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Abstract. The success postulate of classic belief revision theory de-
mands that after revising some beliefs with by information the new in-
formation is believed. However, this form of prioritized belief revision
is not apt under many circumstances. Research in non-prioritized be-
lief revision investigates forms of belief revision where success is not a
desirable property. Herein, selective revision uses a two step approach,
first applying a transformation function to decide if and which part of
the new information shall be accepted, and second, incorporating the
result using a prioritized revision operator. In this paper, we implement
a transformation function by employing deductive argumentation to as-
sess the value of new information. Hereby we obtain a non-prioritized
revision operator that only accepts new information if believing in the
information is justifiable with respect to the beliefs. By making use of
previous results on selective revision we prove that our revision operator
satisfies several desirable properties. We illustrate the use of the revision
operator by means of examples and compare it with related work.

1 Introduction

Belief revision [4, 12] is concerned with changing beliefs in the light of new in-
formation. Usually, the beliefs of an agent are not static but change when new
information is available. In order to be able to act reasonably in a changing
environment the agent has to integrate new information and give up outdated
beliefs. In particular, if the agent learns that some beliefs have been mislead-
ingly assumed to be true its beliefs have to be revised. The research field of
belief revision distinguishes between prioritized and non-prioritized belief re-
vision. In prioritized belief revision [12] new information is always assumed to
represent the most reliable and correct information available and revising the
agent’s beliefs by the new information is expected to result in believing the new
information. This is a reasonable assumption for many imaginable situations and
there are many technical challenges in realizing prioritized belief revision, cf. e. g.
[12]. However, many circumstances demand that new information is not blindly
accepted but weighted against the current beliefs. The field of non-prioritized
belief revision [11] investigates change operations where revising some beliefs
by new information may not result in believing the new information. Imagine a



multi-agent system where agents exchange information. In general, agents may
be cooperative or competitive. Information that is passed from one agent to
another may be intentionally wrong, mistakenly wrong, or correct. It is up to
the receiver of the information to evaluate whether it should be integrated into
the beliefs or not. In particular, in non-prioritized belief revision the satisfac-
tion of the success postulate—which demands that new information is believed
after revision—is not desirable. In [9] a specific class of non-prioritized belief
revision operators is investigated. A selective revision is a two-step revision that
consists of 1.) filtering new information using a transformation function and 2.)
revising the beliefs with the result of the filtering in a prioritized way. In [9],
no concrete implementations of the transformation function are given but sev-
eral results are proven that show how specific properties for the transformation
function and the inner prioritized revision translate to specific properties for the
outer non-prioritized revision.

In this paper we propose a specific implementation of a transformation func-
tion that makes use of deductive argumentation [2]. A deductive argumentation
theory is a set of propositional sentences and an argument for some sentence φ is
a minimal proof for φ. If the theory is inconsistent there may also be proofs for
the complement of a sentence ¬φ and in order to decide whether φ or ¬φ is to
be believed, an argumentative evaluation is performed that compares arguments
with counterarguments. We use the framework of [2] to implement a transfor-
mation function for selective revision that decides for each individual piece of
information whether to accept it for revision or not, based on its argumentative
evaluation. In particular, we consider the case that revision is to be performed
based on a set of pieces of information instead of just a single piece of informa-
tion. By doing so, we allow new information to contain arguments. As a result,
an agent decides whether to accept some new information on the basis of its own
evaluation of the information and the arguments that may be contained in this
information. Consider the following example.

Example 1. Imagine the agent Anna wants to spend her holidays on Hawaii.
She is aware of the fact that there has been some volcano activity on Hawaii
recently but is convinced there is no immediate danger. Anna’s boss Bob doesn’t
want Anna to go on vacation at this time of the year and tells her that she has
to do some work here and should not go to Hawaii. However, Anna wants to
go surfing and this is a much better argument for her to go to Hawaii instead
of staying at work. As a consequence she rejects Bob’s argument to stay and
does not revise her beliefs. Consider now that Carl, a good friend of Anna, is
a vulcanologist and tells Anna that there is actually an immediate danger of
an eruption. Anna knows that Carl is clearly knowledgable about volcanos and
finds his argument convincing. Consequently, she accepts the new information
and revises her beliefs accordingly. �

In the previous example the decisions of the agent Anna resulted in either ac-
cepting or rejecting the new information completely. However, it may also be the
case that some of the new information is accepted and some is rejected. Consider
the following example.



Example 2. Imagine Bob tells Anna that she has to stay for work because all her
colleagues are having a vacation at the same time and she has to fill in for them.
Suppose Anna knows that there is no work to do during her planned vacation as
all clients of her company are on vacation as well. Then Anna would reject the
conclusion of Bob’s argument that she has to stay, but might very well accept
that all her colleagues will be on vacation as well. �

In this paper we develop an approach for selective revision that is capable of
deciding whether to accept, reject, or partially accept some new information,
based on deductive argumentation. In order to do so we also extend the notions
of selective revision to the problem of multiple base revision, i. e., the problem
of revising a belief base (instead of a belief set) by a set of sentences.

The rest of this paper is organized as follows. In Section 2 we introduce
some necessary technical preliminaries. We go on in Section 3 with providing
an overview on the notions of belief revision and extending the approach of
selective revision to selective multiple base revision. We continue in Section 4
with presenting the framework of deductive argumentation. In Section 5 we
propose our implementation of selective multiple base revision via deductive
argumentation and investigate its properties. In Section 6 we review some related
work and in Section 7 we conclude.

2 Preliminaries

In this paper we suppose that the beliefs of an agent are given in the form of
propositional sentences. Let At be a propositional signature, i. e. a set of propo-
sitional atoms. Let L(At) be the corresponding propositional language generated
by the atoms in At and the connectives ∧ (and), ∨ (or), ⇒ (implication), and
¬ (negation). As a notational convenience we assume some arbitrary total order
� on the elements of L(At) which is used to enumerate elements of each finite
Φ ⊆ L(At) in a unique way, cf. [2]. For a finite subset Φ ⊆ L(At) the canon-
ical enumeration of Φ is the vector 〈φ1, . . . , φn〉 such that {φ1, . . . , φn} = Φ
and φi � φj for every i < j with i, j = 1, . . . , n. As � is total the canonical
enumeration of every finite subset Φ ⊆ L(At) is uniquely defined.

We use the operator ` to denote classical entailment, i. e., for sets of propo-
sitional sentences Φ1, Φ2 ⊆ L(At) we say that Φ2 follows from Φ1, denoted by
Φ1 ` Φ2, if and only if Φ2 is entailed by Φ1 in the classical logical sense. For
sentences φ, φ′ ∈ L(At) we write φ ` φ′ instead of {φ} ` {φ′}. We define the
deductive closure Cn(·) of a set of sentences Φ as Cn(Φ) = {φ ∈ L(At) | Φ ` φ}.
Two sets of sentences Φ,Φ′ ⊆ L(At) are equivalent, denoted by Φ ≡p Φ′, if and
only if it holds that Φ ` Φ′ and Φ′ ` Φ. We also use the equivalence relation ∼=p

which is defined as Φ ∼=p Φ′ if and only if there is a bijection σ : Φ → Φ′ such
that for every φ ∈ Φ it holds that φ ≡p σ(φ). This means that Φ ∼=p Φ′ if Φ and
Φ′ are element-wise equivalent. Note that Φ ∼=p Φ′ implies Φ ≡p Φ′ but not vice
versa. In particular, it holds that e. g {a∧ b} ≡p {a, b} but {a∧ b} 6∼=p {a, b}. For
sentences φ, φ′ ∈ L(At) we write φ ≡ φ′ instead of {φ} ≡ {φ′} if ≡∈ {≡p,∼=p}.
If Φ `⊥ we say that Φ is inconsistent.



For a set S let P(S) denote the power set of S, i. e. the set of all subsets of
S. For a set S let PP(S) denote the set of multi-sets of S, i. e. the set of all
subsets of S where an element may occur more than once. To distinguish sets
from multi-sets we use brackets “〈” and “〉” for the latter.

3 Selective Multiple Base Revision

The field of belief revision is concerned with the change of beliefs when more
recent or more reliable information is at hand. The most important descrip-
tion of properties of prioritized belief change operators is given by Alchourrón,
Gärdenfors and Makinson in their seminal paper [4]. The usual framework for
representing beliefs considered for belief revision is that of belief sets which are
revised by a single sentence. A belief set S is a subset of L(At) that is deductively
closed, i. e., S = Cn(S). Working with belief sets in practice is unmanageable
due to their infinite size. The more practical representation form are belief bases
which are finite sets of sentences. These also come with the advantage of making
it possible to differentiate between explicit and inferred beliefs, cf. [12]. In this
work we consider the problem of multiple base revision. That is, we employ belief
bases for knowledge representation and we consider revising a belief base by a
set of sentences, cf. the notion of multiple revision in [12].

Let K ⊆ L(At) be a belief base, Φ ⊆ L(At) be some set of sentences, and
consider the problem of changing K in order to entail Φ. If K ∪ Φ is consistent
then there is no need for contracting the existing beliefs and the problem can
be solved via expansion K + Φ which is characterized via K ∪ Φ. If K ∪ Φ is
inconsistent, conflicts arising from the addition of Φ to K have to be resolved.
In general, this means that some of the current beliefs have to be given up in
order to come up with a consistent belief base. The AGM framework [4] proposes
several basic postulates a revision operator should obey. As we consider belief
bases for knowledge representation we start with the corresponding postulates
for belief base revision [12] adapted to revision by sets of sentences [8]. Let ∗
be a multiple base revision operator—i. e., if K and Φ are sets of sentences so is
K ∗ Φ—and consider the following postulates.

Success. K ∗ Φ ` Φ.

Inclusion. K ∗ Φ ⊆ K + Φ.

Vacuity. If K ∪ Φ 6`⊥ then K + Φ ⊆ K ∗ Φ.

Consistency. If Φ is consistent then K ∗ Φ is consistent.

Relevance. If α ∈ (K ∪ Φ) \ (K ∗ Φ) then there is a set H such that K ∗ Φ ⊆
H ⊆ K ∪ Φ and H is consistent but H ∪ {α} is inconsistent.

Another important property for the framework of [4] is extensionality which can
be phrased for multiple base revision as follows.

Extensionality. If Φ ≡p Ψ , then K ∗ Φ ≡p K ∗ Ψ .



The above property is usually not considered for the problem of base revision as
base revision is motivated by observing syntax and not (only) semantic contents.
In particular, for the problem of multiple base revision, satisfaction of extension-
ality imposes that K ∗ {a, b} ≡p K ∗ {a ∧ b} as {a, b} ≡p {a ∧ b}. Identifying the
“comma”-operator with the logical “AND”-operator is not always a reasonable
thing to do, see e. g. [5] for a discussion. However, we consider the following
weakened form of extensionality.

Weak Extensionality. If Φ ∼=p Φ′ then K ∗ Φ ≡p K ∗ Φ′.

The property weak extensionality only demands that the outcomes of the revi-
sions K ∗ Φ and K ∗ Φ′ are equivalent if Φ and Φ′ are element-wise equivalent.

Definition 1. A revision operator ∗ is called a prioritized multiple base revision
operator if ∗ satisfies success, inclusion, vacuity, consistency, relevance, and
weak extensionality.

For non-prioritized multiple base revision the properties inclusion, vacuity, con-
sistency, relevance, and weak extensionality can also be regarded as desirable.
This is not the case for success is general but we can replace success by weak-
ened versions, cf. [11]. We denote with ◦ a non-prioritized belief revision operator,
i. e., K ◦Φ is the non-prioritized revision of K by Φ. Then consider the following
properties for ◦, cf. [9].

Weak Success. If K ∪ Φ 6`⊥ then K ◦ Φ ` Φ.

Consistent Expansion. If K 6⊆ K ◦ Φ then K ∪ (K ◦ Φ) `⊥.

Note that weak success follows from vacuity, and consistent expansion follows
from vacuity and success, cf. [9].

Definition 2. A revision operator ◦ is called non-prioritized multiple base re-
vision operator if ◦ satisfies inclusion, consistency, weak extensionality, weak
success, and consistent expansion.

We do not require relevance to be satisfied by non-prioritized multiple base
revisions as it is hardly achievable in the context of selective revision, see below.
For the following, bear in mind that the main difference between a prioritized
multiple base revision operator ∗ and a non-prioritized multiple base revision
operator ◦ is that K ∗ Φ ` Φ is required but K ◦ Φ ` Φ is not.

A specific approach to non-prioritized belief revision is selective revision [9].
There, the problem of revising a belief set S with a single sentence α is realized
by applying a transformation function f to α, obtaining a new sentence α′, and
then revising S by α′ in a prioritized way. The transformation function f is
supposed to determine whether α should be accepted as a whole or whether it
should be somewhat weakened. We adopt the notions of [9] for the problem of
selective multiple belief base revision and still consider the problem of revising



a belief base K by some set Φ of sentences. Following the ideas of [9] we define
the selective multiple base revision K ◦ Φ via

K ◦ Φ = K ∗ fK(Φ) (1)

with a transformation function fK : P(L(At)) → P(L(At)) and some (priori-
tized) multiple base revision ∗. In [9] several properties for transformation func-
tions in the context of belief set revision are discussed. We rephrase some of
them here slightly to fit the framework of multiple base revision. Let K ⊆ L(At)
be consistent and let Φ,Φ′ ⊆ L(At).

Inclusion. fK(Φ) ⊆ Φ
Weak Inclusion. If K ∪ Φ is consistent then fK(Φ) ⊆ Φ
Extensionality. If Φ ≡p Φ′ then fK(Φ) ≡p fK(Φ′)
Consistency Preservation. If Φ is consistent then fK(Φ) is consistent
Consistency. fK(Φ) is consistent
Maximality. fK(Φ) = Φ
Weak Maximality. If K ∪ Φ is consistent then fK(Φ) = Φ

We also consider the following novel property.

Weak Extensionality. If Φ ∼=p Φ′ then fK(Φ) ∼=p fK(Φ′)

Not all of the above properties may be desirable for a transformation function
that is to be used for selective revision. For example, the property maximality
states that fK should not modify the set Φ. Satisfaction of this property makes
(1) equivalent to K ∗ Φ. As ∗ is meant to be a prioritized revision function we
lose the possibility for non-prioritized revision.

Note that for weak extensionality we demand fK(Φ) and fK(Φ′) to be element-
wise equivalent instead of just equivalent (in contrast to the property weak ex-
tensionality for revision). We do this because fK is supposed to be applied in
the context of base revision which is sensitive to syntactic variants. We intro-
duce the postulate weak extensionality for transformation functions with the
same motivation as we do for multiple base revision. However, for the case of
transformation functions the problem with satisfaction of extensionality is more
apparent. Consider again Φ = {a, b} and Φ′ = {a ∧ b}. It follows that Φ ≡p Φ′
and if fK satisfies extensionality this results in fK({a, b}) ≡p fK({a ∧ b}). If fK
also satisfies inclusion it follows that fK({a ∧ b}) ∈ {∅, {a ∧ b}} and therefore
fK({a, b}) ∈ {∅, {a, b}}. In general, if fK satisfies both inclusion and extension-
ality it follows that either fK(Φ) = ∅ or fK(Φ) = Φ for every Φ ⊆ L(At) (as Φ
is equivalent to a Φ′ that consists of a single formula that is the conjunction of
the formulas in Φ and fK(Φ′) = ∅ or fK(Φ′) = Φ′ due to inclusion). As we are
interested in a more graded approach to belief revision we want to be able to
accept or reject specific pieces of Φ and not just Φ as a whole. Consequently, we
consider weak extensionality as a desirable property instead of extensionality.
Note that extensionality implies weak extensionality as Φ ∼=p Φ′ implies Φ ≡p Φ′.

In [9] several representation theorems are given that characterize non-pri-
oritized belief revision by selective revision via (1) and specific properties of ∗



and fK. In particular, it is shown that a reasonable non-prioritized belief revi-
sion operator ◦ can be characterized by an AGM revision ∗ and a transformation
function fK that satisfies extensionality, consistency preservation, and weak max-
imality. Note, however, that [9] deals with the problem of revising a belief set by
a single sentence. Nonetheless, we can carry over the results of [9] to the problem
of multiple base revision and obtain the following result.

Proposition 1. Let ∗ be a prioritized multiple base revision operator and let
fK satisfy inclusion, weak extensionality, consistency preservation, and weak
maximality. Then ◦ defined via (1) is a non-prioritized multiple base revision
operator.

Proof. We have to show that ◦ satisfies inclusion, consistency, weak extension-
ality, weak success, and consistent expansion.

Inclusion. It holds that fK(Φ) ⊆ Φ as fK satisfies inclusion. Also, ∗ satisfies
inclusion and it follows K ∗ fK(Φ) ⊆ K ∪ fK(Φ) ⊆ K ∪ Φ.

Consistency. If Φ is consistent so is fK(Φ) as fK satisfies consistency preser-
vation. As ∗ satisfies consistency it follows that K ∗ fK(Φ) is consistent.

Weak Extensionality. If Φ ∼=p Φ′ then fK(Φ) ∼=p fK(Φ′) as fK satisfies weak
extensionality. It follows that K ∗ fK(Φ) ≡p K ∗ fK(Φ′) as ∗ satisfies weak
extensionality.

Weak Success. If K ∪ Φ is consistent it follows that fK(Φ) = Φ as fK satisfies
weak maximality. As ∗ satisfies vacuity it follows K+Φ ⊆ K∗fK(Φ). Hence,
◦ satisfies vacuity as well and therefore weak success.

Consistent Expansion. Suppose K 6⊆ K∗fK(Φ). Note that ∗ satisfies consistent
expansion as ∗ satisfies vacuity and success, cf. [9]. It follows that K∪{K ∗
fK(Φ)} is inconsistent. ut

Note that relevance does not hold for K ◦ Φ defined via (1) in general. Consider
for example the transformation function f0K defined via f0K(Φ) = Φ if K ∪ Φ is
consistent and f0K(Φ) = ∅ otherwise. Then f0K satisfies all properties for trans-
formation functions except maximality. But it is easy to see that K ◦ Φ defined
via (1) using f0K and a prioritized multiple base revision operator ∗ fails to sat-
isfy relevance. We leave it to future work to investigate further properties for
transformation functions that may enable relevance to hold in general.

In the following we aim at implementing a selective multiple base revision
using deductive argumentation and go on with introducing the latter.

4 Deductive Argumentation

Argumentation frameworks [1] allow for reasoning with inconsistent information
based on the notions of arguments, counterarguments and their relationships.
Since the seminal paper [6] interest has grown in research in computational
models for argumentation that allow for a coherent procedure for consistent
reasoning in the presence of inconsistency. In this paper we use the framework of
deductive argumentation as proposed by Besnard and Hunter [2]. This framework



bases on classical propositional logic and is therefore apt for our aim to use
argumentation to realize a transformation function f . The central notion of the
framework of deductive argumentation is that of an argument.

Definition 3 (Argument). Let Φ ⊆ L(At) be a set of sentences. An argument
A for a sentence α ∈ L(At) in Φ is a tuple A = 〈Ψ, α〉 with Ψ ⊆ Φ that satisfies
1.) Ψ 0⊥, 2.) Ψ ` α, and 3.) there is no Ψ ′ ( Ψ with Ψ ′ ` α. For an argument
A = 〈Ψ, α〉 we say that α is the claim of A and Ψ is the support of A.

Hence, an argument A = 〈Ψ, α〉 for α is a minimal proof for entailing α. Given
a set Φ ⊆ L(At) of sentences there may be multiple arguments for α. As in [2]
we are interested in arguments that are most cautious.

Definition 4 (Conservativeness). An argument A = 〈Ψ, α〉 is more conser-
vative than an argument B = 〈Φ, β〉 if and only if Ψ ⊆ Φ and β ` α.

In other words, an A is more conservative than an argument B if B has a smaller
support (with respect to set inclusion) and a more general conclusion. An ar-
gument A is strictly more conservative than an argument B if and only if A is
more conservative than B but B is not more conservative than A. If Φ ⊆ L(At)
is inconsistent there are arguments with contradictory claims.

Definition 5 (Undercut). An argument A = 〈Ψ, α〉 is an undercut for an
argument B = 〈Φ, β〉 if and only if α = ¬(φ1∧ . . .∧φn) for some φ1, . . . , φn ⊆ Φ.

If A is an undercut for B then we also say that A attacks B. In order to consider
only those undercuts for an argument that are most general we restrain the
notion of undercut as follows.

Definition 6 (Maximally conservative undercut). An argument A = 〈Ψ, α〉
is a maximally conservative undercut for an argument B = 〈Φ, β〉 if and only if
A is an undercut of B and there is no undercut A′ for B that is strictly more
conservative than A.

Definition 7 (Canonical undercut). An argument A = 〈Ψ,¬(φ1∧. . .∧φn)〉 is
a canonical undercut for an argument B = 〈Φ, β〉 if and only if A is a maximally
conservative undercut for B and 〈φ1, . . . , φn〉 is the canonical enumeration of Φ.

It can be shown that it suffices to consider only the canonical undercuts for an
argument in order to come up with a reasonable argumentative evaluation of
some claim α [2]. Having an undercut B for an argument A there may also be an
undercut C for B which defends A. In order to give a proper evaluation of some
argument A we have to consider all undercuts for its undercuts as well, and so
on. This leads to the notion of an argument tree.

Definition 8 (Argument tree). Let α ∈ L(At) be some sentence and let Φ ⊆
L(At) be a set of sentences. An argument tree τΦ(α) for α in Φ is a tree where
the nodes are arguments and that satisfies



1. the root is an argument for α in Φ,
2. for every path [〈Φ1, α1〉, . . . , 〈Φn, αn〉] in τΦ(α) it holds that Φn * Φ1 ∪ . . . ∪

Φn−1, and
3. the children B1, . . . ,Bm of a node A consist of all canonical undercuts for A

that obey 2.).

Let T (At) be the set of all argument trees.

An argument tree is a concise representation of the relationships between dif-
ferent arguments that favor or reject some argument A. In order to evaluate
whether a claim α can be justified we have to consider all argument trees for α
and all argument trees for ¬α. For an argument tree τ let root(τ) denote the
root node of τ . Furthermore, for a node A ∈ τ let chτ (A) denote the children of
A in τ and chTτ (A) denote the set of sub-trees rooted at a child of A.

Definition 9 (Argument structure). Let α ∈ L(At) be some sentence and
let Φ ⊆ L(At) be a set of sentences. The argument structure ΓΦ(α) for α with
respect to Φ is the tuple ΓΦ(α) = (P, C) such that P is the set of argument trees
for α in Φ and C is the set of arguments trees for ¬α in Φ.

The argument structure ΓΦ(α) of a α ∈ L(At) gives a complete picture of the
reasons for and against α. In order to evaluate those reasons we use the following
notation, cf. [2].

Definition 10 (Categorizer). A categorizer γ is a function γ : T (At)→ R.

A categorizer is meant to assign a value to an argument tree τ depending on how
strongly this argument tree favors the root argument. In particular, the larger
the value of γ(τ) the better the justification in believing in the claim of the root
argument. For an argument structure ΓΦ(α) = ({τp1 , . . . , τpn}, {τ c1 , . . . , τ cm}) and
a categorizer γ we abbreviate

γ(ΓΦ(α)) = (〈γ(τp1 ), . . . , γ(τpn)〉, 〈γ(τ c1 ), . . . , γ(τ cm)〉) ∈ PP(R)×PP(R) .

Definition 11 (Accumulator). An accumulator κ is a function κ : PP(R)×
PP(R)→ R.

An accumulator is meant to evaluate the categorization of argument trees for
or against some sentence α. We say that a set of sentences Φ ⊆ L(At) accepts
a sentence α with respect to a categorizer γ and an accumulator κ, denoted by
Φ |∼ κ,γα if and and only if

κ(γ(ΓΦ(α))) > 0

A set of sentences Φ ⊆ L(At) rejects a sentence α with respect to a categorizer
γ and an accumulator κ, denoted by Φ |6∼ κ,γα if and and only if

κ(γ(ΓΦ(α))) < 0

If Φ neither accepts nor rejects α with respect to γ and κ we say that Φ is
undecided about α with respect to γ and κ. Some simple instances of categorizers
and accumulators are as follows.



Example 3. Let τ be some argument tree. The classical evaluation of an argu-
ment tree—as e. g. employed in Defeasible Logic Programming [10]—is that each
leaf of the tree is considered “undefeated” and an inner node is “undefeated”
if all its children are “defeated” and “defeated” if there is at least one child
that is “undefeated”. This intuition can be formalized by defining the classical
categorizer γ0 recursively via

γ0(τ) =

{
1 if chτ (root(τ)) = ∅
1−max{γ0(τ ′) | τ ′ ∈ chTτ (root(τ))} otherwise

Furthermore, a simple accumulator κ0 can be defined via

κ0(〈N1, . . . , Nn〉, 〈M1, . . . ,Mm〉) = N1 + . . .+Nn −M1 − . . .−Mm .

For example, a set of sentences Φ ⊆ L(At) accepts a sentence α with respect
to γ0 and κ0 if and only if there are more argument trees for α where the root
argument is undefeated than argument trees for ¬α where the root argument is
undefeated. �

More examples of categorizers and accumulators can be found in [2]. Using those
notions we are able to state for every sentence φ ∈ Φ whether φ is accepted in Φ
or not, depending on the arguments that favor α and those that reject α.

5 Selective Revision by Deductive Argumentation

Using the deductive argumentation framework presented in the previous section
one is able to decide for each sentence α ∈ Φ whether α is justifiable with respect
to Φ. Note that the framework of deductive argumentation heavily depends on
the actual instances of categorizer and accumulator. In the following we only
consider categorizer and accumulator that comply with the following minimal
requirements.

Definition 12 (Well-behaving categorizer). A categorizer γ is called well-
behaving if γ(τ) > γ(τ ′) whenever τ consists only of one single node and τ ′

consists of at least two nodes.

In other words, a categorizer γ is well-behaving if the argument tree that has no
undercuts for its root is considered the best justification for the root.

Definition 13 (Well-behaving accumulator). An accumulator κ is called
well-behaving if and only if κ((P, C)) > 0 whenever P 6= ∅ and C = ∅.

This means, that if there are no arguments against a claim α and at least one
argument for α in Φ then α should be accepted in Φ. Note that both γ0 and κ0
are well-behaving as well as all categorizers and accumulators considered in [2].
Note further that if Φ is consistent then every sentence α ∈ Φ is accepted by Φ
with respect to every well-behaving categorizer and well-behaving accumulator.



Let K ⊆ L(At) be a consistent set of sentences, and let γ be some well-
behaving categorizer and κ be some well-behaving accumulator. We consider
again a selective revision ◦ of the form (1). In order to determine the outcome of
the non-prioritized revision K ◦ Φ for some Φ ⊆ L(At) we implement a transfor-
mation function f that checks for every sentence α ∈ Φ whether α is accepted
in K ∪ Φ. Note that although K is consistent the union K ∪ Φ is not necessarily
consistent which gives rise to an argumentative evaluation. In the following, we
consider two different transformation functions based on deductive argumenta-
tion. We define the skeptical transformation function Sγ,κK via

Sγ,κK (Φ) = {α ∈ Φ | K ∪ Φ |∼ κ,γα}

for every Φ ⊆ L(At) and the credulous transformation function Cγ,κK via

Cγ,κK (Φ) = {α ∈ Φ | K ∪ Φ |6∼ κ,γ¬α}

for every Φ ⊆ L(At). In other words, the value of Sγ,κK (Φ) consists of those
sentences of Φ that are accepted in K ∪ Φ and the value of Cγ,κK (Φ) consists of
those sentences of Φ that are not rejected in K ∪ Φ. There is a subtle difference
in the behavior of those two transformation functions as the following example
shows.

Example 4. Let K1 = {a} and Φ1 = {¬a}. Note that there is exactly one ar-
gument tree τ1 for ¬a and one argument tree τ2 for a in K1 ∪ Φ. In τ1 the
root is the argument A = 〈{¬a},¬a〉 which has the single canonical undercut
B = 〈{a}, a〉. In τ2 the situation is reversed and the root of τ2 is the argument
B which has the single canonical undercut A. Therefore, the argument structure
for ¬a is given via ΓK∪Φ(¬a) = ({τ1}, {τ2}). It follows that γ0(τ1) = γ0(τ2) = 0
and κ0(γ0(ΓK∪Φ(a))) = κ0(〈0, 0〉) = 0. It follows that K ∪ Φ is undecided about
both ¬a and a. Consequently, it follows that

Sγ0,κ0

K1
(Φ1) = ∅ Cγ0,κ0

K1
(Φ1) = {¬a} .

�

Let ∗ be some (prioritized) multiple base revision operator, γ some categorizer,
and κ some accumulator. Using the skeptical transformation function we can
define the skeptical argumentative revision ◦γ,κS following (1) via

K ◦γ,κS Φ = K ∗ Sγ,κK (Φ) (2)

for every Φ ⊆ L(At) and using the credulous transformation function we can
define the credulous argumentative revision ◦γ,κC via

K ◦γ,κC Φ = K ∗ Cγ,κK (Φ) (3)

for every Φ ⊆ L(At).

Example 5. We continue Example 4. Let ∗ be some prioritized multiple base
revision. Then it follows that K1 ◦γ0,κ0

S Φ1 = {a} and K1 ◦γ0,κ0

C Φ1 = {¬a}. �



We now investigate the formal properties of the transformation functions Sγ,κK
and Cγ,κK and the resulting revision operators ◦γ,κS and ◦γ,κC .

Proposition 2. Let γ be a well-behaving categorizer and κ be a well-behaving
accumulator. Then the transformation functions Sγ,κK and Cγ,κK satisfy inclusion,
weak inclusion, weak extensionality, consistency preservation and weak maxi-
mality.

Proof.

Inclusion. This is satisfied by definition as for α ∈ Sγ,κK (Φ) and each α ∈
Cγ,κK (Φ) it follows α ∈ Φ.

Weak Inclusion. This follows directly from the satisfaction of inclusion.
Weak Extensionality. Let Φ ∼=p Φ′ and let σ : Φ → Φ′ be a bijection such that

for every φ ∈ Φ it holds that φ ≡p σ(φ). We extend σ to K via σ(ψ) = ψ for
every ψ ∈ K. If Ψ ⊆ K ∪ Φ we abbreviate

σ(Ψ) =
⋃
ψ∈Ψ

{σ(ψ)} .

Let 〈Ψ, φ〉 be an argument for some φ ∈ Φ with respect to K ∪ Φ. Then
〈σ(Ψ), σ(φ)〉 is an argument for σ(φ) in K ∪ Φ′. It follows that if τ is an
argument tree for 〈Ψ, φ〉 in K∪Φ then τ ′ is an argument tree for 〈σ(Ψ), σ(φ)〉
in K∪Φ′ where τ ′ is obtained from τ by replacing each sentence φ with σ(φ).
This generalizes also to argument structures and it follows that

κ(γ(ΓK∪Φ(φ))) = κ(γ(ΓK∪Φ′(σ(φ)))) .

Hence, φ ∈ Sγ,κK (Φ) if and only if σ(φ) ∈ Sγ,κK (Φ′) for every φ ∈ Φ. It follows
that Sγ,κK (Φ) ∼=p Sγ,κK (Φ′). The same is true for Cγ,κK .

Consistency Preservation. Every subset of a consistent set of sentences is con-
sistent and, due to inclusion, it holds that Sγ,κK (Φ),Cγ,κK (Φ) ⊆ Φ with consis-
tent Φ.

Weak Maximality. If K∪Φ is consistent then for all arguments for a sentence
α ∈ Φ there do not exist any undercuts as these would have to entail the
negation of some sentence of the argument for α which implies inconsis-
tency of K ∪ Φ. The argument structure ΓΦ(α) = (P, C) consists of one or
more single node trees P and C = ∅. As both γ and κ are well-behaving it
follows that κ(γ(ΓΦ(α))) > 0 for each α ∈ Φ and therefore Sγ,κK (Φ) = Φ and
Cγ,κK (Φ) = Φ. ut

In particular, note that both Sγ,κK and Cγ,κK do not satisfy either consistency or
maximality in general.

Corollary 1. Let γ be a well-behaving categorizer and κ be a well-behaving ac-
cumulator. Then both ◦γ,κS and ◦γ,κC are non-prioritized multiple base revision
operators.

Proof. This follows directly from Propositions 1 and 2. ut



Example 6. We continue Examples 1 and 2 and consider At = {c, a, q, b, r, s}
with the following informal interprations.

c : Anna has financial problems
a : Anna travels to Hawaii
q : there is volcano activity on Hawaii
b : Anna has a lot of money
r : Anna is a surf fanatic
s : Anna takes a loan

Now consider Anna’s belief base K2 given via

K2 = {r, r ⇒ a, s, s⇒ b, b⇒ a, b⇒ ¬c} .
This means that Anna believes that she is a surf fanatic (r), that a surf fanatic
should travel to Hawaii (r ⇒ a), that she takes a loan (s), that taking a loan
means that she has a lot of money (s ⇒ b), that having a lot of money implies
she should travel to Hawaii (b⇒ a), and that having a lot of money she does not
have financial problems. Note that K ` a, i. e. Anna intends to got to Hawaii.
Now consider the new information Φ2 = {c, c ⇒ ¬a, q, q ⇒ ¬a} stemming
from communication with Anna’s mother. In Φ2 the mother of Anna tries to
convince her not to travel to Hawaii. In particular, Φ2 states that Anna has
financial problems (c), that having financial problems Anna should not travel
to Hawaii (c ⇒ ¬a), that there is also volcano activity on Hawaii (q), and that
given volcano activity Anna should not travel to Hawaii (q ⇒ ¬a).

As one can see there a several arguments for and against a in K2 ∪ Φ2,
e. g., 〈r, r ⇒ a, a〉, 〈c, c ⇒ ¬a,¬a〉. We do not go into details regarding the
argumentative evaluation of the sentences in Φ2. We only note that K2 ∪ Φ2 is
undecided about c but accepts c ⇒ ¬a, q, and q ⇒ ¬a with respect to γ0 and
κ0. Consequently, the values of Sγ0,κ0

K2
(Φ2) and Cγ0,κ0

K2
(Φ2) are given via

Sγ0,κ0

K2
(Φ2) = Φ2 \ {c} and Cγ0,κ0

K2
(Φ2) = Φ2 .

Let ∗ be some prioritized multiple base revision operator and define ◦γ0,κ0

S and
◦γ0,κ0

C via (2) and (3), respectively. Then some possible revisions of K2 with Φ2

are given via

K2 ◦γ0,κ0

S Φ2 = {r, s⇒ b, b⇒ a, b⇒ ¬c, c⇒ ¬a, q ⇒ ¬a, q}
K2 ◦γ0,κ0

C Φ2 = {r, s⇒ b, b⇒ a, b⇒ ¬c, c⇒ ¬a, c, q ⇒ ¬a, q} .
Note that it holds K2 ◦γ0,κ0

S Φ2 ` ¬a and K2 ◦γ0,κ0

C Φ2 ` ¬a. Hence, Anna accepts
the conclusion of her mother’s arguments not to travel Hawaii. However, if she
revises her beliefs in a skeptical way she does not accept that she has financial
problems. �

6 Related Work

In terms of related work there are mainly two areas that are related to the work
presented here. On the one hand, non-prioritized belief revision and on the other
hand belief revision by argumentation. In the former area we instantiate and ex-



tended the non-prioritized revision operator of selective revision presented in
[9] towards multiple revision and to revision of belief bases. Selective revision
is one of the most general non-prioritized revision operator of the type deci-
sion+revision [11]. Moreover it allows for partial acceptance of the input, in
contrast to most other approaches. Apart from decision+revision approaches
there are expansion+consolidation approaches to non-prioritized belief revision.
These perform a simple expansion by the new information, i.e. K ∪ Φ, and then
apply a consolidation operator ! that restores consistency, i.e. K ∗ Φ = (K ∪ Φ)!.
This approach is limited to belief bases since all inconsistent belief sets are equal,
i. e. Cn(⊥) = L(At). An instantiation of such an operator that is similar to the
setup used in this work has been presented in [8]. The considered input to the
revision consists of a set of sentences that form an explanation of some claim
in the same form as the argument definition used here. However, as with all
approaches of the type expansion+consolidation, new and old information are
completely equal to the consolidation operator. In contrast, the approach pre-
sented here which makes use of two different mechanisms to first decide about
if, and which part, of the input shall be accepted just considering the new infor-
mation, and then performing prioritized belief revision of the old information.
Also, there are integrated choice approaches that do not feature a two step pro-
cess but a single step process applying the same technique for the selection and
revision process. Mostly these approaches need some meta information, e. g. an
epistemic entrenchment relation, and thus differ on the basic process as well as
on the information needed.

While there has been some work on the revision of argumentation systems,
very little work on the application of argumentation techniques for the revi-
sion process has been done so far, cf. [7]. In fact, the work most related to the
work presented here makes use of negotiation techniques for belief revision [3,
13], without argumentation. In the general setup of [3] a symmetric merging of
information from two sources is performed by means of a negotiation procedure
that determines which source has to reduce its information in each round. The
information to be given up is determined by another function. The negotiation
ends when a consistent union of information is reached. While this can be seen
as a one step process of merging or consolidation in general, the formalism also
allows to differentiate between the information given up from the first source and
the second source. In [3], this setting is then successively biased towards prior-
itizing the second source which leads to representation theorems for operations
equivalent to selective revision satisfying consistent expansion and for classic
AGM operators. While those results are interesting, the negotiation framework
used in [3] is very different from the argumentation formalism used here and also
very different from the setup of selective revision. Moreover, the functions for
the negotiation and concession are left abstract. In [13] mutual belief revision is
considered where two agents revise their respective belief state by information
of the other agent. Both agents agree in a negotiation on the information that
is accepted by each agent. The revisions of the agents are split into a selection
function and two iterated revision functions which leads to operators satisfying



consistent expansion. The selection function is then a negotiation function on
two sets of beliefs that represent the sets of belief that each agent is willing to
accept from the other agent that might obey game theoretic principles. This
setting has a very different focus as ours and also does not specify the selection
function.

7 Conclusion

In this paper we combined the research strains of selective revision and deduc-
tive argumentation in order to implement non-prioritized multiple base revision
operators that only revise by those portions of the new information that are
justified. We only took some first steps in investigating the properties of those
revision operators but were able to show that those comply with many desir-
able properties for non-prioritized revision. We discussed the performance of our
operators by examples and briefly compared our approach to related work.

Future work includes a deeper analysis of the revisions ◦γ,κS and ◦γ,κC and a
more thorough comparison with related work.
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