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Abstract. This paper presents and compares approaches for reasoning with re-
lational probabilistic conditionals, i.e. probabilistic conditionals in a restricted
first-order environment. It is well-known that conditionals play a crucial role for
default reasoning, however, most formalisms are based on propositional condi-
tionals, which restricts their expressivity. The formalisms discussed in this paper
are relational extensions of a propositional conditional logic based on the prin-
ciple of maximum entropy. We show how this powerful principle can be used
in different ways to realize model-based inference relations for first-order proba-
bilistic knowledge bases. We illustrate and compare the different approaches by
applying them to several benchmark examples, and we evaluate each approach
with respect to properties adopted from default reasoning. We also compare our
approach to Bayesian logic programs (BLPs) from the field of statistical rela-
tional learning which focuses on the combination of probabilistic reasoning and
relational knowledge representation as well.

1 Introduction

Conditional logic [9] is a popular choice for the representation of common sense knowl-
edge and rules. A conditional (B | A) expresses the relation “If A then usually (mostly,
likely, probably) B” between two formulas A and B of some underlying logic. In con-
trast to classical implication A = B a conditional models defeasible belief and as such
models of conditionals do not have to strictly obey these relations. Conditionals can be
quantified yielding a probabilistic conditional logic. A quantified conditional (B | A)[«/]
can be interpreted as a constraint for probability distributions via P |= (B | A)[«] iff
P(B| A) = «. Usually, the underlying logic for representing A and B is propositional
and as such the expressive power of probabilistic conditional logic is limited. In the
past ten years the area of statistical relational learning (or probabilistic inductive logic
programming) developed many approaches to extend traditional probabilistic models
for reasoning like Bayes and Markov Networks [10] to relational (first-order) repre-
sentations of knowledge. Among these are Bayesian Logic Programs [7], and Markov
Logic Networks [11], to name only a few. Most of these approaches employ a ground-
ing of relational probabilistic problems to propositional ones in order to benefit from
reasoning techniques developed for propositional probabilistic reasoning. In this paper,
we discuss relational extensions of probabilistic conditional logic.

Example 1 (Common Cold). Assume we want to model uncertain knowledge pertain-
ing to the possible causes resp. the probability of catching a common cold. A simple



representation using uncertain if-then-rules can be given via

R1: cold(U) [0.01]
R2 : if susceptible(U) then cold(U) [0.1] (D)
R3 : if contact(U,V) and cold(V) then cold(U) [0.6]

The uncertain rule R1 states that one normally does not have a common cold, i. e. only
with a diminutive probability of 0.01. Rule R2 denotes that a person catches a common
cold with probability 0.1 if this person is susceptible to it, and rule R3 represents the
knowledge that person U, which is in contact with another person V' which has the
common cold, also gets a common cold with probability 0.6.

In contrast to the weights of formulas in Markov Logic Networks [11] the values of
probabilistic conditionals have a probabilistic interpretation and as such exhibit a more
intuitive way of representing uncertain knowledge. However, assigning probabilities to
conditionals that contain variables may be ambiguous and their interpretation may be
subjective or statistical [1]. This paper aims at investigating formal semantics and rea-
soning techniques for relational probabilistic logic. We built on approaches of previous
works [6, 2] that rely on the principle of maximum entropy, a popular choice for model-
based reasoning in propositional probabilistic conditional logic [3, 4]. By selecting the
unique model of a set of probabilistic conditionals that maximizes entropy and as such
represents the given knowledge in the most unbiased way, we obtain inference mech-
anisms that are optimal from an information-theoretical point of view, cf. [4]. In this
paper, we investigate the performance of these approaches with respect to the system
P properties for default reasoning [8]. Furthermore, we compare the behavior of our
inference mechanims and illustrate that approaches for statistical relational learning are
not apt for relational probabilistic default reasoning.

The rest of this paper is organized as follows. We continue by giving the syntax for
our relational extension of probabilistic conditional logic and providing a brief introduc-
tion to Bayesian Logic Programs in Sec. 2. Afterwards in Sec. 3 we discuss common
sense properties that should be fulfilled by reasonable inference relations. In Sec. 4 we
propose and discuss three different approaches for defining semantics to relational prob-
abilistic conditional logic and apply these for probabilistic reasoning in Sec. 5. Finally,
we review related work in Sec. 6 and conclude in Sec. 7.

2 Relational Probabilistic Knowledge Representation

Let £ be a propositional relational language, i. e. the fragment of a first-order language
over a signature Y’ containing only predicates and constants. An atom is a predicate
together with a list of terms, which may be constants or variables or a mixture of these.
Formulas are built with atoms using the usual connectives disjunction, conjunction, and
negation but without any quantifiers. If appropriate we abbreviate conjunctions A A B
by AB. We denote variables with a beginning uppercase, constants with a beginning
lowercase letter, and vectors of these with X resp. a. A ground formula, i. e. a formula
that does not contain any variables, is called a sentence. A possible world semantics
is provided by Herbrand interpretations over the Herbrand universe # that contains
all constants in Y. Herbrand interpretations correspond to complete conjunctions of



ground literals from the Herbrand base. Let {2 be the set of all such possible worlds
w. A possible world w satisfies a ground atom A, denoted by w = A, iff A € w.
Satisfaction of arbitrary sentences is defined in the usual way.

The conditional relational language (£|L£) consists of all (qualitative) conditionals
of the form (B(cp, X)|A(ca, X)) with A(ca,X), B(cp, X) being formulas from
L£7¢!. In this a bit sloppy notation, the vectors c4, cp contain all constants occurring
in A and B, and without loss of generality, we assume X to cover exactly all vari-
ables occurring both in A and in B. For any ¢ = (B(cp, X)|A(ca, X)) € (L|L), let
H? be the set of all constant vectors a used for the proper groundings of the variables
X occurring in ¢ from the Herbrand universe #. The language (£|L£)P consists of all
probabilistic conditionals of the form ¢[u] with ¢ € (£|L£) and p € [0, 1]. Conditionals
can not be nested, but £ should be considered as a fragment of (£|L£) by identifying
relational propositional formulas A(c 4, X ) with conditionals (A(ca, X)|T) with tau-
tological antecedent. Conditionals that contain variables are called open conditionals
while conditionals that contain no variables are called ground conditionals.

Example 2. We represent Ex. 1 using (L£|£)P. Let Reorq = {r1,72,73, 74,75} be de-
fined as
r1 = (cold(X))[0.01] ro = (cold(X) | susc(X))[0.1]
rg = (cold(X) | contact(X,Y), cold(Y))[0.6] 74 = (contact(X, X))[0]
r5 = (contact(X,Y) | contact(Y, X))[1]
Conditionals 7,4 resp. r5 ensure that the relation induced by literals of the predicate
contact are irreflexive resp. symmetric.

Let Int,op(X) consist of all probability functions P on {2, which assign to each possi-
ble world a (subjective) probability of it being the real world. Let =% be a semantic en-
tailment relation between probability functions and probabilistic relational conditionals,
specifying when P € Int,.q,(2) is a #-model of ¢[u] € (L|L)P: P € Mod¥ (¢[u)) iff
P =% ¢[u). We will present several ways of instantiating the parametrical superscript
# below. As usual, |:# can be lifted to a classical (monotonic) entailment relation
between formulas: R =# @[] iff Mod™ (R) C Mod™ (¢[u]) for R C (L|L£) and
olu] € (L|L)P. If S C (L|L)P is another set of probabilistic relational conditionals,
then R =% S iff R |=# ¢[u] for all ¢[u] € S, and R =# S iff Mod ™ (R) = Mod™ (S).

We will compare our formalisms with a specific approach for statistical relational
learning. Although these approaches were not developed for default reasoning current
research on combining probability theory and relational knowledge representation fo-
cuses on this area. For example, Bayesian logic programming combines logic program-
ming and Bayesian networks [7]. Due to space restriction and matters of presenta-
tion we only give a simplified definition for BLPs in the following. The basic struc-
ture for knowledge representation in Bayesian logic programs are Bayesian clauses
which model probabilistic dependencies between atoms. Let B denote the set Boolean
truth values B = {true, false}. A Bayesian clause c is an expression (H | By, ..., By)
with atoms H, By, ..., B,. To each such clause, a conditional probability distribution
cpd,, : B" ™! — [0, 1] is associated such that

cpd,(true, z1,...,x,) + cpd, (false, 21, ..., 2,) =1 forall (x1,...,2,) € B"



A function cpd,. for a Bayesian clause c expresses the conditional probability distribu-
tion P(head(c) | body(c)) and thus partially describes an underlying probability distri-
bution P.

In order to aggregate probabilities that arise from applications of different Bayesian
clauses with the same head BLPs make use of combining rules. A combining rule cr,
for a predicate p/n is a function cr,, that assigns to the conditional probability distri-
butions of a set of Bayesian clauses a new conditional probability distribution that rep-
resents the joint probability distribution obtained from aggregating the given clauses.
For example, given clauses ¢; = (b(X) | a1(X)) and co = (b(X) | az(X)) the re-
sult f = cry({cpd,, ,cpd,,}) of the combining rule cry is a function f : B3 — [0,1]
for the combined clause (b(X) | a1(X), a2(X)). Appropriate choices for such func-
tions are average or noisy-or, cf. [7]. For example, noisy-or is defined as no(p1, p2) =
1—(1=p1)(1—p2).

A Bayesian logic program B is atuple B = (C, D, R) with a (finite) set of Bayesian
clauses C' = {c1,...,cn}, a set of conditional probability distributions (one for each
clause in C) D = {cpd, ,...,cpd, },and a set of combining functions (one for each
Bayesian predicate appearing in C) R = {crp,,...,crp, }. Semantics are given to
Bayesian logic programs via transformation into propositional forms, i. e. into Bayesian
networks [10]. Given a specific (finite) universe U a Bayesian network BN can be con-
structed by introducing a node for every ground Bayesian atom in B and computing the
corresponding (joint) conditional probability distributions. For a more detailed descrip-
tion of Bayesian Logic Programs we refer to [7].

3 Default Reasoning Properties — System PP"°?

The classical probabilistic entailment relation =% specified in Sec. 2 will usually be
quite weak, as is the case for propositional probabilistic logic. In this paper, we will fo-
cus on investigating non-monotonic inference relations )# by which relational prob-
abilistic conditionals can be inferred plausibly from knowledge bases.

So, let )# describe a relation R h# ¢[u] with R C (L£|L£)P and ¢[u] € (L|L)P.
We will present three different approaches for realizing k# in the following section,
being based on different probabilistic entailment relations =% and the principle of
maximum entropy, respectively. In order to be able to evaluate and compare these ap-
proaches, we will first set up a set of postulates applicable to such inference relations
which are inspired by the system P properties from default reasoning ([8], see also [1]).
Let R, R1,R2 C (L|L)P and ¢[u], ¥[v] € (L|L)P.

(Reflexivity) For all ¢[u] € R, it holds that R ~# ¢[u).

(Left Logical Equivalence) If R =% R, then Ry f ¢[u] iff R 7 ().
(Right Weakening) If R ~# ¢[u] and @[] E# ¢[v], then R 7 [v].
(Cumulativity) If R % ¢[u], then R # [v] iff R U {o[u]} 7 ¥[v].

Note that cumulativity subsumes both cautious monotony and cut [8].
Besides the common cold example (Ex. 2), we will illustrate the properties of our
different semantical approaches using another benchmark example taken from [1].



Example 3 (From [1]). Consider the knowledge base Rcpirps = {71,72, T3, 74} With
r1 = (chirps(X) | bird(X))[0.9] ro = (chirps(X) | magpie(X), moody(X))[0.2]
r3 = (bird(X) | magpie(X))[1] r4 = (magpie(tweety))[1]

The knowledge represented in R.pirps concerns the default probabilities that a bird
chirps (r1) and that a moody magpie chirps (r3). Knowing that every magpie is a bird
(r3) and given an actual magpie Tweety (r4) the question at hand is to which probability
Tweety chirps. As we have no knowledge whether Tweety is moody or not we cannot
commit to any specific “reference class”.

4 Semantics for Relational Probabilistic Conditional Logic

In this section we investigate different possibilities to define the semantic entailment
relation =% and the nonmonotonic inference relation k7 . In difference to the propo-
sitional case, assigning semantics to relational probabilistic conditionals is not straight-
forward. Nonetheless, we want to get some compatibility to the propositional case.
Let (B|A)[u] be a ground conditional, i.e. (B|A)[u] contains no variables and there-
fore is of the form (B(cp, X)|A(ca, X))[u] with X being the empty vector. Then
a probability distribution P € Intp.o,(X) should be a #-model of (B|A)[y] iff it is
a probabilistic model in the classical propositional sense: P € Mod™ ((B|A)[y]) iff
P =% (B|A)[u]. As P is defined on Herbrand interpretations the above is well-defined
given that P(A) = > o 4 P(w) and P(B|A) = P(AB)/P(A) for any sen-
tences A and B. But if a conditional (B(cg, X )|A(ca, X))[u] contains variables, the
expression w = A(ca,X) for a possible world w € 2 is not well-defined given
our underlying Herbrand semantics and so is the relation =7 . In order to extend the
semantical satisfaction of conditionals (see above) to conditionals that may contain
variables, we investigate different strategies in the following subsections. Moreover,
in order to obtain a non-monotonic inference relation ~# from =% we employ for
each of the approaches the principle of maximum entropy [3,4] to the correspond-
ing set of #-models. The entropy H (P) of a probability distribution P is defined as
H(P) = =% co P(w)log P(w). Given a set of conditionals R and a concrete se-
mantical entailment relation =% we define the (usually, unique) probability distribu-
tion ME (R) with maximum entropy as follows

ME"(R) = argmax H(P). )
PE?R

Using ME? (R) we define an inference relation %, as

Rijeolu) iff ME#(R)|=# ¢lul, 3)
for any conditional ¢[u] € (L|L)P.

4.1 Grounding Semantics with Constraints

The first formalism uses a grounding semantics for relational probabilistic condition-
als [2], similar to formalisms for statistical relational learning, see e. g. Markov Logic



Networks [11]. Within this formalism, any relational probabilistic conditional ¢[u] =
(B(ep, X)|A(ca, X))[p] € (L]L)? induces a set gnd(¢p[u]) of ground instances,
which are obtained by substituting the free variables X by all combinations of constants
in X). However, straightforward substitution easily yields inconsistent ground condition-
als. Assume we are given the probabilistic relational conditional (p(U, V')|p(V, U))[u].
If both variables are substituted with the same constant, e. g. ¢, there exists no proba-
bility distribution P satisfying P(p(c, ¢)|p(c, ¢)) = p, except if u = 1.0. To avoid such
inconsistencies, the grounding semantics approach supplements conditionals with con-
straint formulas, which restrict the set of admissible combinations of constants when
grounding. An atomic constraint formula is a term equation t; = to, with terms 1, to,
and predicate symbol =, denoting equality. A negated term equation is called a term
disequation and is written as t; # ts. Complex equational formulas are built using
the usual logical connectives conjunction, disjunction and negation, but without quanti-
fiers. Constraint formulas are interpreted by ground substitutions. A ground substitution
o satisfies an equality constraint t; = to iff 0(¢1) and o(t2) evaluate to the same con-
stant. This satisfaction relation is canonically extended to complex constraint formulas.

For any (¢[u], C) = ((B(ep, X)|A(ca, X))[u], C), i.e. a probabilistic relational
conditional (¢[u], C') with an associated constraint formula C, we assume that the vari-
ables occurring in C' are a subset of X . Interpreting the (possible) elements of H? as
ground substitutions, C' restricts the set of ground instances of ¢[u] by requiring that
a € H? satisfies C:

gnd(((B(cp, X)|A(ca, X))[ul, C))

= <« (B(ep,a)|A(ca,a))[y] aepiient e
= B, A, @)) |1 a satisfies C '

We can now define the semantic entailment relation =¢"¢ between a probability distri-
bution P € Int,.,(X) and a probabilistic relational conditional (¢[u], C):

P (plu],C) iff Vgnali] € gnd((o[u], C)) : P(dgna) = pi-

That is, P is a model of the probabilistic relational conditional (¢p[u], C) iff it is a
model of all admissible ground instances of (¢[u], C). As an additional condition, we
require that all Herbrand interpretations which contain a ground atom that is not part
of any ground instance of (¢[u], C') have probability 0.0. This is because the grounding
semantics actually restricts the Herbrand universe to only contain ground atoms which
are part of at least one ground instance of {(¢[u], C'). Hence possible worlds containing
ground atoms which are not part of any ground instance are considered impossible.

4.2 Averaging Semantics

While the previous approach relies on expressing relational conditionals in proposi-
tional terms and thus interprets open relational conditionals in a classical sense, in
this and the next subsection we develop semantics using a non-classical interpretation.
Both semantics have been previously introduced in [6]. Our first approach gives se-
mantics to probabilistic conditionals by averaging conditional probabilities. The mo-
tivation for this semantics stems from the intuition that probabilistic rules such as



(B(ep, X)|A(ca, X))[a], given an adequately large universe, should describe an ex-
pected value on the probability of (B(cg,dB)|A(ca, da))[a] for some randomly cho-
sen dg, d a. Thus, given the actual probabilities of (B(cp,dp)|A(ca,da)) for each
possible instantiation we expect the average of these probabilities should match a.
Hence, let =2 be the semantic entailment relation on probabilistic conditionals de-
fined as P =2 (B(cp, X)|A(ca, X))[a] iff

Y acHBes.x)aea.x) P((B(cp,a)|A(ca, a))lal)
H(Bles X)[Alea X))|

=a “

Intuitively spoken, a probability distribution P @-satisfies a conditional ¢[u] if the aver-
age of the individual instantiations of ¢[u] is c. As one can see, for a ground conditional
(B|A)[a] the relation =2 coincides with the propositional case.

4.3 Aggregating Semantics

Our third semantical approach is inspired by statistical approaches. However, instead
of counting objects, or tuples of objects, respectively, that make a formula true, we
sum up the probabilities of the correspondingly instantiated formulas. In this way, both
population-based and subjective belief aspects of probabilities can be combined. More
precisely, we propose a mean value of subjective probabilities to interpret probabilistic
rules.

To make the key idea of the approach clear, consider the relational probabilistic
conditional (B(cp, X)|A(ca, X))[a]. If some first-order interpretation w with a fixed
domain is given, its statistical interpretation is provided by the relative frequency

Ha|w Alea,a)B(es,a)}| _
Ha|w = Alca,a)}] ’
i.e. the number of tuples of individuals a is counted that satisfy the premise and the
antecedent, in relation to the number of tuples that satisfy only the premise. Aggregating
the information coming from all models of A(ca,a)B(cg,a), resp. A(ca,a), for
each a, gives rise to a subjective, population-based probability:
2.a P(Alca, a)B(cp, a)) _

= a,
Za P(A(CA7 a’))
If we allow P to represent (subjective) beliefs, then the above equation expresses the
average subjective belief that in any situation in which we observe individuals a satis-
fying A(ca, a), we expect them to satisfy B(cg, a) as well with probability «. This
switches the view from a frequentistic perspective to a possible worlds semantics.

So, the entailment relation = between functions from Int,,..,(X) and relational
probabilistic conditionals is defined by P = (B(cg, X) | A(ca, X))[a] iff

P(A(ca,a)B(cg,a))

acH(Blep,X)|A(ca, X))

PAlcaa) ©)

acH (Bleg . X)|A(ea. X))



As for =7, for a ground conditional, the operator =% coincides with the usual propo-
sitional interpretation using conditional probabilities.

5 Relational Probabilistic Conditional Reasoning

In the following, we discuss the inference operators hﬁ;g’, k5, and p5;, that derive
from the application of the different semantics =4"¢, =2, and =, respectively. All
three formalisms implement a model-based probabilistic inference, using the maximum
entropy model of a knowledge base as its most appropriate model. This ensures that all
inference relations defined in the previous sections comply with all basic demands for
relational probabilistic reasoning, as the next proposition shows.

Proposition 1. Let =7 be any of the semantical entailment relations defined above.

Then the inference relation }VA#;E satisfies (Reflexivity), (Left Logical Equivalence),
(Right Weakening), and (Cumulativity).

Proof.  We only show satisfaction of (Cumulativity). The proofs of the other properties
are similar.

(Cumulativity) It holds Mod” (R U {¢[u]}) € Mod™ (R) and ME(R) € Mod* (R U
{[u]}) as R Slu). Suppose ME(R U {g[u]}) # ME(R), then H(ME(R U
{#[]})) > HME(R)) and ME(R U {¢[u]}) should be the ME-model of R as
well because ME(R U {¢[u]}) € Mod™ (R). Hence, ME(R U {¢[u]}) = ME(R)

and therefore R Wi 0[] iff R U {@[u]} i w[v] for any ¢[v]. O

It is obvious that the satisfaction of the common sense properties discussed in Sec. 3
is mainly due to the principle of maximum entropy and independent of the actual
used semantical entailment relation. This is not surprising as ME-inference is an op-
timal, model-based inference operation, and the semantical entailment relation is used
in defining the properties themselves.

As for BLPs (dis-)satisfaction of these default reasoning properties is not so easy to
see as the formalism of BLPs is much less based on classical logic. Consider again the
postulate

(Cumulativity) If R # ¢[u], then R # 9[v] iff R U {o[u]} 7 ¥[v].

Let B be a Bayesian Logic Program, c a Bayesian clause, and cpd,_ a conditional prob-
ability distribution for c¢. BLPs allow only to determine probabilities for some ground
atom given some set of ground atoms as evidence. So the expression B p (¢, cpd,) is
not well-defined for a clause c that contains variables, cf. [13]. However, if ¢ contains no
variables the probability of the head of ¢ for every truth assignment of the body atoms
can be computed. But even for ground clauses (Cumulativity) is not satisfied for BLPs.
Consider the following example.

Example 4. Let B be a BLP consisting of the single clause ¢ = (B(X) | A(X)) with
cpd,(true, true) = cpd_(true, false) = cpd.(false,true) = cpd,(false, false) = 0.5.
Let noisy-or be the combining rule for B. For some constant a it follows clearly that
for ¢ = (B(a) | A(a)) with cpd,, = cpd, is holds that B p (¢, cpd,/). However,



when determining the probability of ¢’ in BU{(¢/, cpd,,)} different results arise due to
aggregating via noisy-or, e. g. the probability of B(a) given that A(a) holds computes
to1— (1—0.5)(1—0.5) = 0.75.

Similar problems arise when translating the other default reasoning postulates to the
BLP framework. For example, (Reflexivity) is trivially dissatisfied if a BLP contains at
least one clause with variables. These categorical problems are not surprising as BLPs
were not developed for default reasoning per se. Further discussions on this topic can
be found in [13].

In order to comprehend the differences between the individual approaches we go on
by investigating their behavior in the benchmark examples introduced above.

Example 5. We investigate Ex. 2 that has also been discussed in the introduction. In
order to investigate this example for the grounding semantics, we have to modify the
rules slightly. This is because rule r3 : (cold(X) | contact(X,Y), cold(Y"))[0.6] yields
inconsistencies if the variables X and Y are substituted with the same constant, even if
rule r4 is part of the knowledge base. Hence we must complement this conditional with
the constraint formula X # Y, thereby forbidding these substitutions:

% ((cold(X) | contact(X,Y), cold(Y))[0.6], X # Y).

One thing to notice in the formalization of the knowledge base in Ex. 2 is that we have
not represented any specific knowledge on particular individuals. Due to this representa-
tion the inferences drawn from R4 using any of the proposed semantics }\»f}’g . oe
and pj). are identical and as follows (assuming that the given signature contains three

constants {a, b, c}):

Reota M (cold(a))[0.01]

Reota B (cold(b) | susc(b))[0.1]

Reota 7 (cold(c) | contact(c,a) A cold(a))[0.6]

Reota B (cold(c) | contact(c,a) A cold(a) A cold(b))[0.9]

where R# is one of { e k2 . ). In order to understand why the inferences
are identical consider the conditional (cold(X) | susc(X))[0.1]. For grounding seman-
tics this conditional yields the ground instance (cold(a) | susc(a))[0.1] (among others).
Now consider the averaging semantics which basically demands that the average prob-
ability of (cold(F) | susc(F)) for F € {a,b,c}is 0.1. As R.01q does not say anything
about different conditions for {a, b, ¢} the most rational thing to do is to treat all instan-
tiations equally. This is also pursued by the maximum entropy inference procedure be-
cause any deviation from this uniform assignment would yield a higher entropy. Hence,
in order to have an average probability of 0.1 for all three instances the inference pro-
cedure exactly assigns a probability of 0.1 to all three instances. A similar explanation
applies to aggregating semantics.

If we add probabilistic facts like (contact(a, b))[1] or (cold(c))[1] to Reoia the sit-
uation changes and now different inferences can be drawn from the different semantics.

The scenario above cannot easily be modeled with BLPs. As BLPs rely on Bayesian
networks one important requirement is acyclicity of the represented knowledge. In the
above example, the probability of some a catching a cold may depend on the probability



of b catching a cold which itself may depend again on the probability of a catching a
cold. In order to represent the example properly with a BLP these cycles have to be
broken, e. g. by assuming some order on the individuals and by inhibiting contact to
be symmetric. However, these changes would alter the modeled knowledge drastically.
Note that our approach does not forbid cyclic dependencies as the status of conditionals
is validated in a global way, taking every dependency into account.

Example 6. We now come to Ex. 3 and assume that our given signature contains three
constants { tweety, huey, dewey} which are also all assumed to be birds. We obtain the
following inferences:

Renirps More (chirps (tweety))[0.90] Renirps Mo (chirps (huey))[0.90]
Renirps g (chirps(tweety))[0.86] Rehirps i (chirps(huey))[0.92]
Renirps My (chirps(tweety))[0.86] Rehirps i (chirps(huey))[0.92]

Here, the grounding semantics yields the same probabilities for Tiweety and Huey re-
garding chirps. As there is no knowledge on whether Tweety is moody conditional rq
is responsible for yielding a probability of 0.9 for chirps(tweety). As for both the av-
eraging and aggregating semantics we obtain identical results in this example. For both
averaging and aggregating semantics Tiveety is assumed to chirp, with a slightly lower
probability than Huey. This complies with our intuition, as Tweety is known to be a
magpie, and in case it is moody, its probability to chirp would decrease considerably.
For Huey’s probability of chirping, we observe some compensating effect caused by the
situation of Tweety being moody which is rarely the case (0.12 for both averaging and
aggregating semantics).

Example 3 can be represented as a BLP B as it contains no cyclic dependencies. For
example, conditional 71 can be represented as a Bayesian clause ¢; = (chirps(X) |
bird(X)) with cpd, (true, true) = 0.9, cpd_(false, true) = 0.9, cpd,(true, false) = 0.5,
and cpd,(false, false) = 0.5, the latter two probabilities being some default assumptions
for the case when X is no bird. However, inference in B depends crucially on the
combining rule chosen for chirps. If Tweety is moody both clauses deriving from the
conditionals 7; and ro are applicable and the resulting probabilities 0.9 and 0.2 have to
be combined. In this scenario, the combining rule noisy-and defined via na(p1,p2) =
p1p2 would be an appropriate choice yielding a combined probability of 0.18. If noisy-
or would be chosen this results in a probability of 0.92 which shows that combining
rule have to be chosen very carefully. Another problem with the BLP representation is
that B is not able to compute any probability for chirps(huey) as there is no evidence
on whether huey is a magpie or even a bird.

6 Related Work

There are several other approaches to defining a probabilistic semantics for a fragment
of first-order logic, some of which also make use of the principle of maximum entropy.

3 All probabilities are rounded off to two decimal places.



The research presented in [1, 3] aims at combining subjective and statistical probabilis-
tic knowledge by deriving subjective probabilistic beliefs about a specific individual
from statistical knowledge about sets of individuals, considering approximative prob-
abilities and limits. Although this approach gives the same results as the principle of
maximum entropy, the authors argue that the principle of maximum entropy cannot be
applied on knowledge bases containing n-ary predicates, n > 1. Approaches allowing
the representation of statistical probabilities suffer from these problems arising from the
fact that the size of the universe constraints the representable probabilities. This is not
the case for the semantics presented in this work, as they have no underlying frequen-
tistic interpretation. Moreover, the application of the principle of maximum entropy to
knowledge bases with arbitrary predicates seems to be unproblematic, but this has to be
investigated more thoroughly in further work.

The grounding semantics in particular is similar to the probabilistic logic program
semantics with entailment under maximum-entropy and the closed-world assumption
as introduced in [5]. However, the maximum entropy inference relation ﬁ,}’g , which
is defined for =¢"¢ via Equations (2) and (3), is independent of the query. That is,
the maximum entropy model defined for a given set R via the grounding semantics is
independent of the query, whereas the maximum entropy model defined via entailment
under maximum-entropy and the closed-world assumption depends on the given query.

7 Conclusions and Discussion

We have introduced and evaluated three different semantics for relational probabilistic
conditionals that differ with respect to their approaches to dealing with the conflicts
and inconsistencies arising from the quantification of conditionals with precise prob-
abilities. The aggregating as well as the averaging semantics try to deal with these
conflicts by allowing some “exceptional” individuals to deviate from the overall behav-
ior of a given population, while the grounding semantics utilizes constraints to restrict
the set of individuals which may be used for generating the ground instances of the
probabilistic conditionals.

We have shown that all semantics satisfy common sense properties inspired by sim-
ilar properties for default reasoning and we have compared them on several example
knowledge bases. We have also shown that approaches to statistical relational learning
are inadequate for probabilistic default reasoning in relational settings. It turned out
that all proposed semantics coincide on knowledge bases that do not model knowledge
on exceptional individuals. In the presence of specific knowledge on individuals, how-
ever, the inferences drawn from the different approaches may vary significantly. While
the grounding semantics seems to yield the most robust and predictable inferences it
suffers from the additional demand to specify constraint formulas to inhibit an incon-
sistent grounding of the knowledge base. Nonetheless, inference based on grounding
semantics benefits from research on propositional inference using maximum entropy
and thus can be solved quite efficiently [12]. Both the averaging and aggregating se-
mantics do not need constraint formulas but require a universe of sufficient size in
order to compensate for exceptions explicitly represented. Furthermore, they allow for
a smoother interpretation of conditionals and consider the interactions between the rep-



resented knowledge more deeply. While the averaging and aggregating semantics may
differ only slightly, from a computational point of view, inference based on aggregating
semantics is easier as Equation (5) describes a linear constraint whereas Equation (4)
describes a non-linear constraint. From the point of view of modeling, the grounding
semantics is most adequate for a population with well-defined homogeneous subpop-
ulations whereas the average semantics provides probabilities that are means of the
corresponding subjective probabilities, expressing that on the average, e.g., individuals
show a certain behavior with the respective probability. Hence, they compute a statistics
of subjective (conditional) probabilities. Finally, the aggregating semantics mimics the
form of statistical probabilities but replaces frequencies by subjective estimations and
allows for even more compensation effects. In particular, by assigning low probabili-
ties to formulas involving abnormal individuals, the influence of such individuals on
probabilities of general statements can be weakened.

Further work will comprise a more thorough evaluation of the formalisms presented
here, as well as the development of appropriate (with respect to the underlying seman-
tics) methods for learning probabilistic relational conditionals from data and efficient
methods for inference.

Acknowledgements. The research reported here was partially supported by the Deut-
sche Forschungsgemeinschaft (grants KE 1413/2-1 and BE 1700/7-1).

References

1. Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From Statistical Knowledge Bases to
Degrees of Belief. Artificial Intelligence 87(1-2), 75-143 (1996)
2. Fisseler, J.: Learning and Modeling with Probabilistic Conditional Logic, Dissertations in
Artificial Intelligence, vol. 328. I0S Press (2010)
3. Grove, A.J., Halpern, J.Y., Koller, D.: Random Worlds and Maximum Entropy. Journal of
Artificial Intelligence Research (JAIR) 2, 33—88 (1994)
4. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. No. 2087
in LNCS, Springer (2001)
5. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the
power of maximum entropy. Artificial Intelligence 157, 139-202 (2004)
6. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic con-
ditionals. In: Proceedings of the 12th Int. Conf. on Knowledge Representation (KR) (2010)
7. Kersting, K., De Raedt, L.: Bayesian logic programming: Theory and tool. In: Getoor, L.,
Taskar, B. (eds.) An Introduction to Statistical Relational Learning. MIT Press (2005)
8. Makinson, D.: General theory of cumulative inference. In: Non-monotonic Reasoning, pp.
1-18. Springer Lecture Notes on Artificial Intelligence 346, Berlin (1989)
9. Nute, D., Cross, C.: Conditional logic. In: Handbook of Philosophical Logic, vol. 4, pp. 1-98.
Kluwer (2002)
10. Pearl, J.: Probabilistic Reasoning in intelligent Systems: Networks of plausible inference.
Morgan Kaufmann (1998)
11. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107-136
(2006)
12. Rodder, W., Meyer, C.H.: Coherent Knowledge Processing at Maximum Entropy by SPIRIT.
In: Proc. of the Twelfth Conf. on Uncertainty in Artificial Intelligence. pp. 470-476 (1996)
13. Thimm, M., Finthammer, M., Kern-Isberner, G., Beierle, C.: Comparing Approaches to Re-
lational Probabilistic Reasoning: Theory and Implementation (submitted)



