,1) for 1 <i < n.Adialectical treev € DIA is called anargumentation
productof T" and b, iff the following conditions hold:

1. there exists & with 1 < j < n such that the root of is an element op;(h), and

2. for every pathl = [(A;, k1), ..., (A, hy)] in v and the setk” of child nodes of
(Ap,hpyitholds K = {(B,h) | (B,h) € 1(A)U...U,(A)andnp (A +
(B,h')) = 1} (K is the set of all acceptable attacks di.

Example 3.We continue Example 2. Assume thaeneralized Specificitig the cho-
sen preference relation among arguments andydét(switzerland) be the query
under consideration. Both agents, Anna and Bob, can putaf@hwitial arguments
for and against the queryoto(switzerland). For example, Bob has the argument
(A, goto(switzerland)) with

A = { goto(switzerland) — cheap(switzerland),

cheap(switzerland) — goByTrain(switzerland) }

which makes use of the fagb ByT'rain(switzerland). When asked for counterargu-
ments to{ A, goto(switzerland)) Anna responds withi3;, ~goto(switzerland)) and
(Bg, ~cheap(switzerland)) with

Bi = { goto(hawaii) < swimming(hawaii),

swimming(hawaii) — ocean(hawaii) }

which makes use of the faotean(hawaii) and the strict rulev goto(switzerland)
— goto(hawaii) and

By = { ~cheap(switzerland) —<needSkiPass(switzerland) }

which makes use of the faeteedSkiPass(switzerland). Observe that both argu-
ments(By, ~ goto(switzerland)) and(Bs, ~ cheap(switzerland)) are blocking de-
featers for(A, goto(switzerland)). Hence, Bob can only bring forward the proper
attack(C, ~swimming(hawaii)) with

C = { ~swimming(hawaii) — ocean(hawaii),dangerousSeali fe(hawaii) }

Realizing Argumentation iMAS usingDeLP 11

to the argumentBB;, ~ goto(switzerland)). All other possible counterarguments to
(B1, ~ goto(switzerland)) or (B2, ~ cheap(switzerland)) would result in an unac-
ceptable argumentation line. No other arguments can beghtdarward by Anna and
Bob and the resulting argumentation product is shown in fiéigu(left). The analysis
of the tree states that the root argumént goto(switzerland)) is defeated due to its
undefeated defeatéB,, ~cheap(switzerland)).

Bob can bring forward another argumem, goto(switzerland)) for the initial
querygoto(switzerland) with

D = { goto(switzerland) — skiing(switzerland) }

that uses the factkiing(switzerland) and is brought forward by Bob. Anna can re-
spond to(D, goto(switzerland)) by stating againBy, ~ goto(switzerland)). No
other counterarguments can be brought forward by her. Aiha@ob responds to
(D, goto(switzerland)) with the proper attackC, ~ swimming(hawaii)) and thus
completes the only argumentation line in the current diadattree, see Figure 4 (right).
The analysis of the resulting argumentation product rev@algoto(switzerland)) to

be undefeated and thus the answer of the system to the quériswitzerland) is
YES.

(A, goto(switzerland)) (D, goto(switzerland))

(B1, ~goto(switzerland)) (Bz, ~cheap(switzerland)) (Bi, ~goto(switzerland))

(C, ~swimming(hawait)) (C, ~swimming(hawait))

Fig. 4. Two argumentation products from Example 3.

4 Realizing Argumentation

After the theoretical elaboration of our framework in theyious section, we are now
going describe the behavior of the agents and the wholerayigtéerms of algorithms
that implement the abstract functions defined above.

The control of the argumentation process is mainly handyettié® moderator of the
system. Given a specific query to the system, the moderaiis &ty asking each agent
for arguments for or against the query’s literal. Afterwgrir each initial argument the
moderator builds recursively a dialectical tree by askihggents for counterarguments
to the intermediate “leafs” of the trees. If no agent can givg more counterarguments,

12 Matthias Thimm

Algorithm 1 Root Ar gunment s

01 Root Argunent s(h, A, II)

02 queryArguments = Argunents(h, 4, II);

03 nqueryArguments = Arguments(h, A, II) ;

04 return queryArgumentsU nqueryArguments;

the process finishes and the moderator analyses the givemnanel returns the appro-
priate answer to the caller.

What follows is a description of the individual algorithmsed in this process by
the agents themselves, in particular implementationseofdbt argument, counterargu-
ment, and acceptance functions.

4.1 Generating root arguments

The first step in distributed argumentation in our framewarksists of the generation
of root arguments, i. e. arguments that form the root of aediadal tree and directly
refer to the given query. Lell be a global belief base and the local belief base of
the agent under consideration. In order to retrieve a wefihéd answer to the queky

all dialectical trees for both literalsandh have to be determined, as the non-existence
of undefeated arguments far does not automatically result in the answer NO. To
distinguish the cases NO and UNDECIDED, one must verify tkistence or non-
existence of undefeated argumentsfoHence, ifh is a query, the moderator asks all
agents for arguments farand fork. The general algorithm to determine the arguments
for and against the query is depicted in Algorithm 1. The dAthm uses the algorithm
Ar gunrent s which is described below.

In order to determine all arguments for a litefalgiven a global belief basé&
and the local belief basg, the algorithmAr gunent s has to compute all possible
derivations ofh from IT and A. If is a fact inIT thenh has the sole argumetit, /)
[13]. Otherwise the algorithrAr gunent s usesbackward-chaining9] to construct
all possible arguments. The algorithm starts by searchingtfict and defeasible rules
with conclusion. It then iteratively tries to find derivations of the bodyelials of the
rules. The algorithm maintains a sta8khat consists of tuplegk, L) with a set of rules
R and a set of literald.. The elemeni? contains the defeasible rules already added to
this (partial) argument andl contains the literals that have not been derived yet. By
constantly expanding these partial arguments with newsrfrlem the agent’s local
belief base full arguments are being built in the compoderif L is empty the initial
literal can be derived using the defeasible ruleRiand the strict knowledge ifv. At
the end of the algorithm non-minimal arguments are remowaddet the minimality
condition of arguments. The complete algorithm can be seéigorithm 2.

Observe that in line 25/26 only the literdls are added to the sdt that are not
already derivable from the available rules. Partial arguisithat cannot be completed
are automatically dropped by the algorithm as no extensidhem is added again to
the stacks.

Realizing Argumentation iMAS usingDeLP 13
Algorithm 2 Ar gunment s
01 Argunent s(conclusion, A, IT)
02 if conclusion is a fact in Il then
03 return {(@,conclusion)}
04 S =10
05 arguments = ()
06 for each rule r: conclusion «-- by,...,bp, € AUII do
07 if ris a defeasible rule then
08 Push ({r},{b1,...,bn}) on S
09 el se
10 Push ({}, {b1,...,bn}) on S
11 while S not enpty do
12 Pop (R,L) from S
13 if Lis enpty then
14 arguments = arguments U {(R,conclusion)}
15 el se
16 Pop I from L
17 if [is afact in IT then
18 Push (R,L) on S
19 el se
20 for each rule r: l+<«-- b1,...,bp, € AUII do
21 if ris a defeasible rule then
22 R = RU{r}
23 L' =L
24 for each bi with 1< ¢ < n do
25 if b4 is not the head of a rule in R then
26 L' = L'U{b;}
27 Push (R',L') on S
28 for each a € arguments do
29 if there exists a' € arguments wWith a # d
30 and a is a subargunment of o
31 arguments = arguments \ {a'}
32 return arguments

Based on the algorithiRoot Ar gunent s we are able to define the root argument

functiony, A for DeLP.

Definition 15 (¢7,4). LetII be a global belief base) be a local belief base, anda

literal. Then the functiorpr, A : £ — PB(ARG, 4) is defined as

om,a(h) =4y ROOt Argunment s(h, A, II) .

The algorithmAr gurent s is sound and complete in the following sense (The proofs

are omitted but can be found in [25]).

Proposition 1 (Soundness)Let i be a literal, A a local belief base, andl a global

belief base. TheAr gunent s(h, A, IT) is a set of arguments far.

14 Matthias Thimm

Algorithm 3 PCL

01 PCL((A,h), A, IT)

02 pci = {h| h <B €A}

03 pcla = {f|IHUAU pecy |~ f, HUAR f}
04 return pcli U pcla

Proposition 2 (Completeness)Let i be a literal, A a local belief base, andl a
global belief base. Then for every arguméut 1) with respect tolT and A C A it
is (A, h) €Argunents(h, A, IT) .

The soundness and completeness of the algofRbat Ar gunent s follows directly.

4.2 Generating counterarguments

Let A = ((Ay, h1), ..., (An, h,)) be an argumentation line. Another important task of
an agent is to propose counterargumets) for (A, hy,), such thatl’ = A+ (B, b)

is an acceptable argumentation line. To describe the gémeiE counterarguments in
an algorithmic manner we need the notionpaftentially counterarguing literalsLet
againA be the local belief base of the agent under consideration.

Definition 16 (Potentially counterarguing literals). Let IT be a global belief base}
alocal belief base, an(A, h) an argument. Then the set pbtentially counterarguing
literalspcl iz, A((A, h)) is defined by

pelma((A,) ={f [TUAU{f}p L}.

Hence, for every conclusiol’ of a counterargumen(3, h’) with B C A to (A, h)
it must holdh’ € pclir A((A, h)).Therefore it is sufficient to look only for potential
counterarguments among the arguments with conclusipelin A ((A, h)).

The setpclr, A((A, h)) can be characterized as follows. Lét= {h;y —< By, ...,
hmm — B}, then all literalsh, . . ., h,, are potentially counterarguing literals, as for
everyh; (1 < i < n), (A, h) contains a subargument fag. Furthermore, due to the
derivation of the literals{h4, ..., h,} by (A, h) strict rules inII might get “fired”.
Negations of the conclusions of these strict rules are atdéerpially counterarguing
literals. Algorithm 3 describes this computation.

In order to validate the acceptability of potential couatguments within the given
argumentation line, the algorithccept abl e (see Algorithm 4) must be applied,
which is a straightforward implementation of Definition #.the algorithm,- is an
arbitrary preference relation, e.@eneralized Specificifi4].

Based on the algorithiccept abl e the acceptance functiop . can be defined
as follows.

Definition 17 (np). LetII be a global belief base) be a local belief basel be an
argumentation line, and4, h) be an argument. The functiop . : X'(2) — {0,1}is
defined as

1if Accept abl e(A, (A, h), II) =true

0.~ (A + (A) Zdey { 0 otherwise

Realizing Argumentation iMAS usingDeLP 15

Algorithm 4 Accept abl e
01 Acceptabl e([(A1,h1),..., (An, ko), (B,R), IT)

02 let (A R') be the disagreement sub-argument
03 of (An,h,) relative to (B,h)

04 if BC A; for one 1< j < n then

05 return false

06 if nis even then

07 if AiUA3...UA,_1UBU II |~ L then

08 return false

09 if nis odd then

10 if ApUA4...UA,UBU II) L then

11 return false

12 if (A,h) = (B,h) then

13 return false

14 if n > 1 then

15 if (An,hn) and (An—_1,hn—1) are inconparable with
16 respect to > then
17 if not (B,h) » (A,h) then

18 return false

19 return true

Algorithm 5 At t acks

01 Attacks(({A1,s1),...,{An,sn)), 4, II)
02 pcl = PCL((A-n,sn), A, II)

03 result = ()

04 for each de pcl do

05 arguments = Argument s(d, A, IT)

06 for each (B,d) € arguments do

07 i f Acceptabl e(({(A1,s1),...,(An,sn)), (B,d), II) then
08 result = result U {(B,d)}

09 return result

Given a global belief basél, a local belief based and an argumentation ling =
[(A1, h1), ..., {An, hy)] the algorithmAt t acks (see Algorithm 1.5) uses the algo-
rithm Ar gunrent s to compute all arguments with conclusiongitiz A ((A, h)). All
these arguments that are acceptable regardiage added to the result set.

Using algorithmAt t acks the counterargument functign; 4 can be defined as fol-
lows.

Definition 18 (y17,4). Let II be a global belief base) be a local belief base, and
be an argumentation line. The functign; A : X — B(1?) is defined as

v a(A) =qep Attacks(A, A, IT) .

The soundness and completeness of the algorhmnacks follows directly from
Propositions 1 and 2.

16 Matthias Thimm
5 Implementation

The system described in this paper has been fully implerdentgdava [14] and can
be directly obtained from the autHoBesides the general argumentation capabilities
described above, also the comparison relafi@eneralized Specificif4] has been im-
plemented. This has been done using its characterizati@ctiyation sets [24]. The
framework also supports the representatiofPedelLP [1], which is an extension of
DelLP using a possibilistic language. Withi-DeLP defeasible rules are annotated
with reals that measure the certainty of the rules. The coisqarelation for argu-
ments inP-DeLP derives naturally from the annotated numbers by aggregtie
annotations of all rules in an argument and using these assgi¢ measures. There-
fore, the implemented framework features two powerful @pntation languages for
defeasible argumentation and two comparison relationarfpuments.

The framework allows the specification of local belief baskan arbitrary number
of agents and the specification of the global belief baseinvitie chosen language.
The user can query the system for the warrant status ofIiterad the result of the
argumentation process is visualized as a set of dialedtzad.

The framework has been applied to a real world example ivgliwo agents act-
ing as accuser and defender in a legal case [25]. There, dodfisisetting of the multi-
agent scenario in our framework has a real-world analogieést in german law, see
[25]). Both, accuser and defender state arguments for aaitistca specific claim, for
example the guilt or innocence of a given accused, but thegereents are evaluated
by a neutral moderator, in this case the judge.

6 Related Work

The research on argumentation in multi-agent systems isyaaetive field, see for ex-
ample the annualbArgMAS workshop [22, 17]. Current research includes besides oth-
ers argumentation-based negotiation approaches [16523], Jpersuasion [5, 19] and
general dialogue formalizations [3, 7, 8]. All these apptuss are related to the frame-
work developed here regarding the aim of formalizing agetgraction in form of ar-
gumentation. But, to our knowledge, the framework of Blacle[7, 8] is the only one
which also uses defeasible logic programming as the uridgrigpresentation formal-
ism to model distributed argumentation. Complementary¢oproposal in this paper,
the focus of [7] is on modeling communication protocols atndtegies for successful
argumentation between agents. They introduce two kindsafify dialogues, one to
generate combined arguments and one for the actual argatioent

The framework of [11] uses extended logic programs to moaelkgent’s belief and
defines a notion of distributed argumentation using thetenebed logic programs. The
framework uses the argumentation semantics from [20] afideea notion of cooper-
ation, that allows the agents to share their beliefs in ormeonstruct new arguments.
As this framework uses extended logic programs as the widgnepresentation for-
malism, it has a declarative semantics in contrast to tHediaal semantics dbelLP

! matthias.thimm@tu-dortmund.de

Realizing Argumentation iMAS usingDeLP 17

used here. Yet, in another work [26] we also extended thedvaork described here by
introducingcollaborationghat allow the agents to share their beliefs and constrwet ne
arguments.

7 Final Remarks

We have developed a multi-agent architecture that usesremgtation in order to reach
a common conclusion acceptable by all agents. The frameuse&Defeasible Logic
Programmingas the underlying argumentation mechanism but distribiledeliefs
among several agents. We have given a functional formalizatf the system and
described the computational issues involved in implemgnit. The framework has
successfully been implemented and applied to a real woddhgie.

Ongoing research includes collaborations in the multiragetting [26], security
issues in agent interactions [6] and a generalization ofrimaework to abstract argu-
mentation systems. The complex dialectical semantid3edfP does not offer a quite
understandable anticipation of the interaction of argumerhus we aim at extending
the described framework to abstract argumentation sysfg#&jsn order to enrich it
with a declarative semantics.

References

1. Teresa Alsinet, Carlos I. Chesfievar, Lluis Godo, andi&mio R. Simari. A logic program-
ming framework for possibilistic argumentation: Formatinn and logical propertiesuzzy
Sets and Systems (FS3)08.

2. Leila Amgoud, Yannis Dimopoulos, and Pavlos Moraitis. Angral framework for
argumentation-based negotiation. In I. Rahwan, S. Parsoms C. Reed, editor§ourth
International Workshop on Argumentation in Multi-Agens@®yns, ArgMAS 200%olume
4946 ofLecture Notes in Computer Scienpages 1-17. Springer, 2007.

3. Katie Atkinson, Trevor Bench-Capon, and Peter McBurnylialogue game protocol for
multi-agent argument over proposals for actionJémrnal of Autonomous Agents and Multi-
Agent Systempages 149-161. Springer, 2004.

4. T.J. M. Bench-Capon and Paul E. Dunne. Argumentationtifical intelligence. Artificial
Intelligence 171:619-641, 2007.

5. T.J.M. Bench-Capon. Persuasion in practical argumeinguslue based argumentation
frameworks.Journal of Logic and Computatiori3(3):429-448, 2003.

6. Joachim Biskup, Gabriele Kern-Isberner, and Matthiagniin Towards enforcement of
confidentiality in agent interactions. In M. Pagnucco andMielscher, editord?roceedings
of the 12th International Workshop on Non-Monotonic ReagpiNMR’08) pages 104—
112, September 2008.

7. E.Black.A Generative Framework for Argumentation-Based InquirgiBgues PhD thesis,
University College London, 2007.

8. E.Black and A. Hunter. A generative inquiry dialogue syst InProceedings of the Sixth In-
ternational Joint Conference on Autonomous Agents andiMugient Systems (AAMAS’07)
|IEEE Press, 2007.

9. C.Chesfievar, G. Simari, and A. Garcia. Making argursgstem computationally attractive.
In Proceedings of the XllI International Conference of the|€m Society for Computer
Science1993.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Matthias Thimm

Carlos I. Cheshievar, Ana G. Maguitman, and Ronald F. Llagical models of argument.
ACM Comput. Sury32(4):337-383, 2000.

lara Carnevale de Almeida and José Julio Alferes. Aoraentation-based negotiation for
distributed extended logic programs. Rnoceedings of CLIMA V]lpages 191-210, 2006.
Phan Minh Dung. On the acceptability of arguments anflitdamental role in nonmono-
tonic reasoning, logic programming and n-person gametficial Intelligence 77(2):321—
358, 1995.

A. Garcia and G. Simari. Defeasible logic programmifig:argumentative approacfihe-
ory and Practice of Logic Programming(1-2):95-138, 2004.

James Gosling, Bill Joy, Guy Steele, and Gilad Brachihe Java language specification
Addison-Wesley, third edition, 2005.

Nishan C. Karunatillake, Nicholas R. Jennings, lyad viRaf) and Timothy J. Norman.
Argument-based negotiation in a social context AKMAS ’'05: Proceedings of the fourth
international joint conference on Autonomous agents antliagent systemspages 1331—
1332, New York, NY, USA, 2005. ACM.

Sarit Kraus. Negotiation and cooperation in multi-agenironmentsArtificial Intelligence
94(1-2):79-97, 1997.

Nicolas Maudet, Simon Parsons, and lyad Rahwan. Argtatien in multi-agent systems:
Context and recent developments. Third International Workshop on Argumentation in
Multi-Agent Systems, ArgMAS 208®Ilume 4766 o NCS pages 1-16. Springer, 2007.
Simon Parsons, Carles Sierra, and Nick Jennings. Agsaitseason and negotiate by argu-
ing. Journal of Logic and Computatioi(3):261-292, 1998.

Laurent Perrussel, Sylvie Doutre, Jean-Marc Théveamid Peter McBurney. A persuasion
dialog for gaining access to information. In I. Rahwan, SsBas, and C. Reed, editors,
Fourth International Workshop on Argumentation in Muliignt Systems, ArgMAS 2007
volume 4946 oL ecture Notes in Computer Scienpgages 63—79. Springer, 2007.

Henry Prakken. Dialectical proof theory for defeas#nigumentation with defeasible prior-
ities (preliminary report). IModelAge Workshgpages 202—-215, 1997.

Henry Prakken and Gerard Vreeswijk. Logical systemd&easible argumentation. In
D. Gabbay and F. Guenthner, editorandbook of Philosophical Logizolume 4, pages
219-318. Kluwer Academic Publishers, second edition, 2002

I. Rahwan, S. Parsons, and C. Reed, edifavarth International Workshop on Argumenta-
tion in Multi-Agent Systems, ArgMAS 20®fonolulu, USA, May 2007. Springer.

Sonia V. Rueda, A. Garcia, and Guillermo R. Simari. Argutrbased negotiation among
BDI agents.Journal of Computer Science and Technola2fy), 2002.

F. Stolzenburg, A. Garcia, Carlos I. Chesnevar, andr@ai$ Computing generalized speci-
ficity. Journal of Non-Classical Logic43(1):87-113, 2003.

Matthias Thimm.Verteilte logikbasierte Argumentation: Konzeption, Ieypkntierung und
Anwendung im Rechtswes&rDM Verlag Dr. Milller, 2008.

Matthias Thimm, Alejandro J. Garcia, Gabriele Kerrelster, and Guillermo R. Simari.
Using collaborations for distributed argumentation witfehsible logic programming. In
M. Pagnucco and M. Thielscher, editoPspceedings of the 12th International Workshop on
Non-Monotonic Reasoning (NMR’'Q8)ages 179-188, 2008.

Matthias Thimm and Gabriele Kern-Isberner. A distrdaliargumentation framework using
defeasible logic programming. In P. Besnard, S. Doutre Aartdunter, editorsProceedings
of the 2nd International Conference on Computational MsdglArgument (COMMA'08)
pages 381-392. |0S Press, 2008.

Matthias Thimm and Gabriele Kern-Isberner. On the imiahip of defeasible argumen-
tation and answer set programming. In P. Besnard, S. Doat@,An Hunter, editors,
Proceedings of the 2nd International Conference on Contjmmtal Models of Argument
(COMMA'08), pages 393-404. 10S Press, 2008.

