
Comparing and Evaluating Approaches to
Probabilistic Reasoning: Theory,

Implementation, and Applications?

Gabriele Kern-Isberner1, Christoph Beierle2,
Marc Finthammer2, Matthias Thimm3

1Dept. of Computer Science, TU Dortmund, 44221 Dortmund, Germany
2Dept. of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany

3Dept. of Computer Science, Universität Koblenz, 56070 Koblenz, Germany

draft – 2012-06-14

Abstract. The handling of uncertain information is of crucial impor-
tance for the success of expert systems. This paper gives an overview
on logic-based approaches to probabilistic reasoning and goes into more
details about recent developments for relational, respectively first-order,
probabilistic methods like Markov logic networks, and Bayesian logic
programs. In particular, we feature the maximum entropy approach as
a powerful and elegant method that combines convenience with respect
to knowledge representation with excellent inference properties. While
comparing the different approaches is a difficult task due to the variety
of the available concepts and to the absence of a common interface, we
address this problem from both a conceptual and practical point of view.
On a conceptual layer we propose and discuss several criteria by which
first-order probabilistic methods can be distinguished, and apply these
criteria to a series of approaches. On the practical layer, we briefly de-
scribe some systems for probabilistic reasoning, and go into more details
on the KReator system as a versatile toolbox for various approaches
to first-order probabilistic relational learning, modelling, and reasoning.
Moreover, we illustrate applications of probabilistic logics in various sce-
narios.

1 Introduction

Real world applications of expert systems (and other computational systems,
too) usually have to struggle with the problem that both background knowledge
and information on the situation at hand are neither complete nor certain. For
instance, in a medical domain, the physician may know that most patients suf-
fering from appendicitis also complain about abdominal pain, but in some cases,
the patients show other atypical symptoms; however, these relationships cannot
be further specified in a satisfactory way. In the special case of the patient the
physician is just facing, she is not even sure whether he feels abdominal pain as
he is a boy of three years of age.

? The research reported here was partially supported by the Deutsche Forschungsge-
meinschaft (grants KE 1413/2-2 and BE 1700/7-2).

Probabilistic logics offer a rich framework to represent and process uncertain
information (for foundational work in this area see [56, 17]), and are linked to
statistics and machine learning in a natural way. Knowledge can be extracted
from data, expressed in a suitable probabilistic formalism like Bayesian networks
[56], and used for uncertain reasoning by applying inference mechanisms. Com-
pleteness of knowledge can be achieved by presupposing additional assumptions
like conditional independence of variables, like in most probabilistic networks
[56], or by making use of the information-theoretical principles of optimum en-
tropy [36]. In both ways, a full probability distribution is generated from partial
knowledge, on the base of which probabilities for arbitrary queries can be com-
puted.

Most of the standard probabilistic approaches applied today make use of
some type of probabilistic networks and propositional logic. While network tech-
niques are of major importance to allow for local computations, the restriction
to propositional logic makes probabilistic knowledge representation inadequate
for domains in which relationships between objects are in the focus of investi-
gation. However, generalising established propositional probabilistic methods to
first-order knowledge representation turns out to not be an easy task, as the
complexity of knowledge representation raises substantially, so that new infer-
ence techniques have to be devised. Moreover, the probabilistic semantics of open
formulas is not at all clear. For example, the following conditional probabilistic
formulas express commonsense knowledge about the relationships between ele-
phants and their keepers which are usually good (elephants like their keepers),
but also take exceptions into regard—elephants tend not to like keeper fred,
except for the good natured elephant clyde:

(likes(X,Y) | elephant(X), keeper(Y)) [0.8]

(likes(X, fred) | elephant(X)) [0.3]

likes(clyde, fred)[0.9]

A schematic grounding of all rules of this knowledge base would cause conflicts
with respect to elephant clyde and keeper fred. Moreover, both statistical (or
population-based, respectively) information and subjective views are addressed,
as the first two formulas involve all elephants (and keepers), while the third one
only considers situations involving clyde and fred.

Recently, the fields of probabilistic inductive logic programming and statisti-
cal relational learning have put forth a lot of proposals that deal with combining
traditional probabilistic models of knowledge like Bayes nets or Markov nets
[56] with first-order logic, see [13, 29] for some excellent overviews. This area,
located at the intersection of logic, probability theory, and machine learning,
investigates methods for representing probabilistic information in a relational
context for both reasoning and learning. Many researchers developed liftings of
propositional probabilistic models to the first-order case in order to take advan-
tage of methods and algorithms already developed. Among these are the well-
known Bayesian logic programs [43] and Markov logic networks [59] which extend
Bayes nets and Markov networks [56], respectively, and are based on knowledge-

2

based model construction [68, 7]. Other approaches also employ Bayes nets for
their theoretical foundation, like logical Bayesian networks [18] and relational
Bayesian networks [31, 10], or they are influenced by other fields of research like
probabilistic relational models [27] by database theory, P-log [1] by answer set
programming, and ProbLog [58] by Prolog. The aforementioned approaches are
representatives of a vast variety of different approaches having been developed
in the past ten to twenty years, and we refer to [13, 11] for a more elaborate
discussion of existing approaches and their history.

As a first focal point of this paper, we will concentrate on extensions of the
maximum entropy principle to a relational setting. There are few approaches
applying maximum entropy methods beyond propositional logic, cf. [47, 41, 24].
We will give an introduction to different relational maximum entropy propos-
als, presenting in particular the grounding, the aggregating, and the avergaing
semantics described in [47, 41, 24].

Although hard computational problems, challenging theoretical questions,
and many interesting new applications like social networks are associated with
this area of research, providing great motivation in developing new approaches
for statistical relational learning that deal with specific scenarios, thorough com-
parisons of approaches are rare. This is no surprise as many approaches build on
different logics and employ different methods of propositional probabilistic rea-
soning methods. There are some papers that evaluate approaches with respect
to specific formal criteria. For example, in [32] Jaeger introduces model-theoretic
expressivity analysis in order to compare the expressive power of different ap-
proaches to statistical relational learning. In that paper, it is only shown that
relational Bayesian networks [31, 10] are at least as expressive as Markov logic
networks [59] within that particular framework. Furthermore, it is conjectured
[32] that Bayesian logic programs are equally expressive as relational Bayesian
networks. A similar approach is pursued in [49] where it has been shown that
Bayesian logic programs and an extension of stochastic logic programs [50] are of
equal expressive power regarding some alternative definition of expressivity than
the one used in [32]. Furthermore, there are some other attempts to compare
approaches to statistical relational learning that focus more on comparisons of
implementations like [44], but besides [32] no formal knowledge representation
criteria exist to date for such comparisons.

As another main contribution of this paper, we develop a series of evaluation
and comparison criteria that aim at characterizing the characteristics of individ-
ual approaches to probabilistic relational knowledge representation and provide
better means to understand their relationships. The criteria are established from
a knowledge representation and reasoning point of view and address various
themes, covering language aspects, the dimensions of strict and propositional
knowledge, and the role of individuals and universes. In line with the papers’s
focus on maximum entropy based methods, we will apply these criteria to the
three relational maximum entropy semantics mentioned above. Furthermore, we
will use the criteria also with respect to Bayesian logic programs and Markov
logic networks, two of the most popular approaches from statistical relational

3

learning. A common principle of these five probabilistic relational techniques
treated in this paper is that they all provide a form of inductive completion of
the explicitly given knowledge. In future work, we will extend our comparison
also to other logic-based probabilistic formalisms.

Besides criteria for comparing relational probabilistic approaches, applying
methods to benchmark examples is important for the purpose of comparing and
evaluating. However, even seemingly small examples need to be computed by
a machine, due to the size explosion caused by grounding, and each of these
approaches comes with its own computational peculiarities. What is urgently
needed to advance and combine research work in this area is a system that is
capable of handling different representation frameworks in parallel. Therefore,
we will present the KReator toolbox, a versatile integrated development envi-
ronment for knowledge engineering in the field of statistical relational learning
which aims at filling this gap. As statistical relational learning is a (relatively)
young research area there are many different proposals for integrating probabil-
ity theory in first-order logic, some of them mentioned above. Although many
researchers have implementations of their approaches available, most of these
implementations are prototypical, and in order to compare different approaches
one has to learn the usage of different tools. The KReator system provides a
common interface for different approaches to statistical relational learning and
supports the researcher and knowledge engineer in developing knowledge bases
and using them in a common and easy-to-use fashion.

In the last part of the body of the paper, the use of probabilistic knowledge
representation will be illustrated in applications in medical and biochemical do-
mains, with an emphasis on maximum entropy methods.

To summarize, this paper addresses the motivations for using probabilistic
methods in logic-based knowledge representation, starting with standard propo-
sitional approaches and moving on to relational probabilistic knowledge repre-
sentation by sketching some major approaches. As a special focus of the paper,
we feature approaches that are based on the principle of maximum entropy as
an elegant and powerful methodology that provides an excellent framework for
commonsense and uncertain reasoning. The paper comprises four main aspects.
First, we give an introduction to frameworks for relational maximum entropy
which are novel approaches to relational probabilistic knowledge representation
and reasoning. Second, we investigate the problem of comparing and evaluat-
ing relational probabilistic models by proposing a series of abstract evaluation
criteria and applying these to the different formalisms. Third, we present the
KReator development environment which is a versatile tool for working with
relational probabilistic models, and finally, various application scenarios are de-
scribed.

The rest of this paper revises and extends work presented in [38, 66, 4], and
is organized as follows. In Section 2 we give some background on probabilistic
propositional logic, Bayesian logic programs, and Markov logic networks. In Sec-
tion 3 we introduce novel frameworks of relational maximum entropy. Section 4
proposes and discusses a series of criteria for comparing and judging different

4

formalisms for relational probabilistic knowledge representation. Section 5 gives
an overview of various systems and in particular of the KReator system. Ap-
plications of the presented approaches and systems are illustrated in Section 6,
and Section 7 concludes the paper and points out further work.

2 Probabilistic Knowledge Representation

In this section we first have a brief look on propositional models for probabilistic
reasoning and continue with recalling the basics of the relational approaches of
Bayesian logic programs [43] and Markov logic networks [59]. All approaches
considered in this paper are based on semantics, i. e., probabilities are computed
intensionally.

2.1 Propositional Approaches

From a computational point of view, even in the propositional case, probabil-
ities are problematic due to their high complexity. In a seminal paper, Pearl
[55] elaborated on graphical structures that allow local propagation of proba-
bilities resulting in a substantial reduction of complexity. These so-called belief
networks make crucial use both of conditional dependencies, expressed via con-
ditonal probabilities, and conditional independencies between sets of nodes, and
are often assumed to model causal relationships. Generally, conditional probabil-
ities express a kind of probabilistic rule and allow the description of prognostic
or diagnostic dependencies [56]. A well-known framework which emerged from
Pearl’s ideas are Bayesian networks. A Bayesian network BN for a set of propo-
sitions A is a tuple BN = (A,E, P) such that (A,E) is a directed acyclic graph
and P is a probability function that obeys the local Markov property

{a}⊥⊥Pnd(a) | pa(a) (for every a ∈ A), (1)

which expresses that each vertex a is conditionally independent of its non-
descendants nd(a), given the values of its parents pa(a). Due to this property, the
probability function P can be decomposed into conditional probability functions
for each node a ∈ A.

Example 1. We adapt an example on medical diagnosis, cf. [56]. Consider the
propositions A = {a, b, c, d, e} with the informal interpretations

a cancer b increased serum calcium level c brain tumor

d coma e headache

and a Bayesian network BNmed = (A,E, P) with (A,E) given as depicted
in Fig. 1. It follows that P has to adhere to the conditional independence
{b}⊥⊥P{c} | {a} (among others). Moreover, the probability of a possible world
such as abcde can be written as

P (abcde) = P (e | c) · P (d | bc) · P (c | a) · P (b | a) · P (a).

5

Therefore, P can be completely described by e. g. the following assignments1:

P (a) = 0.20

P (b | a) = 0.80 P (b | a) = 0.20

P (c | a) = 0.20 P (c | a) = 0.05

P (e | c) = 0.80 P (e | c) = 0.60

P (d | b ∧ c) = 0.80 P (d | b ∧ c) = 0.90

P (d | b ∧ c) = 0.70 P (d | b ∧ c) = 0.05

Note that the probabilities of negated variables derive from the above equations
via e. g. P (e | c) = 1−P (e | c). By only defining the above conditional probabilities
the function P can be compactly stored.

a

b c

d e

1

Fig. 1. The graph (A,E) from Ex. 1

Another approach that facilitates conditional probabilities is conditional logic
[52] which is a knowledge representation formalism that concentrates on the role
of conditionals or if-then-rules. A conditional of the form (ψ |φ) connects some
detached pieces of information φ, ψ and represents a rule “If φ then (usually,
probably) ψ”. A probabilistic conditional is an expression of the form (ψ |φ)[d]
with propositional formulas φ and ψ and d ∈ [0, 1].

Example 2. The well-known penguin example that illustrates the problem of
exceptions in subclasses can be represented as a knowledge base R with R =
{r1, r2, r3} with

r1 = (bird | peng)[1.0] r2 = (fly | bird)[0.9] r3 = (fly | peng)[0.01].

A probability function P satisfies a probabilistic conditional

P |= (ψ |φ)[d] if and only if P (ψ |φ) = d and P (φ) > 0. (2)

Reasoning from conditional probabilistic knowledge bases usually considers the
conditional probabilities as constraints and either takes all possible probabilistic
models (according to the satisfaction relation defined by Equation (2)) into ac-
count, implementing a kind of classical probabilistic consequence operation, or

1 The numbers have been arbitrarily chosen and may not describe the real world.

6

selects one best model. One of the most prominent approaches following the first
idea was presented by Nilsson [51]. However, inference via classical probabilistic
consequence is often too cautious, even in simple cases, the probabilities compati-
ble with the given constraints in the knowledge base span the whole unit interval.
On the other hand, selecting a single model appears to be quite bold, so this
selection has to be done in a careful way. The principle of maximum entropy has
been established as a very useful guideline to solve this problem. The entropy
H(P) of a probability function P is defined via H(P) = −

∑
ω P (ω) logP (ω)

with 0 · log 0 = 0. By selecting P ∗ = arg maxP |=RH(P) as the (unique) model of
the knowledge base R with maximal entropy, one obtains a probability function
that both satisfies all conditionals in R and adds as few additional informa-
tion (in the information-theoretic sense) as possible. For a consistent knowledge
base R the maximum entropy model P ∗ is uniquely determined, cf. [36]. Model-
based probabilistic inference via P ∗ shows excellent logical properties [36], and
has been proved to be most adequate for commonsense reasoning [53].

While the approaches sketched above are limited in the sense that they are
based on propositional logic, probabilistic relational formalisms, i. e. formalisms
that incorporate aspects of first-order logic for knowledge representation, have
been proposed. For instance, the proposals in [40, 69, 8] employ concepts of logic
programming, and as classical logic programming, they rely on the syntactic
representation for computing probabilities. In this paper, we will focus on ap-
proaches that are semantically based in the sense that probabilities are com-
puted intensionally. We continue with presenting two examples, Bayesian Logic
Programs and Markov Logic Networks. For both formalisms, we use the nam-
ing convention that variables are written with a beginning uppercase letter and
constants are written with a beginning lowercase letter. 2

2.2 Bayesian Logic Programs

In contrast to first-order logic, Bayesian logic programs (BLPs) [43] employ an
extended form of predicates and atoms. In BLPs, Bayesian predicates are pred-
icates that feature an arbitrary set as possible states, i. e. not necessarily the
Boolean values {true, false}. For example, the Bayesian predicate bloodtype/1
may represent the blood type of a person using the possible states S(bloodtype) =
{a, b, ab, 0}. Analogously to first-order logic, Bayesian predicates can be instan-
tiated to Bayesian atoms using constants and variables and then each ground
Bayesian atom represents a single random variable. If A is a Bayesian atom of
the Bayesian predicate p we set S(A) = S(p).

Definition 1 (Bayesian clause, conditional probability distribution).
A Bayesian clause c is an expression c = (h | b1, . . . , bn) with Bayesian atoms
h, b1, . . . , bn. With a Bayesian clause c = (h | b1, . . . , bn) we associate a function

2 Note that this convention differs from the standard convention for Markov logic
networks.

7

cpdc : S(h)× S(b1)× . . .× S(bn)→ [0, 1] that fulfills

∀vb1 ∈ S(b1), . . . , vbn ∈ S(bn) :
∑

vh∈S(h)

cpdc(vh, vb1, . . . , vbn) = 1. (3)

We call cpdc a conditional probability distribution. Let CPDp denote the set
of all conditional probability distributions for atoms of predicate p, i. e., it is
CPDp = {cpdh | b1,...bn | h is an atom of p}.

As usual, if the body of a Bayesian clause c is empty (n = 0) we write c as
(h) instead of (h |) and call c a Bayesian fact. Condition (3) ensures that cpdc
indeed describes a conditional probability distribution.

Example 3. We represent the well-known alarm example from [56] , which de-
scribes the following scenario: Some person X has a house equipped with an
alarm system. A burglary will most probably trigger the alarm. If a tornado
occurs in the respective town person X lives in, the alarm will most probably
be triggered as well. The probability of a burglary at person X’s house depends
on the neighborhood she lives in. We use the predicates alarm/1 , burglary/1 ,
tornado/1 , lives in/2 , and neighbourhood/1 with S(alarm/1) = {true, false},
S(burglary/1) = {true, false}, S(tornado/1) = {true, false}, S(lives in/2) =
{true, false}, and S(neighborhood/1) = {bad, average, good}. Define the set {c1, c2, c3}
of Bayesian clauses via

c1 = (alarm(X) | burglary(X))

c2 = (alarm(X) | lives in(X,Y), tornado(Y))

c3 = (burglary(X) |neighborhood(X))

For each Bayesian clause ci, we define a function cpdci which expresses our
subjective beliefs (note that function values with first argument false derive
directly)

cpdc1(true, true) = 0.9 cpdc1(true, false) = 0

cpdc2(true, true, true) = 0.9 cpdc2(true, false, true) = 0

cpdc2(true, true, false) = 0.01 cpdc2(true, false, false) = 0

cpdc3(true, bad) = 0.6 cpdc3(true, average) = 0.4

cpdc3(true, good) = 0.3

For example, cpdc2 expresses our subjective belief on the probability that the
alarm of a person X will go off given that we know that X lives in town Y and
there is currently a tornado in Y to be 0.9. Furthermore, we believe that the
probability that the alarm of X will go on if we know that X lives in Y and that
there is no tornado in Y is 0.01.

8

Example 4. We represent the example from the introduction about elephants
and keepers as a BLP. Let likes/2, keeper/1, and elephants/1 be some predi-
cates with S(likes) = {true, false}, S(keeper) = {true, false}, and S(elephant) =
{true, false}. Define the set {c1, c2, c3} of Bayesian clauses via

c1 = (likes(X,Y) | elephant(X), keeper(Y))

c2 = (likes(X, fred) | elephant(X))

c3 = (likes(clyde, fred))

For each Bayesian clause ci, we define a function cpdci which expresses our
subjective beliefs (note that function values with first argument false are omitted
again)

cpdc1(true, true, true) = 0.8 cpdc1(true, false, true) = 0.5

cpdc1(true, true, false) = 0.5 cpdc1(true, false, false) = 0.5

cpdc2(true, true) = 0.3 cpdc2(true, false) = 0.5

cpdc3(true) = 0.9

Note that some of the probabilities defined for each conditional probability dis-
tribution are somewhat arbitrary. The problem is that defining a probability for
a rule, given that its premise is not fulfilled, is a hard task. For instance, con-
sider clause c2 stating that usually elephants do not like Fred. But what is the
probability of a non-elephant liking Fred? It is a serious drawback of Bayesian
logic programs (and Bayes nets in general) that they demand for a full specifica-
tion of a conditional probability distribution even if complete information is not
available. In this example, we filled in this missing information by committing
to as little information as possible, i. e. by assigning equal probabilities to the
remaining cases.

The clauses c1 and c2 in Example 3 illustrate that it is possible to have
multiple clauses with the same head. This means that there may be multiple
causes for some effect or multiple explanations for some observation. In order
to represent these kinds of scenarios the probabilities of causes or explanations
have to be aggregated. Appropriate choices for such so-called combining rules
are average or noisy-or, cf. [56] and [43].

Now we are able to define Bayesian logic programs as follows.

Definition 2 (Bayesian logic program). A Bayesian logic program B is a
tuple B = (C,D,R) with a (finite) set of Bayesian clauses C = {c1, . . . , cn}, a
set of conditional probability distributions D = {cpdc1 , . . . , cpdcn} (one for each
clause in C), and a set of combining rules R = {crp1 , . . . , crpm} (one for each
Bayesian predicate appearing in C).

Semantics are given to Bayesian logic programs via transformation into the
propositional case, i. e. into Bayesian networks. Given a specific (finite) universe
U , a Bayesian network BN can be constructed by introducing a node for every

9

grounded Bayesian atom in B. Using the conditional probability distributions of
the grounded clauses and the combining rules of B, a (joint) conditional prob-
ability distribution can be specified for any node in BN . If BN is acyclic, this
transformation uniquely determines a probability distribution P on the grounded
Bayesian atoms of B which permits inference, i. e. P can be used to answer
queries.

2.3 Markov Logic Networks

Markov logic [59] establishes a framework which combines Markov networks
[56] with first-order logic to handle a broad area of statistical relational learning
tasks. The Markov logic syntax complies with first-order logic where each formula
is quantified by an additional weight value. Semantics are given to sets of Markov
logic formulas by a probability distribution over propositional possible worlds
that is calculated as a log-linear model over weighted ground formulas.

Definition 3 (Markov logic network). A Markov logic network (MLN) L =
{(F1, w1), . . . , (Fn, wn)} is a set of first-order logic formulas Fi, where each for-
mula Fi is quantified by a real value wi. Together with a finite set of constants
C it defines a (ground) Markov network ML,C as follows:

– ML,C contains a node for each possible grounding of each predicate appearing
in L.

– ML,C contains an edge between two nodes iff their ground atoms appear
together in at least one grounding of one formula in L.

– ML,C contains one feature (function) for each possible grounding of each
formula Fi in L. The value of the feature for a possible world x is 1, if the
ground formula is true for x (and 0 otherwise). Each feature is weighted by
the weight wi of its respecting formula Fi.

Let ni(ω) denote the number of true groundings of the formula Fi for a
possible world ω in the ground Markov network ML,C . For a ground Markov
network ML,C , a probability distribution PML,C

over possible worlds ω ∈ Ω can
be specified by the following log-linear model [16]

PML,C
(ω) =

1

Z
exp

 ∑
(Fi,wi)∈L

wini(ω)

 (4)

with the normalization factor

Z =
∑
ω∈Ω

exp

 ∑
(Fi,wi)∈L

wini(ω)

 .

In a straightforward way, the probability of an arbitrary formula A can be com-
puted over those possible worlds satisfying A

PML,C
(A) =

∑
ω∈Ω: ω|=A

PML,C
(ω)

10

where ω |= A denotes the classical first-order satisfaction relation.

In order to represent the uncertain beliefs in a Markov logic network the
weights of formulas have to be determined. In [59] it is suggested that weights
of formulas have to be learned from data. Nonetheless, in [23, 59] a heuristic
is discussed that determines weights of formulas from probabilities. In [59] an
interpretation of the weight wi of a formula Fi is provided as the log-odd between
a world where Fi is true and a world where Fi is false, other things being equal.
Considering this interpretation one might choose wi = log p

1−p as the weight of

a formula Fi when p is the intended probability of F . In [23] an extension of
Markov logic is introduced that allows the direct representation of probabilities
and conditional probabilities. However, it has to be noted that both the heuristic
of [59] and the approach of [23] do not guarantee that the resulting log-linear
model PML,C

actually realizes the intended probabilities. That is, even if the
probability p of some formula F has been specified in an MLN via the respective
approach, the probability PML,C

(F) might be very different from p, see also [23]
for a discussion.

In the following, we represent the informal scenarios underlying Examples 3
and 4 using Markov logic. In particular, we do not aim at translating the prob-
abilistic models of Examples 3 and 4 to Markov logic but we intend to give an
adequate commonsense representation of the information. Consequently, we have
chosen to model rule-like knowledge using material implications. Even though
this might be a quite intuitive modeling approach at first glance, it should also
be mentioned that implications are (in general) a sub-optimal choice to model
conditional knowledge. However, we deliberately use this approach as it is the
most obvious choice.

Example 5. In the following example, we model the relations described in Ex-
ample 3 as an MLN (using the Alchemy syntax [45] for MLN files). The “!” op-
erator used in the predicate declarations of lives in and nhood enforces that the
respective variables will have mutually exclusive and exhaustive values, i. e. that
every person lives in exactly one town and exactly one neighborhood (in terms
of ground atoms). The weights of the formulas express the subjective strength
of each rule. The actual weights given below are estimated in a way such that
the resulting probabilities match the intended probabilities given in Example 3.
We declare the typed predicates alarm(Person), nhood(Person, hood state!),
lives in(Person, town!), burglary(Person) with the types and constants Person =
{james, carl}, town = {yorkshire, austin}, hood state = {bad , average, good}.
Now consider the following weighted formulas:

2.2 burglary(X)⇒ alarm(X)

2.2 lives in(X,Y) ∧ tornado(Y)⇒ alarm(X)

−0.8 nhood(X, good)⇒ burglary(X)

−0.4 nhood(X, average)⇒ burglary(X)

0.4 nhood(X, bad)⇒ burglary(X)

11

Note that, the rule-like knowledge from Example 3 has been modeled as material
implications.

Example 6. We continue with representing Example 4 as an MLN:

2 elephant(X) ∧ keeper(Y)⇒ likes(X,Y)

−0.8 elephant(X)⇒ likes(X, fred)

2.2 likes(clyde, fred)

As it was the case in Example 5 the rule-like knowledge of this example has been
modeled using material implications.

3 Relational Probabilistic Conditional Logic

In the following, we present a relational probabilistic framework that extends
probabilistic conditional logic to the relational case and bases its inference mech-
anism on the principle of maximum entropy, cf. Section 2.1. Parts of this frame-
work have been introduced previously in [47] and [41].

As a base of our probabilistic language, we use a fragment L of a first-
order language over a signature Σ containing only predicates and constants,
the formulas of which are well-formed according to the usual standards, but
without any quantifiers. As before, we write variables with a beginning upper-
case letter and constants with a beginning lowercase letter. The language L
may be typed, i. e., the constants U = UL and the variables V = VL of L are
partitioned into different types, and the arguments of the predicates may be
typed as well. A grounding substitution θ : VL → UL instantiates variables
with constants. It is extended to formulas in the usual way, e. g., we define
θ(p(X,Y) ∧ q(X)) = p(θ(X), θ(Y)) ∧ q(θ(X)). A grounding substitution θ is le-
gal if any variable of type S in r is mapped to a constant of type S. We extend
this relational language L to a probabilistic conditional language by introducing
conditionals and probabilities.

Definition 4 (Relational probabilistic conditional). A relational probabi-
listic conditional r is an expression of the form r = (φ |ψ)[α] with formulas
φ, ψ ∈ L and α ∈ [0, 1]. The conditional and the probabilistic parts of r are
denoted by Cond(r) = (φ |ψ) and Prob(r) = α, respectively.

We also allow substitution constraints to appear inside the conditional part of
a constraint. For variables X,Y a substitution constraint is an expression X 6= Y
with the intuitive meaning that variables X and Y should not be instantiated by
the same constant. For example, the conditional

(knowEachOther(X,Y) |has father(X,Z) ∧ has father(Y,Z) ∧ X 6= Y)[0.9]

states that the probability that two different persons having the same father
know each other is 0.9. Substitution constraints are extended to refer to constants

12

as well, i. e., we allow expressions of the form X 6= c and even c1 6= c2 (for
constants c, c1, c2), as, on a syntactical layer, the relation = is treated the same
way as any binary predicate.

A conditional r is called ground iff r contains no variables. Non-ground con-
ditionals can be grounded by legal grounding substitutions. The language of
all relational probabilistic conditionals is denoted by (L | L)rel, and the re-
stricted language on all ground conditionals using constants from U is denoted
by (L | L)relU . A set R of relational probabilistic conditionals is called an RPCL
knowledge base. In the following, we represent Example 3 as an RPCL knowledge
base.

Example 7. Let L contain the types S = {Person,Town,Status} with constants

UPerson = {james, carl} of type Person,

UTown = {yorkshire, austin} of type Town, and

UStatus = {bad , average, good} of type Status

and predicates

Pred = { alarm(Person),

burglary(Person),

lives in(Person,Town),

nhood(Person,Status) }.

Let R = {c1, . . . , c7} be an RPCL knowledge base given via

c1 = (alarm(X) | burglary(X)) [0.9]

c2 = (alarm(X) | lives in(X,Y) ∧ tornado(Y)) [0.9] }
c3 = (burglary(X) | nhood(X, bad)) [0.6]

c4 = (burglary(X) | nhood(X, average)) [0.4]

c5 = (burglary(X) | nhood(X, good)) [0.3]

c6 = (nhood(X,Z) ∧ nhood(X,Y) ∧ Y 6= Z) [0.0]

c7 = (lives in(X,Z) ∧ lives in(X,Y) ∧ Y 6= Z) [0.0]

Notice that conditionals c6 and c7 ensure that the predicates “nhood” and
“lives in” cannot assign two different states to the same individual. Observe
also that—in contrast to BLPs—we do not need to specify the probability of
alarm being true if no burglary takes place which is usually hard to estimate.

Note that the example on elephants and keepers as given in the introduction
makes already uses the syntax of relational probabilistic conditional logic.

Regarding semantics, ground conditionals r ∈ (L | L)relU can be interpreted
as in the propositional case [61]. That is, if ΩL is the set of interpretations of L

13

and P : ΩL → [0, 1] is a probability distribution on ΩL then P |= (φ|ψ)[α] iff

P (φ | ψ) =
P (φ ∧ ψ)

P (ψ)
= α and P (ψ) > 0 (5)

with
P (φ) =

∑
ω∈ΩL,ω|=φ

P (ω)

for a ground formula φ ∈ L. Non-conditional formulas (φ)[α] can be consid-
ered consistently as conditionals with tautological premise (φ | >)[α], so that no
explicit distinction between conditionals and flat formulas is necessary in the
following. For a substitution expression c 6= c′ with different constant symbols
c, c′ we define ω |= c 6= c′ to be true for every ω ∈ ΩL. Correspondingly, for a
substitution expression c 6= c we define ω |= c 6= c to be false for every ω ∈ ΩL.

In the general case, if r contains variables, different groundings may yield dif-
ferent conditional probability values. This could be handled by assigning prob-
abilistic intervals to open conditionals in order to cover the probabilities of all
instantiations, as is done e. g. in [40]. However, this approach only allows us
to draw very vague inferences on the probabilities of individual instantiations.
So, following our major guideline of using expressive point-wise probabilities for
knowledge representation, we consider grounding strategies here.

Definition 5 (Grounding operator). A grounding operator (GOP) G is a
function G : P((L | L)rel)→ P((L | L)relU).

A GOP G takes a general relational knowledge base R and maps it to a ground
one G(R) by instantiating variables according to the language of the knowledge
base and some strategy. By doing so we may use the propositional probabilistic
semantics for the propositional case.

The actual definition of a GOP relies on grounding substitutions for variables.
For a conditional r let Γ (r) denote the set of all legal grounding substitutions
for r. If r contains substitution constraints we assume them to be respected,
e. g. if r contains the constraint X 6= Y then every θ ∈ Γ (r) obeys θ(X) 6= θ(Y).
The most simple approach to ground a knowledge base is universal instantiation
which naively instantiates every variable with every constant of the same type
(for more sophisticated grounding operators, please see [48]).

Definition 6 (Naive grounding operator). The naive grounding operator
GU is defined as GU (R) := {θ(r) | r ∈ R, θ ∈ Γ (r)}.

Using the naive grounding operator we can define probabilistic satisfaction
for relational probabilistic conditional logic via grounding semantics. Let P be
a probability distribution as above and let r be a relational probabilistic condi-
tional. Then P GU -satisfies r, denoted by P |=GU r, iff

P |= r′ for all r′ ∈ GU ({r}).

Consequently, a probability distribution P GU -satisfies a knowledge base R,
denoted by P |=GU R, iff P |= r′ for all r′ ∈ GU (R).

14

Both averaging and aggregating semantics [41, 67] take a more sophisticated
approach in defining probabilistic satisfaction by interpreting the intended prob-
ability x of a conditional with free variables only as a guideline for the proba-
bilities of its instances and the actual probabilities may differ from x.

As for averaging semantics, the entailment relation |=∅ is defined by

P |=∅ (ψ |φ)[α] iff

∑
(ψ′|φ′)[α]∈GU ((ψ |φ)[α])

P (ψ′ | φ′)

|GU ((ψ |φ)[α])| = α . (6)

Intuitively spoken, a probability distribution P ∅-satisfies a conditional (ψ |φ)[α]
if the average of the individual instantiations of (ψ |φ)[α] is α.

Aggregating semantics is inspired by statistical approaches. However, instead
of counting objects, or tuples of objects, respectively, that make a formula true,
we sum up the probabilities of the correspondingly instantiated formulas. The
entailment relation |=� is defined by

P |=� (ψ |φ)[α] iff

∑
(ψ′|φ′)[α]∈GU ((ψ |φ)[α])

P (ψ′φ′)∑
(ψ′|φ′)[α]∈GU ((ψ |φ)[α])

P (ψ′)
= α . (7)

If P is a uniform distribution, we end up with a statistical interpretation of the
conditional. However, the probabilities in this paper will be subjective, so |=�
mimicks the statistical view from a subjective perspective.

Analogously as for GU before, if ◦ is one of ∅ or � then we say that P
◦-satisfies a knowledge base R, denoted by P |=◦ R iff P |=◦ r for all r ∈ R.
Note that all three semantics are extensions of classical probabilistic semantics
for propositional probabilistic conditional logic [35].

Having properly defined models of knowledge bases, we now adopt the ap-
proach of reasoning with maximum entropy—see Section 2.1—for the relational
case and define

PME
R,◦ = arg max

P |=◦R
H(P) (8)

with ◦ being one of GU , ∅, or �. For our general framework of relational prob-
abilistic conditional logic (RPCL), we abbreviate the approaches of reasoning
based on the principle of maximum entropy with grounding (using the naive
grounding operator), averaging, and aggregating semantics with MEGU , ME∅,
and ME�, respectively. We say that a formula (ψ |φ)[x] is ME◦-inferred from
R iff PME

R,◦ |=◦ (ψ |φ)[x] with ◦ being one of GU , ∅, or �.
For a more detailed discussion of the above semantics and the properties of

inference on the principle of maximum entropy we refer the reader to [47, 41].

4 Evaluation and Comparison Criteria

When looking at probabilistic relational modeling, there are different motivations
and objectives for choosing a particular representation or a specific approach.

15

In [9], a comparison between several statistical relational learning systems is
done, with an emphasis on the learning aspects. Here, we will concentrate on
the point of view of knowledge representation and reasoning; since primarily,
BLPs and MLNs are statistical models, it is interesting to investigate them from
this perspective. We formulate a series of criteria yielding some useful guidance
for judging and comparing approaches to probabilistic relational knowledge rep-
resentation. These criteria are organized along several themes, ranging from lan-
guage aspects to aspects concerning individuals and universes; Fig. 2 gives an
overview. For every criterion, we evaluate each of the five approaches discussed
above—BLPs, MLNs, and the three RPCL approaches—with respect to that
criterion. Most of the criteria do not lead to to simple yes/no answers, but re-
quire a more detailed elaboration. A preliminary discussion of these properties
can be found in [4].

Language Aspects: page:

(L-1) Direct expression of probabilities 16

(L-2) Direct expression of conditional 16

probabilities

(L-3) Qualitative statements 17

(L-4) Commonsense meaning 17

(L-5) Closure properties 19

(L-6) Inference 19

(L-7) Independence of syntax 20

(L-8) Explanation capabilities for inference 22

(L-9) Expressivity 22

Strict and Propositional Knowledge:

(SP-1) Strict Knowledge 23

(SP-2) Propositional Knowledge 25

Individuals and Universes:

(U-1) Listing of elements 26

(U-2) Open universe 26

(U-3) (Proto)Typical elements 26

(U-4) Inference for individuals 27

(U-5) Grounding 28

Fig. 2. Themes and topics of the evaluation and comparison criteria

4.1 Language Aspects

The semantics of the components of a knowledge representation language should
be as declarative as possible. In particular, it should be possible to express basic
concepts directly and to have an intuitive meaning for all language constructs,
inference and learning results:

(L-1) Direct expression of probabilities in the form of “A holds with a
probability of x”.

(L-2) Direct expression of conditional probabilities as in “Provided A
holds, then the probability of B is x”.

Obviously, (L-1) can be viewed as a special case of (L-2) if the precondition A in
(L-2) is set to be true. However, since generally, conditionals cannot be reduced
to unconditional sentences, it is useful to distinguish the two cases (L-1) and

16

(L-2) because there are approaches that do not support the direct expression of
conditionals.

Since an RPCL knowledge base supports representing formulas of the form
(B |A)[x] which constrain the conditional probability of B given A to x in any
model, MEGU , ME∅, ME� obviously fulfill (L-1) and (L-2).

A similar observation holds for BLPs when taking into account the con-
ditional probability distribution functions cpdc which must be defined for any
Bayesian clause c. If B is a Bayesian atom with predicate p, the Bayesian clause
c = (B |A) together with cpdc satisfying cpdc(B |A) = x ensures that in any
ground model of a BLP, the conditional probability of B′ given A′ of all instances
A′ and B′ of A and B is x. Note that this property requires that p does not occur
in the head of any other clause in the BLP; if p occurs in multiple heads, the
combining rule for p may yield a probability value different from x.

Since in an MLN there is no obvious correspondence between the weight
of a clause and its corresponding probability and because conditionals are not
supported, (L-1) and (L-2) are not satisfied by MLNs.

(L-3) Qualitative statements like “A is more probable than B” or “A is very
probable”.

While in propositional Bayes nets qualitative expressions of this kind have been
encoded by the means of second-order probability distributions [34], such qual-
itative statements can be expressed in none of the five relational approaches
investigated in this paper. Whether and how second order distributions could
also be used in a relational setting has still to be investigated.

(L-4) Commonsense meaning: Probabilities are used for expressing uncer-
tainty, and for each basic construct of the knowledge representation lan-
guage there should be a clear intuitive or commonsense meaning. Examples
of such meanings are a statistical interpretation of expressions (with respect
to a population), or a subjective degree of belief (with respect to the set of
possible worlds). In particular, for formulas containing variables, it should
be possible to express an intuitive commonsense meaning of the formula in
general, or for its ground instances, respectively.

First, the difference between statistical and subjective interpretations can be il-
lustrated in the context of the elephant-keeper-example from the introduction by
contrasting “Most elephants like their keepers” (statistical, as it refers to a whole
population) vs. “Mostly, an elephant likes its keeper” (subjective, as it refers to
situations, i.e., possible worlds). Basically, all three approaches considered look
at probabilities from a subjective point of view. However, it is not possible to
translate straightforwardly formal probabilistic (or weighted, respectively) ex-
pressions into commonsense probabilistic statements in each framework.

A Bayesian clause c in a BLP expresses qualitative information about the
conditional probability of the clause’s head given the body of the clause; the
conditional probabilities given by cpdc that is applied for each instance provide

17

inputs for computing subjective conditional probabilities by applying the com-
bining functions and making use of the network structure. Unfortunately, the
information specified in the knowledge base of a BLP may not correspond to
the probabilities established in the appertaining probabilistic model. This is due
to the use of the heuristic combination functions which only approximate (more
or less well) probabilistic inferences. To illustrate this, in Example 3, clause c1
together with cpdc1 suggest that if X’s house is burglarized, then the probability
that the alarm will ring is 0.9. However, when instatiating X e.g. with carl , com-
pletely different values may result for P (alarm(carl) | burglary(carl)), depending
on the probabilites of the other atoms. So, while the Bayesian clauses look like
conditional probabilities, their meaning for ground instances is not clear.

Similarly, the probabilities resulting from an MLN can be classified as sub-
jective, as the MLN semantics is based on possible worlds. Although it can be
observed that the greater the weight w of an MLN clause F the more impact
F will have on the probability distribution in the resulting ground Markov net-
work ML,C , a more precise probabilistic meaning of (F,w) is not evident since
the weight w expresses merely the relative strength of the formula F in the
context of the other formulas specified in the MLN knowledge base.

For each ground conditional (B |A)[x] in an RPCL knowledge base, its com-
monsense meaning is given by the conditional probability of B given A being x
for grounding, averaging, and aggregating semantics. However, the commonsense
interpretation of conditionals with free variables is substantially different in these
three semantics. For grounding semantics, a relational conditional is understood
as a universal quantification of the subjective conditional probability of each
ground instance within the range of the grounding operator. For instance, in the
RPCL framework with the naive grounding operator, it is possible to assign to
a conditional (B |A)[x] in the knowledge base the default commonsense mean-
ing “For all instances (B′ |A′)[x] of (B |A)[x]”. For averaging and aggregating
semantics, the commonsense meaning is a mixture of statistical interpretation
and degrees of belief. The averaging semantics yields a statistics of subjective
conditional beliefs. For instance, the first conditional from the example in the
introduction with an interpretation via ME∅ reads as “Considering a random
elephant-keeper-pair, the average subjective probability that the elephant likes
its keeper is 0.9.” The aggregating semantics exchanges the role of statistical
(or population based) and subjective view by providing a kind of subjectively
weighted statistics. Here, c1 is understood as “Considering all elephant-keeper-
pairs, the expected subjective probability that elephants like their keepers is
0.9.” In contrast to the averaging semantics, the aggregating semantics gives
more weight to individuals (or tuples of individuals) that are more likely to
fulfill the premise of a conditional.

By taking both statistical and subjective aspects into account, both averag-
ing and aggregating semantics allow a more realistic approach to commonsense
reasoning in a relational probabilistic context. When entering a zoo (or consider-
ing the vague population of all elephants and keepers in the world) and uttering
a conditional (likes(X,Y) | elephant(X), keeper(Y)) [0.8], human beings are very

18

likely to express something like “In (about) 80 % of all situations that involve
an elephant and its keeper, I will notice that the elephant likes the keeper.” This
statement takes both beliefs about possible worlds and about the population
into account, and it is exactly this perspective that averaging and aggregating
semantics aim to represent. For a further discussion and evaluation of these
semantics, see [41].

(L-5) Closure properties: The results obtained by inference should be ex-
pressible in the knowledge representation language, thus enabling, e. g., the
integration of inferred knowledge into a knowledge base. Another closure
aspect refers to the query language: Can any formula being allowed in a
knowledge base be used in a query?

A language property closely related to the above is also the following one.

(L-6) Inference: What kind of queries can be answered, and which can be
answered efficiently?

As (L-5) and (L-6) address similar issues we discuss these two properties to-
gether. In Bayesian logic programming queries have the form Q = (H | B1, . . . ,
Bn) with ground atoms H,B1, . . . , Bn and the result of a query of this form to a
BLP B is the probability that H is true given that B1, . . . , Bn are true. However,
BLPs themselves consist of Bayesian clauses together with conditional probabil-
ity distributions. While a query Q has the same form as a Bayesian clause the
conditional probability distribution needed to parametrize this clause is given
only partially by the result of querying. In particular, by a single inference step
one does not obtain a piece of information that can be directly integrated into
the knowledge base. However, BLP inference can be used for computing a cpdQ
for Q by generating all possible combinations of evidence for Q, allowing one to
add this information as a BLP clause.

In Markov logic the result of inference is a (restricted) first-order formula
together with the probability of this formula with respect to the MLN. Since
knowledge representation with MLNs bases on assigning weights to formulas,
MLN inference results cannot be used directly in an MLN without altering their
intended meaning. However, from a categorical point of view adding a formula
with its probability to an MLN is possible. But, as the weights of an MLN do not
have to be normalized, interpreting probabilities as weights may yield unintuitive
results.

As RPCL is defined using an explicit model theory, inference results which
are formulas of the knowledge representation formalisms themselves, can be di-
rectly integrated into an RPCL knowledge base (independently of the actual
semantics).

In all five approaches it is not possible to pose any representable formula as a
query. In particular, queries must be ground and taking a logic formula F from
a corresponding knowledge base, every ground instance of F can be used in a
query. For example, given the body of the BLP clause

(alarm(james) | burglary(james), lives in(james, yorkshire),nhood(average))

19

as evidence, the BLP inference mechanism will determine the conditional prob-
ability of alarm(james) given the evidence. Consequently, open queries such as
“What is the probability of alarm(X) given burglary(X)?” are allowed in none
of the approaches. However, this is quite clear as the interpretation of such a
query is not straightforward: should this mean “What is the average probability
of alarm(X) given burglary(X) for all X?” or “Given some normal X, what is
the probability of alarm(X) given burglary(X)?”, see [41] for some discussion.
If a support system offers posing queries with free variables (as it is allowed e.g.
in Alchemy), then such a query is being treated as an abbreviation for posing a
sequence of all possible ground instantiations of that query.

We now turn to efficiency issues with respect to query answering. For MLNs,
there exist several algorithms which allow to perform approximate inference effi-
ciently. The straightforward calculation of an MLN query requires to determine
and to sum up the (conditional) probabilities of all satisfying worlds. Since this
direct approach is exponential in the number of ground atoms, it is unsuitable
for ground Markov networks of realistic size. The approximate algorithms use
efficient techniques as e. g. Markov Chain Monte Carlo methods and knowledge-
based model construction to reduce the number of necessary calculations and to
construct only the required part of the ground Markov network (depending on
the respective query and the supplied evidence). We refer to [16] for a detailed
discussion of these techniques and algorithms.

RPCL inference requires solving the numerical optimization problem (8)
whose complexity grows in the number of possible groundings that have to be
considered, cf. Equations (6) and (7). The expert system SPIRIT [62] provides
an algorithm and data-structures to calculate the solution of optimization prob-
lem (8) efficiently in many cases. Since the algorithm works on a decomposition
of the probability distribution, it can overcome the exponential size of the dis-
tribution. But how efficiently this decomposition can be performed depends on
the structure of the (ground) conditionals and the respective query. Therefore,
further work is needed to investigate how well this algorithm performs with
the grounded conditional structures arising from MEGU inference. Some criteria
under which the complexity of MEGU inference reduces to the complexity of
reasoning under propositional maximum entropy are given in [24, 46]. Inference
for aggregating semantics also requires solving the corresponding convex opti-
mization problem (8). This can be accomplished by employing the well-known
Generalized Iterative Scaling (GIS) algorithm technique [12]. An early imple-
mentation of an adjusted GIS algorithm already shows promising results [19].

With respect to the complexity of inference, further experimental and theo-
retical work is needed.

(L-7) Independence of syntax: A general requirement for logic-based repre-
sentations applies also here: The semantics should be the same if the explicit
knowledge is expressed by syntactic variants.

Each of the formalisms make use of a set of relational probabilistic formulas
(i.e., a knowledge base) that allow probabilistic inferences for queries, together

20

with independence assumptions, combining functions, grounding operators etc.
We might take this set of possible inferred sentences as the semantics of the
knowledge base within the formalism. We will consider only syntactic variations
that should not change inferences from a basic logical point of view, without
taking complex probabilistic inferences into account.

Let KB be a knowledge base in one of the five relational approaches. Since for
any variable renaming σ, the respective semantics of KB and σ(KB) coincide,
semantical equivalence with respect to variable renaming holds for BLPs, MLNs,
and RME. Another form of syntactic variants arises from logically equivalent
formulas, e. g. A and A ∧A. In places where such formulas are allowed, they do
not give rise to a different semantics in any of the five approaches BLPs, MLNs,
or the different RPCL variants.

However, it should be noted that logical equivalence of single formulas has
to be distinguished carefully from the case of adding a syntactic variant of a
knowledge base element to that knowledge base: If F ∈ KB and σ is a variable
renaming replacing some variable in F with a new variable not occurring in
KB , then in general KB ∪ {σ(F)} has a different semantics both for BLPs
and for MLNs. For instance, when using noisy-or as the combining function,
the probability expressed by F—and thus also by σ(F)—will typically increase
when adding σ(F) to KB .

Example 8. Consider a BLP consisting of the single clause c = (A(X) |B(X))
with cpdc(true, true) = 0.9, cpdc(true, false) = 0.5 and with noisy-or being the
combining rule for predicate A. Then querying this BLP with (A(d) |B(d)) re-
sults (obviously) in the probability 0.9 for A(d) being true given B(d) is true.
However, adding the clause c′ with c′ = (A(Y) |B(Y)) (with cpdc = cpdc′) which
is a syntactical variant of c results in a probability of 1−(1−0.9)·(1−0.9) = 0.99
as both c and c′ determine a probability of 0.9 and these probabilities have to
be combined by the corresponding combining function (noisy-or in this case) to
obtain the final answer to the given query.

Example 9. Similarly, consider an MLN consisting of the single formula (B(X)⇒
A(X), 1). Querying this MLN with (A(d) |B(d)) results in the (approximated)
probability 0.764974 for A(d) being true given B(d) is true. However, adding the
syntactic variant (B(Y)⇒ A(Y), 1) results in an (approximated) probability of
0.861964 (these probabilities have been computed with the Alchemy system).

For RPCL, the addition of syntactic variants in the sense described above does
not influence the outcome of inference (for grounding, averaging, and aggregating
semantics).

For BLPs, only atoms are allowed in the clauses of the knowledge base, but
negation can be simulated for Boolean predicates by using the negated form as
an atom and switching “true” to “false”, and conversely. Doing so, we obtain a
dually negated form of the BLP with the same semantics, as the conditional
probability tables remain substantially the same in this case. For MLNs, the dual
negation of a weighted formula (F,w) cannot even be defined in a reasonable
way.

21

(L-8) Explanation capabilities for inference: It is desirable to have expla-
nation capabilities of inference results. Which elements of the knowledge
base are to what degree responsible for an inferred result? Is it possible to
identify elements which did not affect a result in any way? Can some results
be derived directly from certain elements of the knowledge base or does any
result essentially require the calculation of an appropriate model?

The explanation of a BLP inference result is given by the obtained local Bayes
net which also encodes a (logical) derivation of the query. Therefore, it is obvious
which clauses of the BLP knowledge base were involved in the calculation of the
result. So the BLP approach offers some distinct level of explanation capability.

MLN inference is based on a log-linear model that has to be normalized in
order to represent a probability distribution, cf. [29, Ch. 12]. The value of this
normalization constant depends on the relationships among the formulas of an
MLN knowledge base. Therefore, an inferred probability depends on all formulas
of the knowledge base, because the weights of the formulas are relative values,
where the larger the weight the greater the influence of the formula. Since MLN
inference involves the construction of an appropriate ground Markov network,
independencies among certain ground atoms are indicated by this network. So
some independency aspects of inferred results can be explained by the net struc-
ture.

Inference in RPCL relies on solving the optimization problem (8). In some
special cases (regarding the query and the conditionals in the knowledge base),
the result of a query might be estimated directly considering how reasoning under
the maximal entropy distribution ”behaves”. So in such rare cases, the inferred
result can be explained by certain aspects of the knowledge base (having the
principle of maximum entropy in mind). But in general, no intuitive explanation
of inference results is evident for both the MLN and RPCL approaches.

(L-9) Expressivity: How is an explicit model theory given? Which models can
be expressed using a particular approach, and how can they be defined?

The semantic models of BLPs and MLNs are ground Bayes and Markov nets, re-
spectively, representing a probability distribution. Likewise, the semantics of an
RPCL knowledge base also yields a probability distribution. While any of these
approaches can be used to define an arbitrary probability distribution (over a
finite domain), the more interesting question is how this can be done. Jaeger
[32] proposes a schema of comparing two formalisms by using two components:
A generic component that is independent of a particular universe, and a com-
ponent that takes into account a universe of constants. Using this framework,
[32] shows that relational Bayesian networks (RBNs) [31, 10] can encode MLN
models, i. e., that RBNs are at least as expressive as MLNs; in both cases, basic
versions of the respective languages are considered. No other expressivity com-
parison results using the framework of [32] seem to have been published. It can
be expected that due to the special requirements of the respective frameworks,
many pairs of probabilistic relational languages will be just incomparable; for

22

instance, it is easy to see that MLNs cannot be used to encode RPCL as the
strict realization of probabilities resp. conditional probabilities is not possible
with MLNs, see also the discussion in Section 2.3. Furthermore, consider the
MLN {(A(X), w1), (A(c), w2)} with some constant c and w1 6= w2. In the log-
linear model of this MLN the actual probability of A(c) strongly depends on the
size of the universe. In RPCL, given a ground conditional (φ |ψ)[α] the proba-
bility P (φ |ψ) of every model P of (φ |ψ)[α] does not depend on the size of the
universe and is always α, cf. Equation (5). Assume there is a mapping σ that
maps a weighted formula to a conditional and is independent of the (size of)
the universe. Then σ((A(c), w2)) is the same with respect to changes to the uni-
verse and so is P (σ((A(c), w2))) for every model P of the corresponding RPCL
knowledge base. Consequently, RPCL can also not be used to model MLNs.

The sharp separation of generic and specific knowledge as required in the
expressivity analysis proposed in [32] is problematic since it prohibits a modeling
taking into account both types of knowledge in the form as it is done for instance
in the example on elephants and their keepers. Further investigations on how
to state and how to compare the expressive power of probabilistic relational
languages is needed.

4.2 Strict and Propositional Knowledge

In any probabilistic relational modeling language two essential dimensions are
present that distinguish the respective approach from propositional logic: The
probabilistic and the relational dimension. Therefore, from a knowledge repre-
sentation point of view, the following questions arise naturally. What happens
if one cuts down any of these two dimensions? Which kind of logic does one
obtain?

(SP-1) Strict Knowledge: Suppose one restricts the sentences occurring in
a knowledge base such that only strict probabilistic knowledge can be ex-
pressed. What is the representation level of this degenerated case, and what
are its semantics and inference properties? In particular, what is its relation-
ship to classical non-probabilistic logic?

Among the formalisms BLP, MLN, and RPCL, only MLNs allow for existential
quantifiers (which in the Alchemy system are replaced by corresponding finite
disjunctions over instantiations with the elements of the underlying universe).
Looking at the language of logical MLN formulas we thus have the same as
first-order logic. In order to express that a particular formula F represents strict
knowledge, the weight of F must be set to infinity [16]; in the MLN system
Alchemy, the corresponding representation is to write down the formula as in
“F.”, i. e. without any weight. In this case, all possible worlds violating the strict
formula are assigned zero probabilities by the MLN, and the probabilities of
the satisfying worlds sum up to 1. Hence, the formulas that can be inferred
with probability 1 from such an MLN knowledge base F containing only strict
formulas together with a set of constants C are the same as the formulas that

23

can be derived from F in a classical way where the universe of the underlying
signature is identified with C. However, note that inference in Markov logic
requires that the set of constants C is finite. Therefore, this “classical inference”
is restricted to finite domains and does not feature the full expressivity of first-
order inference.

Strict knowledge can be expressed by a BLP containing only conditional
probabilities with values 0 and 1. In this case, also BLP semantics and BLP in-
ference match semantics and inference in first-order logic, see below. Similarly, a
strict knowledge base in RPCL is also obtained by allowing just the two extreme
probabilities 0 and 1. In the following, we will look at the relationship of the
obtained logics to first-order logic for BLPs and RPCL in some more detail.

Let FOL∀ be the subset of first-order formulas that are quantifier-free but
all variables are assumed to be universally quantified. For a set Φ ⊆ FOL∀
and φ ∈ FOL∀ let Φ |= φ be the classical inference relation, i. e., Φ |= φ is
true if for all variable assignments VA the set Φ classically entails VA(φ). Let
B be the set of BLPs containing only conditional probabilities with values 0
and 1. For a Bayesian clause c = (H |B1, . . . , Bn) with cpdc(true, . . . , true) = 1
(cpdc(true, . . . , true) = 0) consider the transformation

Γ (c) = B1 ∧ . . . ∧Bn ⇒ (¬)H.

Then the set
Γ (B) =

⋃
B∈B

⋃
c∈B
{Γ (c)}

is obviously a subset of FOL∀. It is easy to see that for B ∈ B, a ground query
c = (H |B1, . . . , Bn) has probability 1 in B if and only if Γ (B) |= Γ (c). However,
note that Γ (B) 6= FOL∀ as e. g. the formula A∨B ∈ FOL∀—which is not a Horn
clause—is not in the image of Γ . Consequently, the restriction of BLPs to strict
knowledge neither represents full first-order logic nor FOL∀.

For strict RPCL we obtain an almost complete correspondence to FOL∀
(independently of the semantics actually used for RPCL). Let R be the set
of RPCL knowledge bases where every conditional has probability 1 or 0. Let
Φ ⊆ FOL∀ be a set of formulas and consider the transformation ∆ given via

∆(Φ) = {(φ | >)[1] | φ ∈ Φ}

containing only strict formulas. Then obviously ∆(Φ) ∈ R and also (if Φ is
consistent) Φ |= φ if and only if ∆(Φ) |=ME

GU ∆({φ}) for every φ ∈ FOL∀; analo-
gous observations hold for averaging and aggregating semantics. Looking at the
other direction, let KB ∈ R be a strict RPCL knowledge base and consider the
transformation Λ given via

Λ(KB) = {¬A ∨B | (B |A)[1] ∈ KB} ∪ {A ∧ ¬B | (B |A)[0] ∈ KB} .

Then clearly Λ(KB) ∈ FOL∀. If KB is consistent using grounding operator
GU then also KB |=ME

GU r if and only if Λ(KB) |= Λ({r}) for all condition-
als r with probability 1. Moreover, if KB is consistent with respect to aver-
aging or aggregating semantics, the inference in KB and Λ(KB) is the same

24

also for these semantics. However, for the strict RPCL knowledge base KB ′ =
{(B |A)[1], (A | >)[0]} we observe that KB ′ has no models since a probability dis-
tribution P can satisfy a conditional {(B |A)[x] only if P (A) > 0, independently
of the actual semantics, cf. (5). On the other hand, KB ′FOL∀

= {¬A ∨ B, ¬A}
does have a model. Thus, reducing a conditional to material implication may
not be adequate even in the case of only strict probabilistic conditionals, see
also [5]. However, for the subset Rc ⊆ R of consistent knowledge bases and
the subset FOLc∀ ⊆ FOL∀ of consistent sets of formulas we obtain complete
correspondences.

Likewise, we can look at the degenerated knowledge representation formalism
obtained by cutting out any relational representation aspects.

(SP-2) Propositional Knowledge: What kind of logic does one obtain if a
knowledge base contains only ground knowledge? What are its semantics
and inference properties, and in particular, what is its relationship to propo-
sitional probabilistic logic?

Let BN be a Bayesian network. Then obviously B can be represented as a
Bayesian logic program with predicates of arity zero. For the other direction, let
B be a BLP where every Bayesian clause is ground. It may be the case that B
contains multiple clauses with the same head. However, a combined conditional
probability distribution for the joint conditional probability can be compiled
directly by using the combining rules of the predicate of the head. Therefore
B can be transformed into a BLP B′ such that B′ does not contain multiple
clauses with the same head and B and B′ have the same inference behavior.
Then, obviously B′ corresponds to a propositional Bayesian network.

If L is an MLN containing only ground atoms, then for any set C of constants
the corresponding ground Markov net (see Definition 3) is independent of C.
Consequently, L represents a unique probability function P and Equation (4)
simplifies to

PML,C
(ω) =

1

Z
exp

 ∑
(Fi,wi)∈L,ω|=Fi

wi

with the normalization factor

Z =
∑
ω∈Ω

exp

 ∑
(Fi,wi)∈L,ω|=Fi

wi

 .

and is therefore equivalent to a propositional Markov net.

For a ground RPCL knowledge base, grounding, averaging, and aggregating
semantics coincide with classical probabilistic semantics in probabilistic condi-
tional logic [61, 36] and inference based on the principle of maximum entropy is
the same as in the propositional case, cf. [67].

25

4.3 Individuals and Universes

The core idea of relational knowledge representation is to talk about a set of
elements (a universe) and the relations among them. Thus, methods are needed
for specifying elements belonging to the universe, to refer to elements in the
universe, and to reason about elements and their properties and relationships.
In general, relational approaches may differ according to whether and how they
support any of the following criteria.

(U-1) Listing of elements: Can (or must) a universe be specified by explicitly
listing all its elements?

The given facts in a BLP must all be ground; they determine the specific context
of the BLP, thus allowing to list all elements of a universe by mentioning them
in the atoms of the BLP. So the constants of a BLP are implicitly introduced by
respective ground atoms occurring in the Bayesian clauses of the knowledge base
or in a distinct query. When defining an MLN, an explicit listing of all constants
C must be given, and the semantics of an MLN requires that different constants
denote different elements and that there are no elements other than the ones
denoted by constants. Although it is possible [59] to extend the definition of an
MLN in order to allow different constants to stand for the same element, the
set of all constants must be explicitly listed and each element of the universe
has to be denoted by at least one constant. Similarly, all constants in an RPCL
knowledge base denote different elements, and there are no other elements.

(U-2) Open universe: Is it possible to have an open universe whose number
of elements is not a-priori known?

In BLP, MLN, and RPCL it is not possible to specify such open universes di-
rectly. Just to the contrary, the grounding of formulas with constants from the
universe is an essential part of each formalism. For instance, the constants oc-
curring in a query Q together with the constants in a BLP P determine the
Herbrand universe used to construct the ground Bayesian network for answer-
ing Q. However, in all approaches the extensional part—i. e. the ground atoms
resp. the given constants—can be exchanged while reusing the given generic
knowledge.

(U-3) (Proto)Typical elements: Can (proto)typical elements within a uni-
verse be specified or identified?

A universally quantified variable X in a relational statement expresses that this
statement applies to all elements of the considered universe. However, as the
example on elephants and keepers demonstrates, there is the need to also ex-
press knowledge about individuals, referred to by specific constants; in any of
the five approaches, generic statements using variables may be combined with
statements about individuals. In the elephant-keeper example, asking about a
keeper jim will return the same probability as asking the same question about
a keeper tom since the respective knowledge bases do not contain any specific

26

information neither about jim nor about tom. So, besides named individuals
which are mentioned in the knowledge base, the universe will usually contain
individuals on which no specific information is explicitly expressed and which
hence may serve as typical individuals. More precisely, let CR be the set of
constants occurring in a set of rules R and let CU be the set of all constants
under consideration. (Note that for MLN and RPCL, CU is given explicitly, and
that for a BLP, CU is determined when a query is posed.) Then the elements
in Ctypical = CU\CR cannot be distinguished by any query asked with respect
to R: If d1, d2 ∈ Ctypical and Q is a query containing d1, then the query Q′

obtained from Q by replacing d1 by d2 (and possibly also d2 by d1) yields the
same probability as Q. This observation holds for all of the five approaches. So,
if typicality is interpreted in terms of being indistinguishable and least specific,
then all five approaches can identify and represent typical elements. On the other
hand, no approach supports the immediate identification of prototypical indi-
viduals as most appropriate personification of a given concept. For this, criteria
to make a qualitative distinction between individuals would be required which
are not provided by any of the approaches. In the context of qualitative de-
fault reasoning, an approach similar to probabilistic aggregation semantics has
been presented recently which provides further properties that allow to identify
prototypical individuals (for more details, please see [42]).

(U-4) Inference for individuals: There should be a well-defined inference
mechanism to infer probabilities for particular individuals (either prototyp-
ical individuals or specific, named individuals). Does such inference depend
on the number of elements in a universe, and if so, what is the dependency?

Obviously, all approaches provide for querying about specific individuals. For
example, given a BLP, a ground Bayes net can be constructed to infer probabil-
ities for some ground query involving arbitrary constants. Similarly, this holds
for MLNs and the approaches based on maximum entropy. Further, the num-
ber of elements in the universe might influence the probability of a query in all
approaches. Consider the BLP B containing the clauses (D(X) | A(X,Y)) and
(A(X,Y)). Given the query D(c) for some constant c the probability of D(c)
depends on the number of instances of D(c, Y), i. e., on the number of constants
in the universe. If noisy-or is the combining rule for D then the probability of
D(c) tends towards one when the number of constants in the universe tends to-
wards infinity, independently of the actual conditional probability distributions
of (D(X) | A(X,Y)) and (A(X,Y)). A similar observation can be made for
MLNs and RPCL.

Another dependency of the number of elements in the universe and proba-
bilities of queries arises for RPCL under averaging and aggregating semantics.
Consider now the conditional (D |A)[x] and averaging semantics. If (D′ |A′) is
an instance of (D |A) that does not mention any constants in the knowledge
base then it is easy to see that the probability of (D′ |A′) tends towards x if the
number of elements in the universe tends towards infinity, cf. [41].

27

(U-5) Grounding: Is there a mechanism for (consistent) grounding of a knowl-
edge base?

The semantics of a BLP or an MLN knowledge base is defined via complete
groundings with respect to a given finite universe L of constants, yielding a
(ground) Bayesian network or a (ground) Markov net, respectively. In a BLP,
the logic part consists of Horn clauses which do not allow the specification of
negated conclusions, so that inconsistencies on the logical level are avoided.
Conflicting specifications on the quantitative level may arise e. g. when having
syntactical variants of a clause such as (B(X) |A(X)) and (B(Y) |A(Y)) with
different cpd’s. Such conflicts are resolved via the combining rules like noisy-or
(cf. Sec. 2.2).

An MLN might contain both (F, w) and (¬F, w), thus assigning equal weights
to the contradicting formulas F and ¬F . Due to the specification of the proba-
bility distribution depending on the weights given in an MLN (cf. Equation. (4)),
the grounded MLN semantics is still consistent and well defined.

Also for RPCL, a universe L of constants must be given. As mentioned before,
naive complete grounding with respect to L might generate an inconsistency,
yielding a situation where the instantiated knowledge base does not have any
model.

Another important aspect connected to the notion of relational knowledge
and universes is the question of whether probabilities are interpreted statistically
or as subjective degrees of belief, cf. the discussion in the context of (L-4).

After our discussion on formal criteria on relational probabilistic models, we con-
tinue with investigating the practical side of contrasting relational probabilistic
approaches by presenting various systems and applications.

5 Implementations for Relational Probabilistic
Knowledge Representation

Relational probabilistic models such as BLPs, MLNs, and RME are quite com-
plex models and formal comparisons are not always sufficient for an in-depth
understanding and evaluation. An important aspect for comparison is an anal-
ysis of the computational behaviors of the models on e. g. benchmark examples.
Furthermore, while prototypical implementations of specific approaches to rela-
tional probabilistic knowledge representation (and approaches for any problem
in general) are essential for validating results and evaluation, these software so-
lutions are often very hard to use and differ significantly in their usage. The
KReator system provides a common interface to different formalisms for re-
lational probabilistic models and we continue by giving a brief overview on its
architecture and usage.

28

5.1 The KReator System

KReator is an integrated development environment for representing, reason-
ing, and learning with relational probabilistic knowledge.3 KReator aims at
providing a versatile toolbox for researchers and knowledge engineers in the field
of statistical relational learning. KReator’s intuitive graphical user interface
provides an easy access to its core functionalities, e. g., to specify knowledge
bases, ask queries to knowledge bases, and to learn knowledge bases from data
(see Fig. 3 for a screenshot of the KReator user interface). KReator supports
these tasks for different knowledge representation formalisms by a flexible plugin
architecture. A plugin for a specific formalism encapsulates all its data structures
and algorithms and connects them by a standardized interface to the KReator
framework. At this time, plugins for Bayesian logic programs, Markov logic net-
works, relational maximum entropy, as well as Relational Bayesian Networks [31,
10] and Probabilistic Prolog [58] are already supplied with KReator. Plugins
for other formalism, e. g. P-log [1] and PRL [28], are currently under develop-
ment.

Fig. 3. Graphical user interface of the KReator system

3 The development of KReator is part of the KReate project, cf. www.

fernuni-hagen.de/wbs/research/kreate/

29

Some of these KReator plugins make use of other software systems to ac-
complish their tasks: Performing inference on MLNs is done using the Alchemy
software package 2 [45], a console-based tool for processing Markov logic net-
works. To process ground RME knowledge bases, KReator uses a so-called
ME-adapter to communicate with a MaxEnt-reasoner. Currently, such adapters
are supplied for the SPIRIT reasoner [63] and for MEcore [20] which are tools
for processing propositional conditional probabilistic knowledge bases using max-
imum entropy methods (see Sec. 5.3 for a description of these systems).

The main advantage of using KReator (instead of using prototypical im-
plementations of each formalism) is to address knowledge engineering tasks to
different formalisms in a common and unified way. Besides this, KReator offers
several convenience features, e. g. project management, scripting, syntax high-
lighting, or LATEX output, which ease the work on knowledge representation,
reasoning, and learning.

Since KReator is written in Java [30], it is platform independent, i. e. it
runs on any system with a Java runtime environment. KReator’s design follows
the object-oriented programming paradigm and facilitates several architectural
and design patterns [26] such as model-view control, abstract factories, multi-
threading, and command patterns. Central aspects of the design of KReator
are modularity, extensibility, usability, and its intended application in scientific
research; see [22] for a thorough discussion.

5.2 The ProbCog System

To our knowledge, there is only one software system which takes an approach
comparable to KReator in the sense that it combines different formalisms
within one system. The ProbCog (Probabilistic Cognition for Cognitive Tech-
nical Systems) system4 [33] is a software suite for statistical relational learn-
ing. ProbCog currently supports three knowledge representation approaches:
Bayesian Logic Networks (BLNs), Adaptive Markov Logic Networks (AMLNs),
and Markov Logic Networks (MLNs). For each approach, ProbCog provides sev-
eral learning and inference algorithms, implemented either in Java or Python.
ProbCog provides a sophisticated framework for relational data, which features,
amongst others, a unified data model (which allows data conversion for all in-
tegrated approaches) and the generation of synthetic data (for learning exper-
iments). The main focus of the ProbCog suite is on providing a comprehensive
library of algorithms and powerful data structures for statistical relational learn-
ing, but it also includes some graphical interfaces for learning and querying,
respectively.

ProbCog and KReator share some similarities with respect to their general
approach to gather different knowledge representation approaches within one
software framework, e. g. both systems feature some sort of unified data model
for evidence or sample data. But the primary application focus of both systems
differs significantly: ProbCog is developed for its intended practical application

4 http://ias.cs.tum.edu/research-areas/knowledge-processing/probcog

30

and integration in cognitive technical systems. So its primary focus is on pro-
viding a versatile and efficient framework for that specific purpose, therefore
some sort of unified graphical user interface to the framework is not needed. In
contrast, KReator’s focus is on the typical workflow of a knowledge engineer,
researcher, or developer. Therefore, KReator gathers different approaches in
an integrated graphical development environment to provide easy access to typ-
ical tasks and provides a plugin interface to support the study and development
of further approaches.

5.3 Related Systems

For many knowledge representation formalisms, there exist prototypical soft-
ware implementations, where each particular implementation is specialized for
a certain formalism, e. g. Balios5 for BLPs, Alchemy for MLNs, or Primula6 for
relational Bayesian networks.

Reasoning in probabilistic conditional logic by employing the principle of
maximum entropy [54, 35] requires solving the numerical optimization problem
P ∗ = arg maxP |=RH(P) (cf. Sec 2.1). SPIRIT [63] is an expert system shell7

implementing maximum entropy reasoning and solving this optimization prob-
lem. In order to tame the complexity of the optimization task which grows
exponentially in the number of variables, SPIRIT generates a junction-tree of
variable clusters, allowing to represent the global probability distribution by a
product of marginal distributions. SPIRIT has been used successfully in various
application domains, like medical diagnosis, project risk management, or credit
scoring. Apart from its graphical user interface, SPIRIT also features a software
interface (in terms of a Java API) which allows to access its functionalities from
external programs.

MEcore [20] is another system implementing reasoning for propositional
probabilistic conditional logic under maximum entropy. While it does not employ
a junction-tree modelling, but a straight-forward representation of the complete
probability distribution, its focus is on flexibly supporting different basic knowl-
edge and belief management functions like revising or updating probabilistic
beliefs, or hypothetical reasoning in what-if mode. All functionality of MEcore
can be controlled by a text command interface or by script files containing com-
mand sequences (see Sec. 6.1 for some practical applications). MEcore features
an expressive command language which allows, e. g., to manipulate knowledge
bases, and to automate sequences of updates and revisions. Besides this, a Java
software interface allows to integrate MEcore in other programs.

The Alchemy system 8 [45] implements Markov logic. Alchemy provides a
wide range of functionalities for statistical relational learning and probabilistic
logic inference. In particular, the consequences of a Markov logic network L

5 http://people.csail.mit.edu/kersting/profile/
6 http://www.cs.aau.dk/~jaeger/Primula/index.html
7 http://www.fernuni-hagen.de/BWLOR/spirit/index.php
8 http://alchemy.cs.washington.edu/

31

defined via the ground Markov network ML,C (cf. Sec. 2.3) can be determined.
With respect to learning, both weight learning as well as learning the structure
of an MLN is supported. Applications of MLN realized with Alchemy include
classification tasks and social network modelling. In Sec. 6, we will report on
some experiments using MLNs and Alchemy in medical diagnosis.

6 Applications

In the following subsections, we will present three practical application scenarios
of some of the afore described systems. All three applications cover settings from
the medical domain. The first one illustrates ME-reasoning using a fictitious
example, whereas the other ones describe learning experiments involving Markov
logic networks and real-world data from medical studies.

6.1 Knowledge Processing with the MEcore system

In this section, we will illustrate how the MEcore system [20] (cf. Sec. 5.3) can
process incomplete, uncertain knowledge expressed by a probabilistic knowledge
base using a fictitious example from the medical domain. This example is taken
from [20] and discusses the general treatment of a patient who suffers from a
perilous bacterial infection. The infection will probably cause permanent neu-
rological damage or even death if it is not treated appropriately. There are two
antibiotics available that might be capable of ending the infection, provided that
the bacteria are not resistant to the specific antibiotic. It must also be considered
that each antibiotic might cause a life-threatening allergic reaction that could be
especially dangerous for an already weakened patient. The resistance of the bac-
teria to a specific antibiotic can be tested, but each test is very time-consuming.

Building Up the Knowledge Base The construction of the knowledge base
starts with the definition of some binary variables that describe aspects concern-
ing antibiotic A:

med A: The patient is treated with antibiotic A.
effect A: Antibiotic A is effective against the bacteria.
allergic A: The patient is allergic to antibiotic A.
resistance A: The bacteria are resistant to antibiotic A.
posResT A: The test result suggests a resistance to antibiotic A.

Analogously, there are also five variables concerning antibiotic B. A three-valued
variable outcome describes the three possible outcomes of the treatment:

outcome=healthy: The infection is treated successfully and the patient is
healthy again.
outcome=impaired: The patient overcomes the infection but suffers a per-
manent damage to the nervous system.
outcome=dead: The infection is not treated effectively and the patient dies.

32

The available knowledge summarizing the previously made experiences about
the infection and the two antibiotics is modeled by the knowledge base medKB =
{R1, . . . , R22} consisting of the probabilistic rules given in Fig. 4.

R1 : (¬effect A | ¬med A ∨ resistance A)[1.00]

R2 : (¬effect B | ¬med B ∨ resistance B)[1.00]

R3 : (effect A ⇔ med A | ¬resistance A)[1.00]

R4 : (effect B ⇔ med B | ¬resistance B)[1.00]

R5 : (allergic A)[0.10]

R6 : (allergic B)[0.20]

R7 : (resistance A)[0.01]

R8 : (resistance B)[0.09]

R9 : (med A ∧ med B)[0.00001]

R10: (outcome=dead | ¬med A ∧ ¬med B)[0.10]

R11: (outcome=healthy | ¬med A ∧ ¬med B)[0.10]

R12: (posResT A | resistance A)[0.97]

R13: (¬posResT A | ¬resistance A)[0.99]

R14: (posResT B | resistance B)[0.90]

R15: (¬posResT B | ¬resistance B)[0.80]

R16: (outcome=dead | med A ∧ allergic A)[0.99]

R17: (outcome=dead | med B ∧ allergic B)[0.40]

R18: (outcome=healthy | effect A)[0.8]

R19: (outcome=healthy | effect B)[0.7]

R20: (allergic A | med A)[0.10]

R21: (outcome=dead | effect B)[0.09]

R22: (outcome=healthy | med B ∧ allergic B)[0.001]

Fig. 4. Probabilistic rules in the knowledge base medKB

The first four rules express very obvious correlations between the variables:
R1 and R2 say that if a certain antibiotic is not administered or the bacteria
are resistent to it, then this antibiotic has no effect. R3 and R4 assure that if
the bacteria are not resistant to a certain antibiotic, then this antibiotic is effec-
tive if—and only if—it is administered. The facts R5 to R9 integrate statistical
information available for antibiotic A and antibiotic B, i. e. some a priori prob-
abilities, into the knowledge base: antibiotic B is twice as likely as antibiotic
A to cause an allergic reaction (R5, R6); and the resistance to antibiotic B is
nine times higher compared to antibiotic A (R7, R8). It has occurred very rarely
that somebody administers both antibiotics to the patient (R9). R10 and R11

model the prognosis for the patient if no antibiotic is administered. The result
of a resistance-test, testing the resistance of the bacteria to an antibiotic, always

33

includes some error, but the test regarding antibiotic A is very reliable (R12,
R13); whereas the test concerning antibiotic B has a somewhat lower sensitivity
(R14) and a considerably lower specificity (R15).

The rules R16 to R19 express special knowledge about antibiotic A and an-
tibiotic B, respectively: The allergic reaction caused by antibiotic A is most
likely lethal (R16), whereas the chance of surviving an allergy to antibiotic B is
more likely than to die of it (R17). If antibiotic A is effective, then the patient
has a good chance to become healthy again (R18), whereas the effectiveness of
antibiotic B is somewhat lower (R19). The following knowledge is available for
antibiotic A only: R20 makes clear that the a priori probability of an allergy
to antibiotic A (expressed by R5 with equal probability) is not affected by the
administration of antibiotic A. There is also some exclusive knowledge about
antibiotic B: If antibiotic B is effective, there still remains some risk to die of the
infection (R21). If the patient survives an allergic reaction caused by antibiotic
B, it is very unlikely that he will become healthy again (R22).

Computing an Initial Epistemic State In MEcore, the computation of an
epistemic state incorporating the knowledge expressed by the knowledge base
medKB can be initiated by the command:

(1) currState := epstate.initialize(medKB);

The calculated epistemic state currState represents the incomplete knowledge
expressed by medKB inductively completed in an entropy-optimal way.

A closer look at medKB reveals that some additional rules can be logically de-
duced from the existing rules since they hold in all models satisfying medKB. For
instance, a literal of the three-valued variable outcome makes up the conclusion
of several rules. Hence, two rules with identical premise and an outcome literal
as conclusion directly imply a corresponding third rule, e. g. R10 and R11 imply
(outcome=impaired | ¬med A ∧ ¬med B)[0.8]. Appropriate queries to MEcore
in currState yield these expected probabilities since reasoning at optimum en-
tropy is compatible with classical probabilistic consequences.

Query Suppose we want to know the patient’s chances in each case of treat-
ment, i. e. for each of the four possible options of medical administration: no
antibiotic, antibiotic A only, antibiotic B only, both antibiotics. This can be
expressed by a set of twelve query formulas (i. e. conditionals of the form e. g.
(outcome=healthy | med A ∧ ¬med B)) which we will denote by medQueries.
While using classical probabilistic consequences does not yield informative an-
swers for medQueries, MEcore infers the following probabilities from currState:

healthy impaired dead

no antibiotic 0.10 0.80 0.10

only A 0.79 0.06 0.15

only B 0.65 0.23 0.12

A and B 0.94 0.02 0.04

34

These results clearly suggest that the combined administration of both antibi-
otics would be the best treatment. It offers a high chance of healing accompanied
by a minimal risk of permanent neurological damage or death. However, a closer
look at the knowledge base reveals that it implies that there is almost no possible
drug interaction. For instance, asking for the degree of belief for the conditional

Cint : (dead | med A ∧ med B ∧ ¬allergic A ∧ ¬allergic B)

in currState yields the inferred drug interaction probability 0.01.

Incorporation of New Knowledge Suppose that later on, the doctors learn
from an outside source that there is a severe risk (0.25) of a deadly drug inter-
action between both antibiotics. Executing

(2) currState.update(medKB, Cint[0.25]);

incorporates this new knowledge into the current epistemic state as if it had
been available already in medKB. In fact, this kind of belief change is a genuine
revision (cf. [37]) which in MEcore can also be more easily expressed by

(2’) currState.revise(Cint[0.25]);

Now, asking the medQueries again, the probabilities have changed considerably
(cf. Fig. 5(a)): With the knowledge about a deadly drug interaction, the prob-
abilities show that the administration of antibiotic A maximizes the patient’s
chance to become healthy again.

(a) healthy impaired dead

no antibiotic 0.10 0.80 0.10

only A 0.79 0.06 0.15

only B 0.65 0.23 0.12

A and B 0.70 0.02 0.28

(b) healthy impaired dead

no antibiotic 0.10 0.80 0.10

only A 0.79 0.06 0.15

only B 0.69 0.21 0.10

A and B 0.76 0.02 0.22

(c) healthy impaired dead

no antibiotic 0.10 0.80 0.10

only A 0.43 0.15 0.42

only B 0.65 0.23 0.12

A and B 0.32 0.05 0.63

(d) healthy impaired dead

no antibiotic 0.10 0.80 0.10

only A 0.43 0.15 0.42

only B 0.54 0.26 0.20

A and B 0.20 0.04 0.76

Fig. 5. Probabilities for medQueries inferred by MEcore

What-If-Analysis It has to be noticed that the knowledge used for generating
the epistemic state currState says that no resistance tests have been performed,
i. e. for neither of the antibiotics any resistance test results are available. A
what-if-analysis can be used to analyze what changes would occur if a negative
resistance-test result concerning antibiotic B was known. That is, could this test

35

result make antibiotic B the better choice for treatment? In MEcore, such a
what-if-analysis is accomplished by

(3) currState.whatif((¬posResT B)[1.0], medQueries);

delivering the results shown in Fig. 5(b). The probabilities show that even a
negative resistance-B test would not change the general decision to administer
antibiotic A. This result is, amongst others, caused by the low resistance-B test
specificity.

Another what-if-analysis revealing the effects of a positive resistance-A-test

(4) currState.whatif((posResT A)[1.0], medQueries);

yields the probabilities given in Fig. 5(c). This shows that a test-result suggesting
the resistance to antibiotic A would change the situation: In this case, a treat-
ment with antibiotic B becomes the only choice that offers a realistic healing
chance. This is not surprising, because a resistance-test result concerning antibi-
otic A is very reliable. So it is clearly advisable to perform the time-consuming
resistance-A test.

In case of a positive resistance-A-test result, would it also be helpful to test
the resistance to antibiotic B? That is, could an additional positive resistance-
B-test change the decision to administer antibiotic B? Hypothetical reasoning

(5) currState.whatif(((posResT A)[1.0], (posResT B)[1.0]), medQueries);

yields the results shown in Fig. 5(d), indicating that even a positive resistance-
B-test would not change the decision to administer antibiotic B. So it is not
helpful to perform a resistance-B test in any situation, since its result would
never change the decision that had been made without knowing the test result.

6.2 Diagnosis of Lung Cancer

This section is based on [21], reporting on a case study of using probabilistic
relational modelling and learning as provided by MLNs and the MLN system
Alchemy [45] (cf. Sec. 5.3) in the field of biomedical diagnosis. We employ
different algorithms to learn MLNs from sample data. Each MLN induces a
probabilistic model and thereby allows probabilistic reasoning. The idea behind
this diagnostical setting is to support diagnosis of bronchial carcinoma on the
basis of the substances a person exhales [3, 2]. In this setting, the focus is on
the early detection of bronchial carcinoma by ion mobility spectrometry, a non-
invasive diagnostic method which delivers results within a few minutes and can
be applied at low costs.

Ion Mobility Spectrometry In order to determine chemical substances in
gaseous analytes, ion mobility spectrometry (IMS) can be used [3]. This method
relies on characterizing substances in gases by their ion mobility. After ionisation,
ion swarms enter the drift region through an ion shutter. The time needed to pass
the drift region is called drift time, and the ion mobility is inversely proportional
to the drift time. An ion mobility spectrum is obtained by mapping the drift

36

time to the signal intensity measured at the Faraday plate. If the gaseous analyte
contains various substances, they may reach the Faraday plate at the same time.
In order to avoid this, a multi capillary column is used for the pre-separation
of different substances [3] so that they enter the spectrometer at different time
points, called retention times; for more detailed descriptions of ion mobility
spectrometry and its working principle we refer to [2] or [3].

Thus, applying ion mobility spectrometry to gaseous analytes yields IMS
spectra where a peak in such a spectrum corresponds to a particular substance.
The determination of peaks in a measurement requires sophisticated processing
of the raw spectra, see [3, 6] for details. Peak objects taken from two different
measurements that correspond to the same substance occur at corresponding
areas in their respective so-called heat maps, and in order to identify such corre-
sponding peaks, they can be mapped to peak clusters [3, 21]. In our case study,
we investigated an IMS database consisting of 158 measurements obtained from
screening the breath of 158 patients out of which 82 had lung cancer (bronchial
carcinoma, bc), yielding a database Dbc with 33 peak clusters, in the following
referred to by the identifiers pc0 , . . . , pc32 . For each peak cluster pci, P (bc|pci)
denotes the conditional probability that a measurement having a peak belonging
to pci stems from a person having bronchial carcinoma. For applying methods of
probabilistic relational modelling and learning to Dbc , we use a logic represen-
tation of Dbc (for convenience, also referred to as Dbc) involving the predicates
bc(M) indicating that measurement M belongs to a person having lung cancer
and pcInM (PC ,M) stating that peak cluster PC occurs in measurement M .

In the following, we present different setups to learn MLNs from the data set
Dbc . Our goal is to calculate the probability that a certain measurement m is
from some person with a bronchial carcinoma, given the information for each of
the 33 peak clusters whether or not it is contained in measurement m. That is,
we want to calculate the conditional probability of bc(m), given the truth values
of the literals pcInM (pc0 ,m), . . . , pcInM (pc32 ,m). This conditional probabil-
ity helps to classify patients with respect to suffering from lung cancer. The
corresponding classification task can be realized with MLNs. We use the soft-
ware package Alchemy [45] which provides several sophisticated algorithms to
perform (structure and parameter) learning and inference of MLNs. A learned
MLN is validated in terms of classification accuracy, defined as the proportion
of the correctly predicted (positive and negative) results on the total number
of measurements in a testing set; these values are determined as the average
accuracy of all tests in a 10-fold cross-validation.

Learning Logic Rules with the ILP System Aleph In a first learning setup,
we use the inductive logic programming (ILP) system Aleph [65] for learning first-
order logic rules from the data set. Besides other parameters, Aleph allows to
make detailed specifications about which atoms may appear in the body or head
of a rule. As we want to predict whether or not the measurement M belongs to
a patient having bronchial carcinoma, we require that heads of the rules learned
by Aleph must contain the bc predicate, whereas their body must consist of one

37

or more atoms of the pcInM predicate, with a constant in the first argument.
This way, the rules predict the value of bc(M), given the values of some of the
pcInM (pci ,M). The two rules

R1: pcInM (pc5 ,M) ∧ pcInM (pc8 ,M) ⇒ bc(M)

R2: pcInM (pc7 ,M) ∧ pcInM (pc17 ,M) ∧ pcInM (pc31 ,M)⇒ bc(M)

are examples of the 11 rules learned with Aleph [21]. The premises of all 11 rules
consist of conjunctions of at most three positive pcInM literals. From the 33
different peak clusters found in the data set, only 18 occur in the rule set, so the
other 15 peak clusters seem to carry no useful information with regard to lung
cancer according to the Aleph result.

Learning Weights of Aleph Formulas with Alchemy In a subsequent step,
we take the Aleph implications as logical base structure of an MLN and learn
appropriate weights for them from the data set using Alchemy. For instance, the
resulting weights for the rules R1 and R2 above are 4.596 and 6.004, respectively.
Evaluating the MLN prediction performance results in an accuracy of 78%.

If we take the implications as if-then-rules, we can determine the condi-
tional probabilities of these rules under the distribution induced by the MLN,
i. e. we use Alchemy to calculate the conditional probability of a rule’s conse-
quent ground atom given its premise ground atoms as evidence. E. g., for rule R1,
Alchemy determines the probability P (bc(m)|pcInM (pc5 ,m)∧pcInM (pc8 ,m)) =
0.9800 in the MLN; for R2 we get 0.996. In fact, the conditional probabilities of
all rules are not exactly 1.0, as expected, but rather close to it (see [21]). This
is due to the fact that Alchemy performs approximate inference.

The learned MLN allows to draw some conclusions between peak clusters
(i. e. the occurrence of substances in a measurement) and bronchial carcinoma.
E. g., formula R2 relates the combined occurrence of peak clusters pc7 , pc17 ,
and pc31 in a measurement M to the presence of bronchial carcinoma. Because
of the positive (and relatively high) weight of this formula, the combined oc-
currence of these peak clusters can be interpreted as an indicator for bronchial
carcinoma. Likewise, there are also formulas relating the combined occurrence
of peak clusters to the absence of bronchial carcinoma.

Simple Classification with MLNs In a further learning setup, we prede-
fine the formula structure of a quite simple MLN: The MLN consists of the 33
implications pcInM (pc0 ,M) ⇒ bc(M), . . . , pcInM (pc32 ,M) ⇒ bc(M). Since
the Alchemy syntax allows to express such ”partially grounded” formulas in a
compact way, the whole predefined structural Alchemy input merely consists of
a single line. With this MLN structure, we follow a straightforwardly modelled
classification approach: To classify the bc state of a measurement, we consider
each peak cluster separately, leaving out any connections or dependencies among
them. To some extent, this approach resembles Naive Bayes classification, where
explicit independence assumptions among classifying attributes are made. The

38

evaluation of the learned MLN revealed quite a high accuracy of 88% [21], al-
though the enforced MLN structure lacks any connections between peak clusters,
suggesting that those connections are not of great importance for classifying the
measurements regarding bc.

MLN Structure Learning In this learning setup, we make use of Alchemy’s
structure learning feature to learn an MLN from scratch. Alchemy does not allow
to make detailed specifications about the formulas to be learned, i. e. we cannot
impose the requirement that the pcInM (,) atoms have a constant in the first
argument. As a consequence, Alchemy’s structure learning algorithm produces
no useful results when applied to Dbc without any further information. So we
modify the relational modelling in some aspect by replacing the binary predicate
pcInM (PC ,M) by 33 unary predicates pc0 (M), . . . , pc32 (M).

Using this setup, the structure (and weight) learning with Alchemy starts
from an empty MLN and computes within a few minutes an MLN with 89 for-
mulas (including 34 atomic formulas for all 34 predicates) [21]. The evaluation
of this MLN shows an accuracy of 90%. Compared to the previous results, this
MLN models much more connections among the peak clusters and their com-
bined influence regarding bc(M). Only 13 of the 55 non-atomic formulas involve
a bc literal, so the other 42 formulas express connections among the peak clus-
ters regardless of the bc(M) state, and the formulas contain both positive and
negative peak cluster literals. Consequently, this MLN exhibits more complex
and subtle connections among the occurrences of peak clusters and the bc(M)
state. Here are two examples for the learned formulas:

R61: (¬pc10 (M) ∧ pc14 (M) ∧ ¬pc18 (M) ∧ pc21 (M)⇒ bc(M), 7.15)

R44: (pc17 (M) ∧ pc28 (M)⇒ pc21 (M), 5.05)

R61 relates the combined occurrence of peak clusters pc14 and pc21 and the
explicit absence of peak clusters pc10 and pc18 in a measurement to bronchial
carcinoma. With a lower, but still relatively high weight, R44 implies that a
measurement containing peak clusters pc17 and pc28 also contains peak cluster
pc21 . In other words, the system has learned the relationship that the occurrence
of the two substances indicated by peak clusters pc17 and pc28 in a measure-
ment M leads to the presence of the substance identified by pc21 in the same
measurement. Such a relation can provide interesting insights into the general
composition of substances in typical measurements.

6.3 Predicting Allergic Diseases of Children

In this section, another application of MLNs for modelling and learning in the
medical domain is presented. In [64], MLNs were employed to analyze the cor-
relations between allergic diseases of children and certain environmental factors.
The data used in this analysis has been extracted from the KiGGS study of the
Robert Koch-Institut [60]. The KiGGS study is a long term study which covers
the health situation of 17.000 children (and adolescents) in Germany. It considers

39

a multitude of attributes for every child concerning medical or social aspects.
For the experiments described in [64], 13 of these attributes had been chosen
which represent well-known risk factors for allergies, e. g. ”the child has a pet at
home”, ”the child lives in an urban environment”, or ”a parent suffers from an
allergy”. Each such attribute was modelled by a corresponding MLN predicate,
e. g. hasPet(X), urban(X). Together with the information whether or not a child
is allergic (represented by an isAllergic(X) predicate) this allowed to model the
data from the study as MLN learning data, i. e. as data samples in terms of
ground atoms. The extracted and preprocessed learning data from the study
consisted of about 8.000 data samples, covering allergic respectively non-allergic
children in equal parts. In all experiments, subsets of these data samples were
used as actual training and testing data (performing a 5-fold cross-validation).

Several learning experiments were performed on this learning data using the
algorithms of the Alchemy software package [45] (cf. Sec. 5.3) for learning and
inference. The goal of all experiments was to learn an MLN which can predict
the risk of a child to be allergic given the presence (or absence, respectively) of
each of the 13 risk factors. The learning experiments included parameter (i. e.
weight) learning using a predefined MLN formula structure which consisted of
13 implications of the form e. g. hasPet(X) ⇒ isAllergic(X). In another exper-
iment, Alchemy’s structure learning algorithm was applied to learn an MLN
(formulas and weights) from scratch. The evaluation of the learned MLNs was
carried out by using several of Alchemy’s (approximate) inference algorithms.
Additionally, the software PyMLNs (which is part of the ProbCog suite [33])
was used to perform exact inference on some MLNs in order to evaluate the
deviation compared to the approximate results. The experiments showed that
the results of the various Alchemy algorithms were quite similar and that there
were no significant differences compared to the exact results.

Overall, the quality of the learned MLNs in terms of classification accuracy
turned out to be not as good as expected. For various experiment settings, the
MLNs resulting from structure as well as from parameter learning provide an
accuracy of about 61% in predicting a child to be allergic. This could be improved
by focusing on formulas the probabilities of which were significantly different
from 0.5. However, further investigations into the evaluation of the quality of
learned MLNs for prediction tasks in this domain will be necessary.

7 Conclusions and Future Work

This paper gives a brief overview on the state of the art in probabilistic rea-
soning, and illustrates the relevance of probabilistic methods for expert systems
by describing their applications in various scenarios. The main advantage of
probabilistic formalisms is a semantically clear and expressive handling of un-
certainty which pervades all real world problems. Degrees of uncertainty can be
conveniently obtained from statistical data and processed via probabilistic net-
works. Moreover, we go into more details on novel approaches combining proba-
bility theory and first-order logic which provide more expressive frameworks for

40

probabilistic reasoning. Using observations from theoretical foundations, imple-
mented support systems, and a range of applications, we argue that probabilistic
frameworks provide suitable and rich environments for learning, modelling, and
reasoning in expert systems.

In particular, in this paper we discussed the problem of comparing formalisms
for relational probabilistic knowledge representation from both a conceptual and
a pragmatical point of view. This discussion was led by several focal aspects.
First, we presented the framework of relational probabilistic conditional logic
(RPCL) with grounding, averaging, and aggregating maximum entropy seman-
tics, providing novel approaches to relational probabilistic knowledge represen-
tation and reasoning. This framework extends the information-theoretic prin-
ciple of maximum entropy, that elegantly addresses the problem of incomplete
knowledge, from propositional probabilistic conditional logic to the relational
case. Secondly, we proposed a series of comparison and evaluation criteria for
relational probabilistic models. These criteria describe, in an abstract fashion,
diverse properties by which approaches to relational probabilistic reasoning can
be distinguished. The criteria are focused on representation and reasoning issues,
and we discussed them in an exemplary manner on BLPs, MLNs, and the three
maximum entropy approaches MEGU , ME∅, and ME�. Furthermore, we gave
an overview of the KReator system which is a versatile toolbox for probabilis-
tic relational reasoning. KReator alleviates the researcher’s and knowledge
engineer’s work with different approaches to statistical relational learning by
providing a unified and simple interface. Finally, using examples from the med-
ical and biomedical domains, we illustrated the use of probabilistic knowledge
representation and in particular of maximum entropy methods in application
scenarios.

We expect that the discussion on comparing different approaches to relational
probabilistic reasoning motivates further research and leads to application of the
evaluation criteria to other formalisms. While the comparison and evaluation
criteria formulated in this paper focus on the knowledge representation point
of view, there are other important aspects. We already mentioned the area of
learning which we deliberately left out in this paper. When knowledge bases grow
larger, there should be the possibility to modularize them. Inference and learning
on modularized knowledge bases should be able to reflect and exploit the modular
structure. Moreover, different sources of knowledge as well as the integration of
background knowledge could be supported; again, both inference and learning
must take this into account. As part of our future work, we will elaborate detailed
comparison and evaluation criteria for these additional aspects.

The KReator system already supports many scientific tasks in the area of
relational probabilistic reasoning. Due to the open architecture of KReator and
the ability to perform many tasks on abstract notions of e. g. knowledge bases,
the task of implementing learning algorithms—which are already available for
BLPs and MLNs—for different representation formalisms benefits from many
commonalities of these algorithms. Most approaches on learning statistical re-
lational models from data rely on established work from propositional learners.

41

Learning the structure of relational probabilistic models can be done using stan-
dard inductive logic programming systems like CLAUDIEN [57] or MACCENT
[14]. Learning the values (probabilities) of the models can be performed us-
ing e. g. the EM-algorithm (expectation maximization, see [15]). These common
components simplify implementing the ability to learn different knowledge bases
from data within KReator. In order to gain the ability to learn RPCL knowl-
edge bases (which differ significantly from other relational models which mostly
rely on graphical notions and probabilistic dependence/independence assump-
tions) we plan to integrate an extended version of the CondorCKD system [25,
39]. CondorCKD is a propositional learning system for conditionals that relies
on an algebraic characterization of interrelationships between conditionals in a
knowledge base, cf. [36]. Our future work also comprises using KReator as a
testbed to evaluate other approaches to relational probabilistic reasoning under
maximum entropy [41].

KReator is available under the GNU General Public License and can be
obtained from http://kreator.cs.tu-dortmund.de/.

References

1. C. Baral, M. Gelfond, and N. Rushton. Probabilistic Reasoning with Answer Sets.
Theory and Practice of Logic Programming, 9:57–144, 2009.

2. J. Baumbach, A. Bunkowski, S. Lange, T. Oberwahrenbrock, N. Kleinbölting,
S. Rahmen, and J. I. Baumbach. IMS2 – An integrated medical software sys-
tem for early lung cancer detection using ion mobility spectometry data of human
breath. J. of Integrative Bioinformatics, 4(3), 2007.

3. J. I. Baumbach and M. Westhoff. Ion mobility spectometry to detect lung cancer
and airway infections. Spectroscopy Europe, 18(6):22–27, 2006.

4. C. Beierle, M. Finthammer, G. Kern-Isberner, and M. Thimm. Evaluation and
comparison criteria for approaches to probabilistic relational knowledge represen-
tation. In J. Bach and S. Edelkamp, editors, KI 2011, volume 7006 of LNCS, pages
63–74. Springer, 2011.

5. C. Beierle and G. Kern-Isberner. The relationship of the logic of big-stepped
probabilities to standard probabilistic logics. In S. Link and H. Prade, editors,
Foundations of Information and Knowledge Systems (FoIKS 2010), LNCS, Vol.
5956, pages 191–210. Springer, 2010.

6. B. Bödeker, W. Vautz, and J. I. Baumbach. Peak finding and referencing in
MCC/IMS-data. International Journal for Ion Mobility Spectrometry, 11(1-4):83–
87, 2008.

7. J. S. Breese. Construction of Belief and Decision Networks. Computational Intel-
ligence, 8(4):624–647, 1992.

8. M. Broecheler, G. I. Simari, and V. S. Subrahmanian. Using histograms to better
answer queries to probabilistic logic programs. In Logic Programming, 25th Inter-
national Conference, ICLP 2009. Proceedings, volume 5649 of LNCS, pages 40–54.
Springer, 2009.

9. M. Bruynooghe, B. De Cat, J. Drijkoningen, D. Fierens, J. Goos, B. Gutmann,
A. Kimmig, W. Labeeuw, S. Langenaken, N. Landwehr, W. Meert, E. Nuyts,
R. Pellegrims, R. Rymenants, S. Segers, I. Thon, J. Van Eyck, G. Van den Broeck,
T. Vangansewinkel, L. Van Hove, J. Vennekens, T. Weytjens, and L. De Raedt.

42

An Exercise with Statistical Relational Learning Systems. In P. Domingos and
K. Kersting, editors, International Workshop on Statistical Relational Learning
(SRL-2009), Leuven, Belgium, 2009.

10. M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational Bayesian networks
for exact inference. International Journal of Approximate Reasoning, 42(1–2):4–20,
May 2006.

11. J. Cussens. Logic-based formalisms for statistical relational learning. In L. Getoor
and B. Taskar, editors, Introduction to Statistical Relational Learning. MIT Press,
Cambridge, MA, 2007.

12. J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.
In Annals of Mathematical Statistics, volume 43, pages 1470–1480. Institute of
Mathematical Statistics, 1972.

13. L. De Raedt and K. Kersting. Probabilistic inductive logic programming. In L. D.
Raedt, K. Kersting, N. Landwehr, S. Muggleton, and J. Chen, editors, Probabilistic
Inductive Logic Programming, volume 4911 of Lecture Notes in Computer Science,
pages 1–27. Springer, 2008.

14. L. Dehaspe. Maximum Entropy Modeling with Clausal Constraints. In Proceedings
of the 7th International Workshop on Inductive Logic Programming, volume 1297
of Lecture Notes in Artificial Intelligence, pages 109–125. Springer, 1997.

15. A. P. Dempster, L. N. M., and D. B. Rubin. Maximum-likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B,
39(1):1–38, 1977.

16. P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial Intelli-
gence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool, San Rafael, CA, 2009.

17. R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability. J. ACM,
41(2):340–367, 1994.

18. D. Fierens. Learning Directed Probabilistic Logical Models from Relational Data.
PhD thesis, Katholieke Universiteit Leuven, 2008.

19. M. Finthammer. An iterative scaling algorithm for maximum entropy reasoning
in relational probabilistic conditional logic. In Scalable Uncertainty Management,
6th International Conference, Proceedings, LNAI. Springer, 2012. (to appear).

20. M. Finthammer, C. Beierle, B. Berger, and G. Kern-Isberner. Probabilistic reason-
ing at optimum entropy with the MEcore system. In H. C. Lane and H. W. Gues-
gen, editors, Proceedings 22nd International FLAIRS Conference, FLAIRS’09.
AAAI Press, Menlo Park, California, 2009.

21. M. Finthammer, C. Beierle, J. Fisseler, G. Kern-Isberner, and J. I. Baumbach. Us-
ing probabilistic relational learning to support bronchial carcinoma diagnosis based
on ion mobility spectrometry. International Journal for Ion Mobility Spectrometry,
13:83–93, 2010.

22. M. Finthammer and M. Thimm. An Integrated Development Environment for
Probabilistic Relational Reasoning. International Journal of the IGPL, 2011. . (to
appear).

23. J. Fisseler. Toward Markov Logic with Conditional Probabilities. In D. C. Wilson
and H. C. Lane, editors, Proceedings of the 21st International FLAIRS Conference
(FLAIRS’08), pages 643–648. AAAI Press, 2008.

24. J. Fisseler. Learning and Modeling with Probabilistic Conditional Logic, volume
328 of Dissertations in Artificial Intelligence. IOS Press, Amsterdam, 2010.

25. J. Fisseler, G. Kern-Isberner, C. Beierle, A. Koch, and C. Müller. Algebraic Knowl-
edge Discovery using Haskell. In Practical Aspects of Declarative Languages, 9th In-

43

ternational Symposium, volume 4354 of Lecture Notes in Computer Science, pages
80–93. Springer, 2007.

26. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

27. L. Getoor, N. Friedman, D. Koller, and B. Tasker. Learning Probabilistic Models
of Relational Structure. In C. E. Brodley and A. P. Danyluk, editors, Proceedings
of the 18th International Conference on Machine Learning (ICML 2001), pages
170–177. Morgan Kaufmann, 2001.

28. L. Getoor and J. Grant. PRL: A probabilistic relational language. Machine Learn-
ing, 62(1):7–31, 2006.

29. L. Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning.
MIT Press, 2007.

30. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, third edition edition, 2005.

31. M. Jaeger. Relational Bayesian Networks: A Survey. Electronic Transactions in
Artificial Intelligence, 6, 2002.

32. M. Jaeger. Model-Theoretic Expressivity Analysis. In L. D. Raedt, K. Kersting,
N. Landwehr, S. Muggleton, and J. Chen, editors, Probabilistic Inductive Logic
Programming, volume 4911 of Lecture Notes in Computer Science, pages 325–339.
Springer, 2008.

33. D. Jain, L. Mösenlechner, and M. Beetz. Equipping Robot Control Programs with
First-Order Probabilistic Reasoning Capabilities. In International Conference on
Robotics and Automation (ICRA), pages 3130–3135, 2009.

34. F. V. Jensen and T. D. Nielsen. Bayesian Networks and Decision Graphs. Springer-
Verlag, 2007.

35. G. Kern-Isberner. Characterizing the principle of minimum cross-entropy within
a conditional-logical framework. Artificial Intelligence, 98:169–208, 1998.

36. G. Kern-Isberner. Conditionals in nonmonotonic reasoning and belief revision.
Number 2087 in Lecture Notes in Computer Science. Springer, 2001.

37. G. Kern-Isberner. Linking iterated belief change operations to nonmonotonic rea-
soning. In G. Brewka and J. Lang, editors, Proceedings 11th International Confer-
ence on Knowledge Representation and Reasoning, KR’2008, pages 166–176, Menlo
Park, CA, 2008. AAAI Press.

38. G. Kern-Isberner, C. Beierle, M. Finthammer, and M. Thimm. Probabilistic logics
in expert systems: Approaches, implementations, and applications. In Proceedings
of the 22nd International Conference on Database and Expert Systems Applications
(DEXA’11), volume 6860 of LNCS, pages 27–46. Springer, 2011.

39. G. Kern-Isberner and J. Fisseler. Knowledge Discovery by Reversing Inductive
Knowledge Representation. In Proceedings of the Ninth International Conference
on the Principles of Knowledge Representation and Reasoning, KR-2004, pages
34–44. AAAI Press, 2004.

40. G. Kern-Isberner and T. Lukasiewicz. Combining probabilistic logic programming
with the power of maximum entropy. Artificial Intelligence, Special Issue on Non-
monotonic Reasoning, 157(1-2):139–202, 2004.

41. G. Kern-Isberner and M. Thimm. Novel Semantical Approaches to Relational
Probabilistic Conditionals. In Proceedings of the Twelfth International Conference
on the Principles of Knowledge Representation and Reasoning (KR’10), pages 382–
392, May 2010.

42. G. Kern-Isberner and M. Thimm. A ranking semantics for first-order conditionals.
In Proceedings 20th European Conference on Artificial Intelligence, ECAI-2012,
2012. (to appear).

44

43. K. Kersting and L. De Raedt. Bayesian Logic Programming: Theory and Tool. In
L. Getoor and B. Taskar, editors, An Introduction to Statistical Relational Learn-
ing. MIT Press, 2007.

44. N. S. Ketkar, L. B. Holder, and D. J. Cook. Comparison of Graph-based and
Logic-based Multi-relational Data Mining. SIGKDD Explor. Newsl., 7(2):64–71,
2005.

45. S. Kok, P. Singla, M. Richardson, P. Domingos, M. Sumner, H. Poon, D. Lowd,
and J. Wang. The Alchemy System for Statistical Relational AI: User Manual.
Department of Computer Science and Engineering, University of Washington, 2008.

46. A. Krämer and C. Beierle. On lifted inference for a relational probabilistic con-
ditional logic with maximum entropy semantics. In T. Lukasiewicz and A. Sali,
editors, Foundations of Information and Knowledge Systems (FoIKS 2012), volume
7153 of LNCS, pages 224–243. Springer, 2012.

47. S. Loh, M. Thimm, and G. Kern-Isberner. On the problem of grounding a relational
probabilistic conditional knowledge base. In Proceedings of the 14th International
Workshop on Non-Monotonic Reasoning (NMR’10), Toronto, Canada, May 2010.

48. S. Loh, M. Thimm, and G. Kern-Isberner. On the problem of grounding a relational
probabilistic conditional knowledge base. In T. Meyer and E. Ternovska, editors,
Proceedings 13th International Workshop on Nonmonotonic Reasoning NMR’2010,
Subworkshop on NMR and Uncertainty, 2010.

49. S. Muggleton and J. Chen. A Behavioral Comparison of some Probabilistic Logic
Models. In L. D. Raedt, K. Kersting, N. Landwehr, S. Muggleton, and J. Chen,
editors, Probabilistic Inductive Logic Programming, pages 305–324. Springer, 2008.

50. S. H. Muggleton. Stochastic Logic Programs. In L. de Raedt, editor, Advances in
Inductive Logic Programming, pages 254–264. IOS Press, Amsterdam, Netherlands,
1996.

51. N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.
52. D. Nute and C. Cross. Conditional Logic. In D. Gabbay and F. Guenther, ed-

itors, Handbook of Philosophical Logic, volume 4, pages 1–98. Kluwer Academic
Publishers, 2002.

53. J. Paris. The uncertain reasoner’s companion – A mathematical perspective. Cam-
bridge University Press, 1994.

54. J. Paris. The uncertain reasoner’s companion – A mathematical perspective. Cam-
bridge University Press, 1994.

55. J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intelli-
gence, 29:241–288, 1986.

56. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

57. L. D. Raedt and L. Dehaspe. Clausal Discovery. Machine Learning, 26:99–146,
1997.

58. L. D. Raedt, A. Kimmig, B. Gutmann, K. Kersting, V. S. Costa, and H. Toivo-
nen. Probabilistic Inductive Querying Using ProbLog. Technical Report CW 552,
Department of Computer Science, Katholieke Universiteit Leuven, Belgium, June
2009.

59. M. Richardson and P. Domingos. Markov Logic Networks. Machine Learning,
62(1–2):107–136, 2006.

60. Robert Koch-Institut. Public Use File KiGGS, Kinder- und Jugendgesundheitssur-
vey 2003-2006, Berlin, 2008.

61. W. Rödder. Conditional Logic and the Principle of Entropy. Artificial Intelligence,
117:83–106, 2000.

45

62. W. Rödder and C.-H. Meyer. Coherent Knowledge Processing at Maximum En-
tropy by SPIRIT. In Proceedings UAI 1996, pages 470–476, 1996.

63. W. Rödder, E. Reucher, and F. Kulmann. Features of the expert-system-shell
SPIRIT. Logic Journal of the IGPL, 14(3):483–500, 2006.

64. E. Schmaußer-Hechfellner. Probabilistic logic knowledge modelling of statistical
medical data by applying learning- and inference-techniques of Markov logic net-
works. Bachelor Thesis, Dept. of Computer Science, FernUniversität in Hagen,
2011. (in German).

65. A. Srinivasan. The Aleph Manual. www.comlab.ox.ac.uk/activities/

machinelearning/Aleph/, 2007.
66. M. Thimm, M. Finthammer, S. Loh, G. Kern-Isberner, and C. Beierle. A system

for relational probabilistic reasoning on maximum entropy. In H. W. Guesgen
and R. C. Murray, editors, Proceedings 23rd International FLAIRS Conference,
FLAIRS’10, pages 116–121, Menlo Park, California, 2010. AAAI Press.

67. M. Thimm, G. Kern-Isberner, and J. Fisseler. Relational probabilistic conditional
reasoning at maximum entropy. In ECSQARU, volume 6717 of LNCS, pages 447–
458. Springer, 2011.

68. M. P. Wellman, J. S. Breese, and R. P. Goldman. From Knowledge Bases to
Decision Models. The Knowledge Engineering Review, 7(1):35–53, 1992.

69. A. Yue, W. Liu, and A. Hunter. Measuring the ignorance and degree of satisfac-
tion for answering queries in imprecise probabilistic logic programs. In Scalable
Uncertainty Management, Second International Conference, Proceedings, volume
5291 of LNCS, pages 386–400. Springer, 2008.

46

