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Abstract

The principle of maximum entropy has proven to be a powerful approach for commonsense reasoning

in probabilistic conditional logics on propositional languages. Due to this principle, reasoning is
performed based on the unique model of a knowledge base that has maximum entropy. This kind

of model-based inference fulfills many desirable properties for inductive inference mechanisms and

is usually the best choice for reasoning from an information theoretical point of view. However, the
expressive power of propositional formalisms for probabilistic reasoning is limited and in the past

few years many proposals have been given for probabilistic reasoning in relational settings. It seems
to be a common view that in order to interpret probabilistic first-order sentences, either a statistical

approach that counts (tuples of) individuals has to be used, or the knowledge base has to be grounded

to make a possible worlds semantics applicable, for a subjective interpretation of probabilities. Most
of these proposals of the second type rely on extensions of traditional probabilistic models like Bayes

nets or Markov networks whereas there are only few works on first-order extensions of probabilistic

conditional logic. Here, we take an approach of lifting maximum entropy methods to the relational
case by employing a relational version of probabilistic conditional logic. First, we propose two

different semantics and model theories for interpreting first-order probabilistic conditional logic. We

address the problems of ambiguity that are raised by the difference between subjective and statistical
views, and develop a comprehensive list of desirable properties for inductive model-based probabilistic

inference in relational frameworks. Finally, by applying the principle of maximum entropy in the

two different semantical frameworks, we obtain inference operators that fulfill these properties and
turn out to be reasonable choices for reasoning in first-order probabilistic conditional logic.

Keywords: First-Order Logic, Probabilistic Reasoning, Maximum Entropy, Conditional Logic

1 Introduction

Applying probabilistic reasoning methods to relational representations of knowledge is
a very active and controversial area of research. During the past few years the fields
of probabilistic inductive logic programming and statistical relational learning have
put forth many proposals that deal with combining traditional probabilistic models
of knowledge like Bayes nets or Markov nets [29] with first-order logic, cf. [8, 14].
For example, two of the most prominent approaches for extending propositional ap-
proaches to the relational case are Bayesian Logic Programs [14, Ch. 10] and Markov
Logic Networks [14, Ch. 12], extending Bayes nets and Markov nets, respectively.
Other formalisms are Probabilistic Relational Models [14, Ch. 5], Logical Bayesian
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Networks [10], and Relational Bayesian Networks [19]. Most of these frameworks em-
ploy knowledge-based model construction techniques [37, 6] to reduce the problem of
probabilistic reasoning in a relational context to probabilistic reasoning in a proposi-
tional context. This is done by appropriately grounding the parts of the knowledge
base that are needed for answering a particular query and treating these grounded
parts as a propositional knowledge base.

However, most of these approaches are primarily concerned with machine learning
problems, and do not care about logical or formal properties of relational proba-
bilistic knowledge representation and reasoning in particular. The following example
(inspired by [9]) illustrates that even defining a proper semantics for first-order prob-
abilistic knowledge bases is not an easy task. Let elephant(X) denote that X is an
elephant, keeper(X) means that X is a keeper, and likes(X,Y) denotes that X likes Y
(we denote variables with a beginning uppercase letter, and constants with a begin-
ning lowercase letter). Consider the following rules r1, r2, r3:

r1 : elephant(X) ∧ keeper(Y) → likes(X,Y) [0.6]

r2 : elephant(X) ∧ keeper(fred) → likes(X, fred) [0.4]

r3 : elephant(clyde) ∧ keeper(fred) → likes(clyde, fred) [0.7]

expressing that with a probability of 0.6 elephants like their keepers (r1), with a
probability of 0.4 elephants like keeper Fred (r2), and with probability 0.7 elephant
Clyde likes keeper Fred (r3). From the point of view of commonsense reasoning this
knowledge base makes perfect sense: Rule r1 expresses that in some given popula-
tion, choosing randomly an elephant-keeper-pair, we would expect that the elephant
likes the keeper with probability 0.6. However, keeper Fred and elephant Clyde are
exceptional—mostly, elephants do not like Fred, but Clyde likes (even) Fred. Maybe
Clyde is a particularly good-natured elephant, maybe he is as moody as Fred and
likes only him. So, Clyde is definitely exceptional with respect to r2, but maybe even
with respect to r1.

However, the example is ambiguous, and its formal interpretation via probabilistic
constraints is intricate. Rule r1 seems to express a belief an agent may hold about
a population, while r3 clearly expresses individual belief: Considering all situations
(possible worlds) involving Clyde and Fred which are imaginable, in 70 % of them
Clyde likes Fred. So, we might think of applying different techniques to r1 and r3,
but r2 obviously mixes the two types of knowledge, how should r2 be dealt with?

In many approaches, e. g. in Bayesian Logic Programs and in Markov Logic Net-
works, the relational rules are grounded, and the probability is attached to each
instance. For r1, this means:

elephant(a) ∧ keeper(b) → likes(a, b) [0.6] for all a, b ∈ U.

Here U is a properly (or arbitrarily) chosen universe. Besides the question “How
should U be chosen?”, there are two other problems. First, grounding turns the
relational statement r1 into a collection of statements of the same type as r3, i. e.
statements about individual beliefs. The population aspect gets lost, more precisely:
r1 is no longer a statement describing a generic behaviour in a population of (possibly
very) individualistic individuals, but is understood to be a statement on individuals
which all behave the same. Secondly, naive grounding techniques make the knowl-
edge base inconsistent, as then r3 collides with the respective instances of r1 and
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r2. So, grounding has to take further constraints into account, to return a consistent
knowledge base (cf. [11]).

While most of the above mentioned formalisms for statistical relational learning or
inductive logic programming like Markov Logic Networks and Bayesian Logic Pro-
grams extend traditional (propositional) graphical models for probabilistic knowledge
representation like Markov Nets and Bayesian Networks, here, we employ probabilis-
tic conditional logic [20, 32, 31, 26]. In (propositional) probabilistic conditional logic
knowledge is captured using conditionals of the form (φ |ψ)[α] with some formulas
φ, ψ of a given propositional language and α ∈ [0, 1]. A probabilistic conditional of
this form partially describes an (unknown) probability distribution P ∗ by stating that
P ∗(φ |ψ) = α holds. In contrast to Bayes nets probabilistic conditional logic does not
demand to fully describe a probability distribution but only to state constraints on
it. On the one hand this is of great advantage because normally the knowledge en-
gineer cannot fully specify a probability distribution for the problem area at hand.
For example, if one has to represent probabilistic information on the relationships
between symptoms and diseases then (usually) one can specify the probability of
a specific disease given that a specific symptom is present but not if the symptom
is not present. Probabilistic conditional logic avoids such problems by allowing to
only partially specify a probability distribution. On the other hand, an incomplete
specification of the problem area may lead to inconclusive inferences because there
may be multiple probability distributions that satisfy the specified knowledge. The
näıve approach to reason in probabilistic conditional logic is to compute upper and
lower bounds for specific queries by consulting every probability distribution that is
a model of the given knowledge base. While this skeptical form of reasoning may
be appropriate for some applications, usually the inferences of this approach tend to
be too weak to be meaningful. As a credulous alternative, one can select a specific
probability distribution from the models of the knowledge base and do reasoning by
just using this probability distribution. A reasonable choice for such a model is the
one probability distribution with maximum entropy [15, 27, 20]. This probability
distribution satisfies several desirable properties for commonsense reasoning and is
uniquely determined among the probability distributions that satisfy a given set of
probabilistic conditionals, see [15, 27, 20] for the theoretical foundations.

In this paper, we will propose two approaches to giving formal semantics to re-
lational probabilistic conditional knowledge bases that aim at catching properly the
commonsense intuition and resolving ambiguities. This will prepare the grounds for
relational probabilistic reasoning in general. We will focus on model-based inductive
inference operators for each of these semantics, in order to improve inferences from
knowledge bases which usually represent only partial knowledge. We will make ex-
plicit what reasonable inference in this extended framework of relational probabilistic
logic means by setting up a set of postulates. Of course, all this should be clearly
related to work on probabilistic reasoning in the propositional case. In particular,
we expect our semantics to coincide with propositional approaches, if the knowledge
base is ground.

Moreover, we will present a model-based inductive inference operator that is based
on the principle of maximum entropy for each of the two semantics. The idea of
application is quite simple and similar to the propositional case: Having defined the
set of models of a relational probabilistic knowledge base (according to each of the
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semantics), one chooses the unique probability distribution among these models that
has maximal entropy, if possible, and therefore allows us to reason precisely (i. e.
with precise probabilities, not based on intervals), but in a most cautious way (see
[15, 20] for the theoretical foundations). Examples will illustrate in which respects
these inference operators differ, but we will show that both inference operators comply
with all postulates.

This paper continues and extends work begun in [35, 22], and is organized as follows.
First, we formalize the syntactical details of a probabilistic first-order conditional
logic, and propose two different semantics for it, the averaging and the aggregating
semantics. Afterwards we discuss the problem of inductive inference in this logic by
developing several desirable properties of rational inference operators. We continue
by presenting model-based inference operators that employ the principle of maximum
entropy in both semantical frameworks, giving rise to two different inference operators
which are exemplified and evaluated by means of the previously stated properties. We
conclude with a brief summary and some discussions on related and further work. All
proofs of theoretical results can be found in the appendix.

2 Syntax and Semantics of First-Order Conditional Logic

In the following we give an extension of probabilistic conditional logic to the relational
case similar to [12, 13]. We start by presenting the syntax of this logic and continue
presentation with two novel semantics. Afterwards, we give some insights on the
relationships of these semantics.

2.1 Basics of Syntax and Semantics

We consider only a fragment of a first-order language, so let Σ be a first-order signature
consisting of a (finite) set of predicate symbols and without functions of arity greater
zero. We generally assume that Σ contains a countably infinite pool of constant
symbols U . A predicate declaration P/n with a natural number n means that P is
a predicate of arity n. Let LΣ be a first-order language over the signature Σ that is
generated in the usual way using negation, conjunction, and disjunction, but without
quantifiers. If appropriate we abbreviate conjunctions A ∧ B by AB. We denote
constants with a beginning lowercase, variables with a beginning uppercase letter,
and vectors of these with ~a and ~X, respectively.

A formula that contains no variable is called ground. Let groundC(A) denote
the set of ground instances of A with respect to a set of constants C ⊆ U , e. g.
ground{a,b}(A(X,Y)) is {A(a, a), A(a, b), A(b, a), A(b, b)}.

Definition 2.1 (Probabilistic Conditional)
Let A,B ∈ LΣ be formulas (not necessarily ground) that mention only a finite number
of constants and predicates. An expression of the form (B |A)[α] with a real number
α ∈ [0, 1] is called a probabilistic conditional. A probabilistic conditional (B |A)[α] is
ground if both A and B are ground. Let (LΣ | LΣ)prob be the set of all probabilistic
conditionals over LΣ.

Open conditionals, i. e. conditionals that contain variables, are meant to range over
all possible constants in the language but are not understood to stand as schemas for
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their instantiations. Rather, an open conditional describes a general or default rule.
The problem of giving open conditionals an intuitive and formal interpretation is part
of the topic of this paper and will be discussed in more depth below.

If a conditional r = (B |A)[α] contains free variables we also use the notation

r = (B(~X) |A(~X))[α] where ~X = (X1, . . . ,Xn) contains all free variables in A ∧ B.

If ~a is a vector of the same length as ~X then (B(~a) |A(~a))[α] is meant to denote the

instantiation of r with ~a. If ~X or ~a contains variables or constants not mentioned in A
and B then those are ignored. For example, if r = (B(X1) |A(X1,X2))[α] we also write

r = (B(~X) |A(~X))[α] with ~X = (X1,X2), and if ~a = (a1, a2) then (B(~a) |A(~a))[α] =
(B(a1) |A(a1, a2))[α].

If the premise A of a conditional (B |A)[α] is ground and tautological, i. e. A ≡ >,
we abbreviate (B | >)[α] by (B)[α]. A conditional of the form (B)[α] is also called a
probabilistic fact. Let groundC((B |A)[α]) denote the set of all grounded probabilistic
conditionals of a conditional (B |A)[α] with respect to a set of constants C ⊆ U .

Definition 2.2 (Knowledge base)
A finite set R of probabilistic conditionals is called a knowledge base. A knowledge
base R is ground if every probabilistic conditional in R is ground. Let R denote the
set of knowledge bases.

For a formula A ∈ LΣ let consts(A) ⊆ U denote the set of constants appearing in A.
Similarly, let consts(r) and consts(R) for a probabilistic conditional r and a knowledge
base R be defined accordingly. Note that due to the finiteness of formulas inside of
conditionals and the finiteness of knowledge bases it follows that consts(R) is finite
for a knowledge base R.

Remark 2.3
Bear in mind that a ground knowledge base R is equivalent to a propositional knowl-
edge base R′ by interpreting ground atoms in R as ordinary propositional atoms. For
the rest of this paper we treat ground relational knowledge bases and propositional
knowledge bases interchangeably.

We need some further notation to go on. For a formula A let A[d/c] denote the formula
that is the same as A except that every occurrence of the term c (either a variable or
a constant) is substituted with the term d. More generally, let A[d1/c1, . . . , dn/cn] de-
note the formula that is the same as A except that every occurrence of ci is substituted
with di for 1 ≤ i ≤ n simultaneously. Furthermore, let A[c↔ d] be an abbreviation for
A[c/d, d/c]. The substitution operator [·] is extended on sets of formulas, conditionals,
and knowledge bases in the usual way.

Introducing relational aspects in probabilistic statements raises some ambiguity on
the understanding of these statements. We illustrate this problem on the example
mentioned in the introduction (cf. also [9]).

Example 2.4
Consider the knowledge base Rzoo = {r1, r2, r3} with

r1 : (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6]

r2 : (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]

r3 : (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7]
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The knowledge base R describes the relationships between keepers and elephants
in a zoo, thereby stating both subjective degrees of belief on the relationship be-
tween Clyde and Fred (r3), as well as population-based probabilities that involve all
elephants and keepers (r1, r2). So, r3 should be interpreted via a possible worlds se-
mantics, whereas r1, r2 seem to describe a typical behavior within a population that
might have been obtained by statistical means (cf. e. g. [2]). In this paper, we propose
thoroughly subjective approaches to probability even for the relational case, using a
possible worlds semantics for all three statements above. In contrast to other ap-
proaches we do not interpret conditionals like r1 and r2 as schemas and reason using
their ground instances. This allows an intuitive and coherent interpretation of rela-
tional probabilistic statements that takes into account both information on specific
objects and information on a population.

Formal semantics for first-order probabilistic conditional logic will be given by prob-
ability distributions that are defined over possible worlds of the given first-order lan-
guage LΣ. Here, we use Herbrand interpretations for possible worlds. The Herbrand
base H is the set of all ground atoms that can be built using the predicate symbols
and constants in U , and a Herbrand interpretation is a (finite or infinite) subset of
H. For a Herbrand interpretation ω let consts(ω) ⊆ U denote the set of constants
appearing in ω. A Herbrand interpretation ω satisfies a ground atom A, denoted
by ω |= A, iff A ∈ ω. The satisfaction relation |= is extended to arbitrary ground
formulas in the usual way. Let Ω denote the set of all Herbrand interpretations and
let P : Ω→ [0, 1] be a probability distribution over Ω that satisfies

1. for all ω ∈ Ω it holds that P (ω) ≥ 0,

2. P (ω) 6= 0 only for finitely many ω ∈ Ω,

3. if ω ∈ Ω is infinite then P (ω) = 0, and

4.
∑
ω∈Ω P (ω) = 1.

We require probability distributions to satisfy the properties 2 and 3 in order to avoid
technical difficulties in handling infinite sums. As we only consider finite knowledge
bases, i. e., we consider only finite excerpts of Ω, these demands are of no concern
regarding the expressivity of our logic. Let Prob be the set of all probability distri-
butions that satisfy 1.) – 4.). We can extend P ∈ Prob on ground formulas A by
setting

P (A) =
∑
ω|=A

P (ω) .

For the propositional case [15, 20] satisfaction of a conditional is defined via con-
ditional probabilities. Let (B |A)[α] be a ground conditional. Then a probability
distribution P satisfies (B |A)[α], denoted by P |= (B |A)[α], if the following condi-
tion holds

P |= (B |A)[α] iff P (B |A) =
P (B ∧A)

P (A)
= α and P (A) > 0. (2.1)

It remains to define a satisfaction relation for conditionals with variables (see Exam-
ple 2.4). Taking a näıve approach by grounding all conditionals in R universally and
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taking this grounding R′ as a propositional knowledge base, we can (usually) not de-
termine any probability distribution that satisfies R′ due to its inherent inconsistency
[13, 11].

In the following, we propose two different approaches for semantics of (LΣ | LΣ)prob

that coincide with (2.1) in the propositional case but differ on the interpretation of
population-based statements.

2.2 Averaging Semantics

Example 2.4 showed that, in general, universal instantiation of an open conditional
(B(~X) |A(~X))[α] does not yield an equivalent representation of the intended meaning

of (B(~X) |A(~X))[α]. It demands that every instantiation inherits the probability α
which is not adequate in the context of non-monotonic reasoning. Moreover, having
more specific information on specific instantiations should not render the knowledge
base inconsistent as other instantiations might balance out exceptions. Consider the
following example from statistics.

Example 2.5
Imagine an urn with 10 balls, 9 of them are blue and one is red. Using sampling
without replacement our first draw is a blue ball. What is the probability of drawing
a blue ball in the second draw? Let ci be the ball that is drawn on i-th turn. We
represent the scenario after the first draw using a static world view, i. e., we suppose
that the probability of drawing a blue ball from the urn is (a priori) 0.9 but we know
that c1 is a blue ball for sure. Let Rurn = {r1,1, . . . , r1,10, r2, r3} be given via

r1,1 : (ball(c1))[1] . . . r1,10 : (ball(c10))[1]

r2 : (blue(X) | ball(X))[0.9]

r3 : (blue(c1))[1]

The knowledge base R1 expresses the agent’s beliefs after the first draw. Clearly,
the probability of drawing a blue ball on the second draw is 8/9 and a reasonable
semantics should allow both Rurn and Rurn ∪ {(blue(c2))[8/9]} to be satisfiable.

In the previous example conditional r2 defines an expected value for the probability of
drawing a blue ball in any turn, provided that we have no knowledge on the color of
already drawn balls and the remaining balls in the urn. The additional information
that a blue ball has already been drawn changes the expected value of drawing another
blue ball correspondingly. Therefore mutual influences of different conditionals have
to be taken into account when giving meaning to a knowledge base.

The approach of averaging semantics generalizes the above intuition by interpret-
ing open conditionals of the form (B(~X) |A(~X))[α] to describe an expected value on
the probability of (B(~a) | A(~a)) for some randomly chosen ~a in some given adequately
large universe. Thus, given the actual probabilities of (B(~a) | A(~a)) for each possible
instantiation ~a we expect the average of these probabilities to match α. In order
to be able to investigate the influence of the universe (or respectively, its size) on
the probabilistic evaluation of statements we parametrize the evaluation by a set of
constants D ⊆ U that represent the individuals actually under consideration, similar
to the notion of active domains in database theory [1]. Hence, a probability distri-

bution P : Ω → [0, 1] ∅-satisfies (B(~X) |A(~X))[α] under a set D ⊆ U , denoted by
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ω P (ω) ω P (ω)
∅ 0 {A(c2), B(c1)} 0
{A(c1)} 0 {A(c2), B(c2)} 0
{A(c2)} 0 {B(c1), B(c2)} 0
{B(c1)} 0 {A(c1), A(c2), B(c1)} 0.1
{B(c2)} 0 {A(c1), A(c2), B(c2)} 0.3
{A(c1), A(c2)} 0.1 {A(c1), B(c2), B(c2)} 0
{A(c1), B(c1)} 0 {A(c2), B(c1), B(c2)} 0
{A(c1), B(c2)} 0 {A(c1), A(c2), B(c1), B(c2)} 0.5

Table 1: A sample probability distribution for the knowledge base R in Example 2.7
(we assign probability 0 to all interpretations that do not appear).

P,D |=∅ (B(~X) |A(~X))[α] if and only if P (ω) = 0 for every ω ∈ Ω with consts(ω) 6⊆ D
and ∑

(B(~a) | A(~a))∈groundD(B(~X) | A(~X))

P (B(~a) | A(~a))

|groundD(B(~X) | A(~X))|
= α . (2.2)

In Equation (2.2), the denominator of the fraction on the left-side sums the conditional

probabilities of the different instantiations of (B(~X) |A(~X))[α] while the numerator
equals the number of these instantiations. Intuitively, a probability distribution P ∅-
satisfies a conditional (B(~X) |A(~X))[α] if the average of the individual instantiations

of (B(~X) |A(~X))[α] is α (with respect to D ⊆ U).

Remark 2.6
For a ground conditional (G2 |G1)[α] the operator |=∅ indeed coincides with the
propositional case due to groundD(G2 |G1) = {(G2 |G1)} for every D ⊆ U .

As usual, a probability distribution P ∅-satisfies a knowledge base R under D ⊆ U ,
denoted P,D |=∅ R, if P ∅-satisfies every probabilistic conditional r ∈ R under D.
We say that R is ∅-consistent under D iff there is at least one P with P,D |=∅ R,
otherwise R is ∅-inconsistent under D. Let ModD∅(R) denote the set of models of R
under D, i. e., it holds that ModD∅(R) = {P ∈ Prob | P,D |=∅ R}.

Example 2.7
Consider a knowledge base R = {r1, r2, r3} with

r1 : (B(X) |A(X))[0.7]

r2 : (A(X))[1]

r3 : (B(c1))[0.6]

and D = {c1, c2}. Consider the probability distribution P given in Table 1. Notice
that the given interpretations are given in the compact form described above. As one
can see, it holds P,D |=∅ R:

• It holds P,D |=∅ r1 as

P (B(c1) | A(c1)) = P (B(c1)A(c1))/P (A(c1)) = 0.6/1 = 0.6
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and

P (B(c2) | A(c2)) = P (B(c2)A(c2))/P (A(c2)) = 0.8/1 = 0.8

and hence (0.8 + 0.6)/2 = 0.7;

• it holds P,D |=∅ r2 as (P (A(c1)) + P (A(c2)))/2 = 1, and

• it holds P,D |=∅ r3 as P (B(c1)) = 0.6.

2.3 Aggregating Semantics

Averaging semantics preserves the interpretation of a conditional probability as sub-
jective belief in the conclusion given the premise holds. Therefore conditional proba-
bilities are only defined for ground conditionals and the probability of an open con-
ditional (B(~X) | A(~X)) is defined in terms of conditional probabilities of its instances.
When considering a relational language one might argue whether a conditional should
be interpreted in this manner or whether conditional probability should be redefined
on a higher level incorporating the relational structure of the language. In the fol-
lowing we give a novel approach for defining conditional probabilities in a relational
setting.

Considering again Example 2.5 statistics usually do not involve conditional proba-
bilities in the sense of subjective beliefs. So we first consider unconditioned formulas
(A(~X))[α] with free variables ~X. Let ω be some Herbrand interpretation and D ⊆ U
the set of individuals under consideration. Treating ω as a statistical sample we can
count the number of true instances of a(~X) in ω under D and determine the average
number of true instances via

fDω (A(~X)) =
|{A(~a) | A(~a) ∈ groundD(A(~X)) ∧ ω |= A(~a)}|

|groundD(A(~X))|
. (2.3)

For ground A(~a) we write

fDω (A(~a)) =

{
1 if ω |= A(~a)
0 if ω 6|= A(~a)

then (2.3) amounts to

fDω (A(~X)) =

∑
A(~a)∈groundD(A(~X)) f

D
ω (A(~a))

|groundD(A(~X))|
.

Considering some probability distribution P (thus describing either a series of samples,
or subjective beliefs in each interpretation being the actual world) we can appropri-
ately define

P (A(~X);D) =def

∑
ω∈Ω

fDω (A(~X))P (ω) (2.4)
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to be the weighted sum of the average frequencies. Rearranging (2.4) yields

P (A(~X);D) =
∑
ω∈Ω

fDω (A(~X))P (ω)

=
∑
ω∈Ω

∑
A(~a)∈groundD(A(~X)) f

D
ω (A(~a))

|groundD(A(~X))|
P (ω)

=

∑
ω∈Ω

∑
A(~a)∈groundD(A(~X)) f

D
ω (A(~a))P (ω)

|groundD(A(~X))|

=

∑
A(~a)∈groundD(A(~X))

∑
ω∈Ω f

D
ω (A(~a))P (ω)

|groundD(A(~X))|

=

∑
A(~a)∈groundD(A(~X)) P (A(~a))

|groundD(A(~X))|
(2.5)

and thus also a statistical justification for (2.2) for the case of unconditioned formulas
and averaging semantics. But instead of applying (2.5) in the same way to conditionals
we give a new definition of the conditional probability via

P (B(~X) | A(~X);D) =
P (B(~X)A(~X);D)

P (A(~X);D)

thus carrying over the definition of conditional probability to a relational setting. Ac-
cordingly we define the aggregating semantics as follows. A probability distribution
P : Ω → [0, 1] �-satisfies (B(~X) |A(~X))[α] under D ⊆ U , denoted by P,D |=�
(B(~X) |A(~X))[α] if and only if P (ω) = 0 for every ω ∈ Ω with consts(ω) 6⊆ D,

P (A(~X);D) > 0, and P (B(~X) | A(~X);D) = α. Note, that this definition nicely
resembles the satisfaction relation in the propositional case.

Remark 2.8
As for |=∅, for a ground conditional (B2 |A1)[α] the operator |=� coincides with the
propositional case due to groundD(B2 |A1) = {(B2 |A1)} for every D ⊆ U .

As above, a probability distribution P �-satisfies a knowledge base R under D,
denoted P,D |=� R, if P �-satisfies every probabilistic conditional r ∈ R under D.
We say that R is �-consistent under D iff there is at least one P with P,D |=� R,
otherwise R is �-inconsistent under D. Let ModD�(R) denote the set of models of R
under D, i. e., it holds that ModD�(R) = {P ∈ Prob | P,D |=� R}.

Example 2.9
Consider the knowledge base R = {r1, r2, r3} from Example 2.7 with

r1 : (B(X) |A(X))[0.7]

r2 : (A(X))[1]

r3 : (B(c1))[0.6]

and D = {c1, c2}. As in Example 2.7 consider the probability distribution P given in
Table 1 which is represented in the same compact fashion as in Example 2.7. As one
can see, it holds P,D |=� R as well:
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• It holds P,D |=� r1 due to P (B(c1)A(c1)) = 0.6 and P (B(c2)A(c2))) = 0.8, and
as well P (A(c1)) = P (A(c2)) = 1; hence (0.8 + 0.6)/2 = 0.7;

• it holds P,D |=� r2 as (P (A(c1))+P (A(c2)))/2 = 1 (remark that P (>) = 1), and

• it holds P,D |=� r3 as P (B(c1)) = 0.6.

Examples 2.7 and 2.9 show that both proposed semantics coincide on the given sim-
ple knowledge base. We will investigate the similarities and differences of the both
semantics further in the next subsection.

2.4 Comparing the Semantics

Both |=∅ and |=� introduce a population-based, but non-statistical perspective into
the interpretation of relational conditionals since they make use of information about
individuals and subjective probabilities. Due to remarks 2.6 and 2.8, both semantics
agree on ground conditionals. Furthermore, it is straightforward to show that |=∅
and |=� also agree on probabilistic facts (that may contain variables).

Proposition 2.10
Let P ∈ Prob be a probability distribution, D ⊆ U , and (B)[α] ∈ (LΣ | LΣ)prob a
probabilistic fact. Then it holds that P,D |=∅ (B)[α] iff P,D |=� (B)[α].

For general conditionals in (LΣ | LΣ)prob, however, the two semantics turn out to be
different, as the following example shows.

Example 2.11
Let A/1 and B/1 be two predicates, let D = {a1, . . . , a5} be a set of constants, and
consider the following (ground) knowledge base R:

(A(a1))[0.5] (A(a2))[0.1]

(A(a3))[0.9] (A(a4))[0.6]

(A(a5))[0.4] (B(a1)A(a1))[0.5]

(B(a2)A(a2))[0.1] (B(a3)A(a3))[0.9]

(B(a4)A(a4))[0.4] (B(a5)A(a5))[0.1]

In addition, consider the conditional r = (B(X) |A(X))[0.8]. On the one hand, any
probability distribution P with P,D |=� R also obeys P,D |=� r as

P (B(a1)A(a1)) + · · ·+ P (B(a5)A(a5))

P (A(a1)) + · · ·+ P (A(a5))
=

0.5 + 0.1 + 0.9 + 0.4 + 0.1

0.5 + 0.1 + 0.9 + 0.6 + 0.4
= 0.8

On the other hand, every probability distribution P with P,D |=∅ R does not obey
P,D |=∅ r due to

1/5 (P (B(a1) |A(a1)) + · · ·+ P (B(a5) |A(a5)))

=

(
0.5

0.5
+

0.1

0.1
+

0.9

0.9
+

0.4

0.6
+

0.1

0.4

)
/5

= 0.783 6= 0.8

As P,D |=� R is equivalent to P,D |=∅ R due to Proposition 2.10 the different
semantics may lead to different inferences. Furthermore, the two semantics feature a
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different notion of consistency as R∪{r} is ∅-inconsistent under D but �-consistent
under D.

Although the previous example suggests that the difference of the two proposed se-
mantics is marginal, in the following, we show that the difference can be made arbi-
trarily large.

Lemma 2.12
Let n ∈ N+ be some positive integer and let α1, . . . , αn, β1, . . . , βn ∈ (0, 1] with αi ≤ βi
for all i = 1, . . . , n. Then∣∣∣∣α1/β1 + . . .+ αn/βn

n
− α1 + . . .+ αn
β1 + . . .+ βn

∣∣∣∣ <
n− 1

n
(2.6)

The bound of (n−1)/n is also the least upper bound as the following example shows.

Example 2.13
Let n ∈ N+ be some positive integer and let x ≥ 2 be some positive real value. Define
α1 = . . . = αn = β1 = . . . = βn−1 = 1/x and βn = 1 − 1/x. Observe, that for any
x ≥ 2 it holds that α1, . . . , αn, β1, . . . , βn ∈ (0, 1] and αi ≤ βi for any i = 1, . . . , n.
Then it holds

α1/β1 + . . .+ αn/βn
n

=
n− 1 + 1

x/(1−
1
x )

n
x→∞→ (n− 1)/n

and

α1 + . . .+ αn
β1 + . . .+ βn

=
n/x

(n− 1)/x+ 1− 1/x
x→∞→ 0 .

Lemma 2.12 can be used to prove the following property on the relationship of aver-
aging and aggregating semantics.

Corollary 2.14
Let P be some probability distribution, D ⊆ U , and (B(~X) | A(~X)) be some condi-

tional. If P,D |=∅ (B(~X) |A(~X))[α1] and P,D |=� (B(~X) |A(~X))[α2] then

|α1 − α2| <
|groundD(B(~X) | A(~X))| − 1

|groundD(B(~X) | A(~X))|

Example 2.13 can be directly used to construct a worst-case example such that ag-
gregating and averaging semantics differ to an arbitrarily large degree.

With the semantics |=∅ and |=� we gain novel model theories for relational prob-
abilistic conditional logic. There may be other alternative model theories but in the
following we will focus on these two.

3 Inductive Inference in First-Order Conditional Logic

In the following, we are interested in inductive inference for first-order conditional
logic, i. e., in finding a “good” probability distribution P that satisfies all probabilistic
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conditionals of a given knowledge base R given one of the two proposed semantics.
More specifically, we are interested in an operator I(R, D) that takes a knowledge
base R and a set of constants D as input and returns a probability distribution
P = I(R, D) ∈ Prob as output such that P describes R “best” in a commonsensical
manner. In particular, the resulting distribution should be a model of R under D
and therefore I should realize a model-based inductive reasoning process in the spirit
of [27]. So, let |=◦ be any entailment relation between distributions from Ω and
relational probabilistic conditionals from (LΣ | LΣ)prob. In this section, we state some
properties that a reasonable model-based inference operator should observe. In the
following section, we will present two operators that comply with all postulates.

In order to ease notation and presentation, we will implicitly assume that R is
defined over a language LΣ the predicate symbols of which are held fixed, and the set
D of constants is to contain all constants appearing in R.

Our first demand for an operator I is its well-definedness. As an inconsistent
knowledge base R has no models and therefore an operator I cannot determine any
model ofR for reasoning, let undef be a new symbol for this case. Let I be an operator
that maps a knowledge base R and a set D ⊆ U of constants onto a probability
distribution I(R, D) ∈ Prob or to undef.

(Well-Definedness) It holds that I(R, D) ∈ ModD◦ (R) iff consts(R) ⊆ D and R ⊆
LΣ is ◦-consistent under D.

When considering knowledge bases based on a relational language the beliefs one ob-
tains for specific individuals are of special interest. An important demand to be made
is that for indistinguishable individuals, the same information should be obtained.
Here, indistinguishability is defined with respect to the information expressed by R.
More specifically, if the explicit information encoded in R for two different individ-
uals c1, c2 ∈ D is the same, the probability distribution P = I(R, D) should treat
them as indistinguishable. We formalize this indistinguishability by introducing an
equivalence relation on constants.

Definition 3.1 (R-Equivalence)
Let R be a knowledge base. The constants c1, c2 ∈ U are R-equivalent, denoted by
c1 ≡R c2, iff R = R[c1 ↔ c2].

Observe that ≡R is indeed an equivalence relation, i. e., it is reflexive, transitive, and
symmetric. The equivalence classes of ≡R are calledR-equivalence classes and the set
of all R-equivalence classes is denoted by SR. Note, that the notion of R-equivalence
bears a resemblance with the notion of reference classes [2] but on a pure syntactical
level.

Example 3.2
Consider the knowledge base R = {r1, r2, r3, r4} given via

r1 : (B(X) |A(X))[0.7]

r2 : (A(c1))[0.6]

r3 : (A(c2))[0.6]

r4 : (A(c3))[0.1]

In R we find that c1 ≡R c2 but c1 6≡R c3 and c2 6≡R c3. Notice also that d ≡R d′ for
every d, d′ ∈ U \ {c1, c2, c3}.
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UsingR-equivalence we can state our demand for equal treatment of indistinguishable
individuals as follows.

(Prototypical Indifference) LetR be a knowledge base on LΣ and A a ground sen-
tence. For any c1, c2 ∈ D with c1 ≡R c2 it holds that I(R, D)(A) = I(R, D)(A[c1 ↔
c2]).

The above property states that given two R-equivalent constants c1, c2 a sentence A
should have the same inferred probability as the sentence A[c1 ↔ c2] which results
in replacing c1 with c2 and vice versa. For example, we expect B(c1, c2) to have the
same probability as B(c2, c1) but also C(c1) to have the same probability as C(c2).

A similar notion like Prototypical Indifference but in a slightly different context
can be found under the term involution invariance in [13]. There, syntactic indistin-
guishability between instances of conditionals is exploited in order to reduce the size
of the maximum entropy model. It is in the line of current research to investigate
whether the approach pursued in [13] may be adapted for other inference operators
that satisfy Prototypical Indifference.

An even more basic demand than Prototypical Indifference is that renaming an
individual should have no impact on the information that can be derived for it.

(Name Irrelevance) LetR be a knowledge base, d ∈ U \D a constant not appearing
in D, and A ∈ LΣ a ground sentence. For every c ∈ D it holds that

I(R, D)(A) = I(R[d/c], (D ∪ {d}) \ {c})(A[d/c])

This property simply states that renaming a constant c in R to d—thus removing c
from the underlying set D but adding d—yields the same inferences. Although (Name
Irrelevance) seems to be the weaker demand, surprisingly, every function I satisfying
Name Irrelevance also satisfies Prototypical Indifference.

Proposition 3.3
If I satisfies Name Irrelevance then I satisfies Prototypical Indifference.

From Prototypical Indifference some generalizations follow immediately.

Proposition 3.4
Let I satisfy Prototypical Indifference. Let R be a knowledge base and D ⊆ U .

1. Let G1, G2 be two ground sentences. For c1, c2 ∈ D with c1 ≡R c2 it holds
I(R, D)(G2|G1) = I(R, D)(G2[c1 ↔ c2] |G1[c1 ↔ c2]).

2. Let S ∈ SR, c1, . . . , cn ∈ S, and σ : S → S be a permutation on S, i. e. a bijective
function on S. Then it holds I(R, D)(A) = I(R, D)(A[σ(c1)/c1, . . . , σ(cn)/cn]).

The following postulate focusses on the implications that a population-based state-
ment r = (B(~X) |A(~X))[α] should have for the probability of a proper instantiation
P (B(~c)|A(~c)). Our intention about r is that in general, the conditional probability of
B(~c) given A(~c) “should” be (around) α. But surely, we cannot guarantee that every
possible instantiation r′ of r will conform to a strict interpretation of this demand.
This follows mainly from the fact, that using ground conditionals we should be able
to give exceptions to this rule, cf. Example 2.4. What we really want to describe
when representing a population-based statement r is that given an adequate large
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domain, the respective conditional probability for constant tuples that may serve as
prototypes will converge towards α. This behavior resembles the intuition behind the
“Law of Large Numbers” [4].

(Conditional Probability in the Limit (CPL)) Let D1 ⊂ D2 ⊂ . . . be a sequence

of sets with Di ⊆ U for all i ∈ N. For a conditional r = (B(~X) |A(~X))[α] ∈ R, let
(B(~c) |A(~c))[α] be a proper instantiation of r with constants ~c that do not appear
in R. Then it holds that

lim
i→∞

I(R, Di)(B(~c) |A(~c)) = α .

The important aspect of population-based statements is their capability of expressing
a general behavior within a population while allowing for exceptions. So, population-
based statements are to reflect some kind of expected value over the set of individual
instantiations that aggregates individual behaviors. As such, if the probability of one
instantiation of a population-based statement lies below the probability assigned to
the statement, there has to be another instantiation with a probability higher than
this probability value in order to compensate for the other exception (remember that
D is assumed to be finite).

(Compensation) Let R be ◦-consistent under D and let (B(~X) |A(~X))[α] ∈ R be
a non-ground conditional with 0 < α < 1. If ~c1 is a vector of constants such
that I(R, D)(B(~c1) |A(~c1)) < α then there is another vector of constants ~c2 with
I(R, D)(B(~c2) |A(~c2)) > α.

Furthermore, when considering non-ground conditionals (B(~X) |A(~X))[α] with α ∈
{0, 1} no compensation for exceptions is possible thus requiring direct inference [2]
for this particular case.

(Strict Inference) Let R be ◦-consistent under D and let (B(~X) |A(~X))[α] ∈ R
be a non-ground conditional with α ∈ {0, 1}. Then for any (B(~c) |A(~c)) ∈
groundD(A(~X) |B(~X)) it holds that I(R, D)(B(~c) |A(~c)) = α.

In the following section, we present two operators that satisfy all postulates given
above.

4 Relational Maximum Entropy Reasoning

In the propositional case, ME-inference (Maximum Entropy) has proven to be a suit-
able approach for commonsense reasoning as it features several nice properties [15, 20].
The entropy H(P ) of a probability distribution P is defined as

H(P ) = −
∑
ω∈Ω

P (ω) logP (ω),

and measures the amount of indeterminateness inherent in P (with 0 log 0 = 0). By
selecting the unique probability distribution P ∗ among all probabilistic models of a
(propositional) set of formulas S that has maximal entropy, i. e. by computing the
solution to the optimization problem

P ∗ := ME(S) = arg max
P |=S

H(P ),
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we get the one probability distribution that satisfies S and adds as little information
as necessary. For further details, we refer to [15, 20].

As we are interested in generalizing the propositional ME-operator to the first-
order case, we will postulate a proper form of compatibility to the propositional
ME-inference, in addition to the postulates stated for general inference operators in
the previous section. For ground knowledge bases (which can be considered as propo-
sitional knowledge bases), the operation I should coincide with the ME-operator.

(ME-Compatibility) Let R be a ground knowledge base. If A is a ground sentence
then it holds that ME(R)(A) = I(R, consts(R))(A).

After having introduced the averaging and the aggregating semantics for relational
probabilistic knowledge bases, now we apply the maximum entropy principle to the re-
spective model sets to single out “best” models. For the relational case we parametrize
the entropy HD(P ) of a probability distribution P with the set D ⊆ U of constants
under consideration via

HD(P ) = −
∑

ω∈Ω,consts(ω)⊆D

P (ω) logP (ω) .

As both our semantics require P (ω) = 0 for consts(ω) 6⊆ D in order for P,D |=◦ R to
hold the above definition only neglects terms that are zero anyway.

4.1 Relational Maximum Entropy Inference by Averaging Probabilities

In the following we define our first variant of an ME-inference I∅ in a relational
context, that is based upon the semantics |=∅. A preliminary discussion of this
operator can also be found in [35]. As (2.2) yields a set of non-convex constraints we
define I∅(R, D) as

I∅(R, D)=

{
arg max

P,D|=∅R
HD(P ) if unique and consts(R) ⊆ D

undef otherwise
(4.1)

The second case catches scenarios where either R is ∅-inconsistent under D or the
optimization problem of the first case is not uniquely solvable. Obviously, I∅ is a
model-based inference operator using semantics |=∅. In particular, ifR is ∅-consistent
under D there is at least one probability distribution with maximum entropy that can
be chosen in Equation (4.1).

In the following we give some theoretical results that the proposed operator I∅
indeed fulfills the desired properties discussed in the previous section. Due to the non-
convexity of the optimization problem defined by (4.1) I∅ satisfies (Well-Definedness)
only for the case that (4.1) is uniquely solvable. However, all examples considered so
far were indeed uniquely solvable and we conjecture that I∅ satisfies Well-Definedness.
However, a formal proof for I∅ satisfying Well-Definedness has not been found yet.

Proposition 4.1
The inference operator I∅ satisfies Name Irrelevance, Prototypical Indifference, ME-
Compatibility, Compensation, and Strict Inference. If I∅ satisfies Well-Definedness
then I∅ satisfies Conditional Probability in the Limit.
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We continue by investigating the behavior of I∅ on some benchmark examples.

Example 4.2
We continue Example 2.4. So let LΣ be a first-order language with predicates
elephant/1, keeper/1, and likes/2 andD = {clyde, dumbo, giddy, fred, dave}. LetRzoo2
be given by Rzoo2 = {r1, . . . , r7} with

r1 : (elephant(clyde))[1] (4.2)

r2 : (elephant(giddy))[1] (4.3)

r3 : (keeper(fred))[1] (4.4)

r4 : (keeper(dave))[1] (4.5)

r5 : (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6] (4.6)

r6 : (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4] (4.7)

r7 : (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7] (4.8)

Notice, that we have no knowledge of Dumbo being an elephant. In the following we
give the probabilities of several instantiations of likes in I∅(Rzoo2, D).

I∅(Rzoo2, D)(likes(clyde, dave)) ≈ 0.723 (4.9)

I∅(Rzoo2, D)(likes(dumbo, dave)) ≈ 0.642 (4.10)

I∅(Rzoo2, D)(likes(giddy, dave)) ≈ 0.723 (4.11)

I∅(Rzoo2, D)(likes(clyde, fred)) = 0.7 (4.12)

I∅(Rzoo2, D)(likes(dumbo, fred)) ≈ 0.387 (4.13)

I∅(Rzoo2, D)(likes(giddy, fred)) ≈ 0.36 (4.14)

I∅(Rzoo2, D)(elephant(dumbo)) ≈ 0.312 (4.15)

Notice, how the deviations brought about by the exceptional individuals Clyde and
Fred have to be balanced out by the other individuals. For example, the probabilities
of the individual elephants liking Dave are greater than conditional (4.6) specified
them to be. This is because the probabilities of the elephants liking Fred is consider-
ably smaller as demanded by conditional (4.7). Nonetheless, the average of the condi-
tional probabilities do indeed satisfy the conditionals in R. Notice furthermore, that
the probability of Dumbo being an elephant is very small—see (4.15)—considering
that maximum entropy is achieved by deviating only as little as possible from the uni-
form distribution. But due to the interaction of the conditionals in Rzoo2, a smaller
probability of Dumbo being an elephant is necessary in order to achieve the correct
average conditional probabilities defined in the knowledge base. Thus, the belief of
Dumbo being an elephant alleviates due to the premise of believing in the defined
conditionals.

The next example is the well-known Tweety-example that is often used in the context
of non-monotonic reasoning.

Example 4.3
Consider a first-order language LΣ with predicates bird/1, flies/1, and penguin/1 and
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D = {tweety, opus, brian}. Let Rbirds be given by Rbirds = {r1, . . . , r6}

r1 : (bird(tweety))[1] (4.16)

r2 : (bird(opus))[1] (4.17)

r3 : (bird(brian))[1] (4.18)

r4 : (penguin(opus))[0.9] (4.19)

r5 : (flies(X) | bird(X))[0.6] (4.20)

r6 : (flies(X) | penguin(X))[0.01] (4.21)

The knowledge base Rbirds models a scenario, where we have three birds Tweety,
Opus, and Brian, and have a high degree of belief of 0.9 that Opus is a penguin. We
furthermore know that birds typically fly with a probability of 0.6 and that penguins
usually fly with a probability of 0.01. Applying I∅ on Rbirds yields the following
results on several queries:

I∅(Rbirds, D)(flies(tweety)) ≈ 0.84 (4.22)

I∅(Rbirds, D)(flies(brian)) ≈ 0.84 (4.23)

I∅(Rbirds, D)(flies(opus)) ≈ 0.12 (4.24)

I∅(Rbirds, D)(penguin(tweety)) ≈ 0.079 (4.25)

I∅(Rbirds, D)(penguin(brian)) ≈ 0.079 (4.26)

Due to (Prototypical Indifference) both birds Tweety and Brian fly with a probability
of 0.84, see (4.22) and (4.23). As both Tweety and Brian are birds—see (4.16) and
(4.18)—this probability is slightly higher than expected, cf. (4.20). This is due to
the fact that the major deviation caused by Opus has to be compensated for. Opus
flies only with a probability of 0.12—see (4.24)—as it is highly believed that Opus
is a penguin and penguins fly with a very small probability, cf. (4.19) and (4.21).
Furthermore, both Tweety and Brian are believed to be penguins with a very small
probability of 0.079, cf. (4.25) and (4.26). As our domain consists of only three birds
and (4.20) demands that the average probability of a bird flying is 0.6 the possibility
of Tweety an Brian being penguins diminishes.

Up until now, all examples considered only a first-order language with unary pred-
icates. In the next example we will introduce relational aspects. The example has
been taken from [13].

Example 4.4
Consider a first-order language LΣ with predicates contact/2, susceptible/1, and flu/1
and D = {anna, bob, carl}. Let Rflu be given by Rflu = {r1, . . . , r3}

r1 : (flu(X))[0.2] (4.27)

r2 : (flu(X) | susceptible(X))[0.3] (4.28)

r3 : (flu(X) | contact(X,Y) ∧ flu(Y))[0.4] (4.29)

This knowledge base models contagiousness of flu within some population. Condi-
tional r1 states that in general someone catches the flu with probability 0.2 while
conditional r2 gives a higher probability of 0.3 to someone who is susceptible. Fi-
nally, conditional r3 models a situation where someone can get infected by someone
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else who is already infected. Observe, that we do not represent any factual knowledge
about our domain in Rflu . Applying I∅ on Rflu yields the following results on several
queries:

I∅(Rflu , D)(flu(anna)) ≈ 0.2 (4.30)

I∅(Rflu , D)(flu(anna) | contact(anna, bob) ∧ flu(bob)) ≈ 0.4 (4.31)

I∅(Rflu , D)(flu(anna) | contact(anna, bob) ∧ flu(bob) ∧
contact(anna, carl) ∧ flu(carl)) ≈ 0.6 (4.32)

I∅(Rflu , D)(contact(bob, carl)) ≈ 0.49 (4.33)

I∅(Rflu , D)(contact(bob, carl) | flu(bob),flu(carl))) ≈ 0.657 (4.34)

Observe that we also stated some conditional queries involving actually present evi-
dence. Notice that formulating queries in this form—for example considering the sec-
ond query that models “what is the probability of Anna having a flu given that Anna
had contact with Bob and Bob had the flu”—yields in general different inferences than
adding the evidence to the knowledge base—in this case (contact(anna, bob))[1.0] and
(flu(bob))[1.0]—and querying the new knowledge base just for flu(anna), cf. [29] for
a discussion on this topic.

The inferences drawn from Rflu using I∅ reflect quite nicely the intuition behind
the modeled knowledge. The probability of Anna having a flu (4.32) exactly models
the expected probability when including conditional (4.27). The same is true for the
probability of Anna having a flu given that Anna had contact with Bob and Bob
had the flu (4.31). Furthermore, if a person had contact with multiple persons who
have the flu the probability of having a flu increases (4.32). Applying the principle
of maximum entropy to complete unspecified knowledge usually yields a probability
distribution that is as close to the uniform distribution as possible. As one can see
from the probability of Bob having contact with Carl (4.33) this might decrease a
little bit if the corresponding formula appears in the premise of another conditional
in the knowledge base (see 4.29), see [27] for a discussion. But knowing that two
persons have the flu increases the probability of these two persons having contact
(4.34).

4.2 Relational Maximum Entropy Inference by Aggregating
Probabilities

In a similar manner like above, we define the ME-inference operator I� that is based
upon the semantics |=�. Let

I�(R, D)=

arg max
P,D|=�R

HD(P ) if R is �-consistent under D
and consts(R) ⊆ D

undef otherwise
(4.35)

Obviously, I� is a model-based inference operator using semantics |=�. In this seman-
tical context, the conditionals from R induce linear constraints on the probabilities
of the possible worlds so that the set of probability distributions satisfying R forms
a convex set. This makes the solution to the optimization problem (4.35) unique (if
a solution exists).



20 On Probabilistic Inference in Relational Conditional Logics

Lemma 4.5
Let r = (B(~X) |A(~X))[α] be a probabilistic conditional. Then ModD�({r}) is convex
for any D with consts(r) ⊆ D.

Proposition 4.6
Let R be a �-consistent knowledge base and D some set D ⊆ U . Then I�(R, D) is
uniquely determined.

The operator I� satisfies all postulates listed in the previous section.

Proposition 4.7
I� satisfies Well-Definedness, Name Irrelevance, Prototypical Indifference, ME-Com-
patibility, Conditional Probability in the Limit, Strict Inference, and Compensation.

In contrast to I∅ proving Well-Definedness is easy due to Lemma 4.5 and Proposi-
tion 4.6. In the following we apply I� to the very same examples used in the previous
subsection to discuss the operator I∅.

Example 4.8
We apply I� onto the knowledge base Rzoo2 from Example 4.2. This yields the
following inferences:

I�(Rzoo2, D)(likes(clyde, dave)) ≈ 0.8 (4.36)

I�(Rzoo2, D)(likes(dumbo, dave)) ≈ 0.64 (4.37)

I�(Rzoo2, D)(likes(giddy, dave)) ≈ 0.8 (4.38)

I�(Rzoo2, D)(likes(clyde, fred)) = 0.7 (4.39)

I�(Rzoo2, D)(likes(dumbo, fred)) ≈ 0.356 (4.40)

I�(Rzoo2, D)(likes(giddy, fred)) ≈ 0.196 (4.41)

I�(Rzoo2, D)(elephant(dumbo)) ≈ 0.475 (4.42)

The results are similar to those computed by using I∅ in the example above. In
particular, with regard to liking Dave, both approaches calculate very similar prob-
abilities for all individuals mentioned in the queries. Here, Dumbo—the individual
not known to be an elephant—likes Dave with a lower probability than the elephants
Clyde and Giddy, cf. (4.36), (4.37), and (4.38). More substantial differences can be
noticed with respect to the elephants liking the moody keeper Fred. For Giddy liking
Fred, I� returns a considerably lower probability than I∅, see (4.41). However, I�
is more cautious when processing information on Dumbo, its probability of being an
elephant is nearly 0.5 (4.42), while I∅ suggests that Dumbo is not an elephant.

Example 4.9
We apply I� onto the knowledge base Rbirds from Example 4.3. This yields the
following inferences

I�(Rbirds, D)(flies(tweety)) ≈ 0.85 (4.43)

I�(Rbirds, D)(flies(brian)) ≈ 0.85 (4.44)

I�(Rbirds, D)(flies(opus)) ≈ 0.10 (4.45)

I�(Rbirds, D)(penguin(tweety)) ≈ 0.079 (4.46)

I�(Rbirds, D)(penguin(brian)) ≈ 0.079 (4.47)
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As in the previous example, the inferences drawn using I� are very similar to the ones
using I∅. The probabilities of Tweety and Brian being penguins (0.079) are exactly
the same as in Example 4.3. There are only minor differences in the probabilities of
the instantiations of flies. While using I∅ the probability of Tweety and Opus flying
is 0.84 resp. 0.12 here we have 0.85 resp. 0.10.

As for Example 4.4 applying the operator I� onRflu yields exactly the same inferences
as I∅. This is due to the fact that both operators fulfill Prototypical Indifference.
Consider the conditional (flu(X) | susceptible(X))[0.3]. As no constant is mentioned in
Rflu all of anna, bob, carl belong to the same Rflu -equivalence class and therefore it
follows

I◦(Rflu , D)(flu(anna) | susceptible(anna)) = I◦(Rflu , D)(flu(bob) | susceptible(bob))

= I◦(Rflu , D)(flu(carl) | susceptible(carl))

for any ◦ ∈ {∅,�} due to Proposition 3.4. This directly yields

I◦(Rflu , D)(flu(anna) | susceptible(anna)) = 0.3

for ◦ ∈ {∅,�} as can also be seen in the elaboration in Example 4.4. If we add
probabilistic facts like (contact(anna, bob))[1] or (flu(bob))[1] to Rflu the situation
changes and now different inferences can be drawn from the different semantics. One
thing to notice about this particular special case of a knowledge base—a knowledge
base that mentions no constants—is that there is a direct method to reasoning. As
has been discussed above due to Prototypical Indifference all inferences drawn from
different instantiations are identical. As a result replacing the (open) conditional
(flu(X) | susceptible(X))[0.3] by its universal instantiations

(flu(anna) | susceptible(anna))[0.3]

(flu(bob) | susceptible(bob))[0.3]

(flu(carl) | susceptible(carl))[0.3]

amounts to yield the very same ME-distribution. In general, replacing every open
conditional in a constant-free knowledge base with its universal instantiations yields
the same ME-distribution independently of using averaging or aggregating seman-
tics. In this case we can employ standard ME-reasoner for propositional probabilistic
conditional logic, for example [32], for inference due to Remark 2.3.

As a final remark one can notice that the inferences drawn from both operators
are very similar. On the one hand, this is not surprising as both operators satisfy
(in principle) the desired properties which heavily restrict the choice for rational in-
ference operators. On the other hand, this observation is quite interesting from a
computational point of view as solving the optimization problems (4.1) and (4.35)
require different approaches: while (4.1) is a non-convex optimization problem Equa-
tion (4.35) describes a convex optimization problem. For the latter efficient solvers
are available [5]. However, the following example shows that the results drawn from
the two operators may differ significantly, cf. Corollary 2.14.

Example 4.10
Consider the scenario of a bird sanctuary. We know that there are exactly 1000 birds
in this sanctuary, divided into two species: the striped sea eagle and the rare snoring
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ostrich1. Statistically seen, 999 of these birds are striped sea eagles and one of them is
a snoring ostrich and no bird can be both at the same time. It is common knowledge
that all striped sea eagles do fly and that snoring ostriches do not fly. Furthermore,
only a few striped sea eagles are pink but every snoring ostrich is pink. This scenario
can be represented as the knowledge base R1 = {r1, . . . , r7} given via

r1 = (sse(X))[0.999] r2 = (so(X))[0.001],

r3 = (sse(X) ∧ so(X))[0] r4 = (flies(X) | sse(X))[1],

r5 = (flies(X) | so(X))[0] r6 = (pink(X) | sse(X))[0.001]

r7 = (pink(X) | so(X))[1]

where sse(X) means that X is a striped sea eagle, so(X) means that X is a snoring
ostrich, flies(X) means that X flies, and pink(X) means that X is pink. Note that R1

does not mention any constants, therefore all individuals behave the same and each
instance of r1–r7 takes its intended probability. As a consequence it follows that

P1 = I∅(R1, D) = I�(R1, D)

for every D with D 6= ∅. The question we want to address is “What is the probability
of a pink bird flying?”, i. e., we want to assess the probability of the conditional
(flies(X) | pink(X)). For R1 we get

P1, D |=∅ (flies(X) | pink(X))[0.499]

P1, D |=� (flies(X) | pink(X))[0.499]

because P1(flies(a) | pink(a)) = 0.499 for every a ∈ D. Consider now a slightly differ-
ent scenario where D = {b1, . . . , b1000} is the actual set of birds in the sanctuary and
let b1, . . . , b999 be striped sea eagles and let there be a single snoring ostrich b1000.
This can be represented as the knowledge base R2 = {r′1,1, . . . , r′1,999, r

′
2, . . . , r

′
7} given

via

r′1,i = (sse(bi))[1] for i = 1, . . . , 999

r′2 = (so(b1000))[1] r′3 = (sse(X) ∧ so(X))[0]

r′4 = (flies(X) | sse(X))[1] r′5 = (flies(X) | so(X))[0],

r′6 = (pink(X) | sse(X))[0.001] r′7 = (pink(X) | so(X))[1] .

For R2 we obtain

I∅(R2, D), D |=∅ (flies(X) | pink(X))[0.999]

I�(R2, D), D |=� (flies(X) | pink(X))[0.499] .

As one can see I� makes no distinction between the knowledge bases R1 and R2

with respect to the probabilistic conditional r = (flies(X) | pink(X)) and assigns the
probability 0.499 in both cases. The operator I∅, however, assigns a probability 0.499
to r in R1 and 0.999 in R2. On the one hand, representing the open probabilistic
fact (sse(X)[0.999] as the set of ground facts (sse(b1))[1], . . . , (sse(b999))[1] seems to

1These species are just made up.
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be equivalent when fixing the domain D. As a consequence, an inference operator
should make no distinction between R1 and R2. On the other hand, note that R1

and R2 are neither ∅- nor �-equivalent with respect to D. The knowledge base
R1 gives no information on the actual distribution of b1, . . . , b1000 to the different
species. The operator I∅ is able to recognize this difference. However, whether it is
justified to assign the probability 0.999 to r in R2 depends on the interpretation of r
from the point of view of commonsense reasoning. As for aggregating semantics the
probability of r is interpreted by taking the probabilities of the premises into account
as well. On the one hand, the probability of r is influenced by the probabilities of
the instances (flies(b1) | pink(b1)), . . . , (flies(b999) | pink(b999)) only to a small ex-
tent as the probability of the premises pink(b1), . . . , pink(b999) is rather low (0.001
to be precise). On the other hand, the probability of r is heavily influenced by the
probability of the instance (flies(b1000) | pink(b1000)) as the premise pink(b1000) has
probability one. As pink(b1000) has such a high probability aggregating semantics
classifies b1000 as a good “reference” for the applicability of r. Averaging semantics
on the other side is not influenced by the actual probabilities of the premise. The
ground conditionals (flies(b1) | pink(b1)), . . . , (flies(b999) | pink(b999)) all hold with
probability 1 as b1, . . . , b999 fly independently of their color. The ground conditional
(flies(b1000) | pink(b1000)) has probability 0 as b1000 does not fly independently of the
color. Therefore, interpreting r as “usually, pink objects fly” on the given domain is
ambiguous. Aggregating semantics acknowledges this indifference by assigning a prob-
ability of approximately 0.5 to r which is justifiable as flying objects are rarely pink
and non-flying objects are always pink. However, the probability of (flies(c) | pink(c))
is one for 99.9 % of the population (for both I∅(R2, D) and I�(R2, D)) which also
justifies assigning probability 0.999 to r.

There seems to be no definite answer to the question which of the both semantics
and inference operators are more appropriate for interpreting relational conditionals.
Both meanings are justifiable by considering a specific perspective on their meaning.
This perspective might be influenced by the actual knowledge base and the intended
meaning of the probabilistic conditionals. It follows that there are knowledge bases
where the averaging semantics might be more suitable than the aggregating semantics
and vice versa. In particular, in the above example there are two different views which
justify application of one specific semantics.

5 Related Work

In this section we review some work related to our approach discussed so far. In
particular, we compare our approach to the work by Halpern et. al. [18, 16, 17],
other approaches for reasoning under maximum entropy in first-order probabilistic
conditional logic [21, 13, 23], as well as Markov Logic Networks [14, Ch. 12] and
Bayesian Logic Programs [14, Ch. 10] which are exemplary for a variety of approaches
to statistical relational learning and probabilistic inductive logic programming [14, 7].
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5.1 Statistical Approaches to First-Order Probabilistic Reasoning

The papers by Halpern and colleagues [18, 16, 17] aim at bridging statistical and
subjective views on probabilistic beliefs by showing how subjective beliefs arise from
statistical information by considering approximative probabilities and limits. The
principle of maximum entropy plays a prominent role in these frameworks, too, but
the authors mention problems when applying this principle to knowledge bases with
n-ary predicates with n > 1. As our semantical approaches are thoroughly subjec-
tive by choosing subjective probabilities throughout, we did not encounter most of
the problems that those authors have to struggle with. For instance, in statistical
approaches to probabilities, the size of the universe determines the probabilities that
can be realized, so approximations of probabilities have to be considered. This is not
the case in our approaches, as no statistical interpretation underlies the probabilities.
Moreover, the application of the maximum entropy principle to knowledge bases with
arbitrary predicates seems to be unproblematic, but this has to be investigated in
more detail in further work.

5.2 Relational Conditional Logic and Maximum Entropy

The approach of lifting inference in conditional logic based on the principle of maxi-
mum entropy to the first-order case has been previously investigated in [21, 13]. In [21]
a probabilistic logic programming language is developed which bases on conditional
constraints of the form (B |A)[l, u] with first-order formulas B, A, and real values
l ≤ u. As in the present work the underlying first-order language is assumed to be
quantifier-free and function-free. A probability distribution P satisfies a conditional
constraint (B |A)[l, u] if P (B′ |A′) ∈ [l, u] for any ground instance (B′ |A′) of (B |A).
A similar approach is pursued in [13] and [23]. The main difference to the present
approach lies in the semantics of conditionals. While in [21, 13, 23] conditionals with
free variables are interpreted as schemas for their instances, here, we take the mutual
influences of instances on each other into account. In doing so we avoid the problem of
conflicts and inconsistencies that may arise easily when grounding a relational knowl-
edge base. Consider again the knowledge base Rzoo = {r1, r2, r3} from Example 2.4
with

r1 : (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6]

r2 : (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]

r3 : (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7]

Treating the conditionals Rzoo as schemas for their instances and applying universal
instantiation directly yields an inconsistent state. For example, conditional r1 yields
the instance (likes(clyde, fred) | elephant(clyde)∧ keeper(fred))[0.6] which directly con-
flicts with r3. As a result, there can be no probability distribution P that satisfies
Rzoo in this semantical sense. The cited approaches solve this problem in different
ways. The work reported in [13] introduces logical constraint formulas that constrain
the possible instantiations of a conditional. For example, an appropriate logical con-
straint formula for conditional r1 above would be Y 6= fred thus avoiding instances
that may conflict with instances of other conditionals. But representing these logical
constraint formulas must be done by the knowledge engineer and becomes hard when
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many conditionals have to be considered. The approach proposed in [23] follows an-
other direction by employing grounding strategies. There, a syntactical analysis of
the knowledge base is employed in order to avoid and remove conflicting instances
automatically. The knowledge engineer is not obliged to deliver logic constraint for-
mula but can rely on a specific grounding strategy. But still, as this approach works
on a syntactical layer the results are heuristically determined and may still yield an
inconsistent state. The approach undertaken in [21] does not give solutions to this
problem at all but assumes that the knowledge base may be consistently grounded. If
this is not possible then the interval [l, u] of a constraint (B|A)[l, u] can be widened.

In contrast to the cited approaches the work presented here does not treat condi-
tionals with free variables as schemas for their instances. The actual probability in
the ME-model of a ground conditional (B′ |A′) may differ significantly from the prob-
ability of its open conditional (B |A)[α] represented in the knowledge base. Given
that the underlying language contains some minimum number of constants excep-
tions to a conditional can be compensated. This allows for a great flexibility when
representing relational probabilistic knowledge and is also inherently important for
a non-monotonic reasoning behavior. Our approaches aim at reflecting an overall
behavior within a population to which each individual contributes, while at the same
time allowing individuals to defer drastically from that behavior. In this way, both
class knowledge and individual, maybe exceptional knowledge can be represented and
processed within one framework. As the satisfaction of the CPL postulate shows,
the overall behavior might also be interpreted as a prototypical behavior in universes
which are large enough.

For knowledge bases that can be universally instantiated without yielding an in-
consistent state another note can be made on the relationship of our approach to
the ones cited above. Consider the approach of [13] which uses the same knowledge
representation as employed here but with the addition of the previously mentioned
logic constraint formula. If all conditionals in a knowledge base R have a tautologi-
cal logical constraint formula, i. e., all conditionals can be treated as the set of their
universal instantiations, then for every model P of R in the sense of [13] it follows
P |=∅ R and P |=� R. Furthermore, even the ME-models coincide in this special
case. Consider the simple knowledge base R = {r1} with

r1 : (p(X) | q(X))[0.6]

and assume that our underlying language contains the constants D = {c, d}. In the
approach of [13] a probability distributions satisfies r1 iff it holds both P (p(c)|q(c)) =
0.6 and P (p(d)|q(d)) = 0.6. Hence, the average probability is 0.6 and thus P |=∅ R
and also (6+6)/(10+10) = 0.6 yielding P |=� R. Furthermore, any other ◦-model of
R with ◦ ∈ {∅,�} deviates from these values and thus yields a lower entropy. This
results in the same ME-model for the approach of [13] and the approaches discussed
here. This statement can be generalized to include the approaches of [21] and [23] as
well.

5.3 Statistical Relational Learning

The areas of statistical relational learning and probabilistic inductive logic program-
ming are concerned with the development of frameworks that combine probabilis-
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tic reasoning and first-order representations of knowledge [14, 7]. Mostly, these ap-
proaches focus on learning models from data than on knowledge representation and
reasoning. Markov Logic Programs (MLNs) [14, Ch. 12] employ a quantifier-free first-
order logic as representation language and allow the attachment of weights to each
piece of information in a knowledge base. Thus, an MLN consists of tuples (F, α)
with a formula F and a weight α ∈ R. The weights have no obvious probabilistic
interpretation and reasoning is performed based on a probability distribution P that
is defined via

P (ω) =
1

Z
exp

∑
(F,α)

nF (ω)α

 (5.1)

for possible worlds ω ∈ Ω. In Equation (5.1), Z is a normalization constant and
nF (ω) is the number of instances of F that are true in ω. By defining P in this
way, worlds that violate fewer instances of formulas are more probable than worlds
that violate more instances (depending on the weights of the different formulas). In
contrast to the approaches discussed in the previous subsection MLNs do not suffer
from conflicts that arise in grounding knowledge bases as the weights of an MLN
have no probabilistic interpretation, see [11] for some discussion. But from the view
of knowledge representation this property is unintuitive and also distinguishes MLNs
from our approach where values of conditionals do have a probabilistic interpretation.

Another popular approach for statistical relational learning are Bayesian logic pro-
grams (BLPs) [14, Ch. 10]. These are relational extensions to Bayes Nets [29] and em-
ploy Bayes clauses for knowledge representation. A Bayes clause is a rule of the form
(H |B1, . . . , Bn) with first-order atoms H,B1, . . . , Bn

2. In contrast to the present ap-
proach and the approaches discussed before, BLPs demand a full specification of the
conditional probability distribution for each clause. Thus, for a clause (H(X) |B(X))
the intended probabilities for both H(X) given B(X) and H(X) given ¬B(X) have to be
specified. For a specific query Q, i. e. a ground atom, reasoning is performed by com-
puting a ground Bayes Net that is build using an SLD-like procedure involving the rep-
resented clauses. In order to combine the probabilities deriving from different clauses
with the same head, BLPs employ combining rules such as noisy-or [14, Ch. 10]. From
the view of knowledge representation the main drawback of BLPs—which derives from
the main drawback of Bayes nets—is that they demand a full specification of con-
ditional probability distributions. Consider a clause (flu(X) | symptomA(X)) saying
that given X has symptom A we can give a probability on X having a flu. As this
probability should be representable by an expert BLPs also demand specifying the
probability of X having a flu if X does not have symptom A. Giving a reasonable
estimate for this probability is quite harder for an expert and almost impossible in
most scenarios. In contrast to BLPs the approach discussed in this paper works with
incomplete information as well. For the knowledge engineer it suffices to represent
only as much information as he wants to. Due to the principle of maximum entropy
all missing pieces of information are determined in the most unbiased way. Another
problem of BLPs is the employment of combining that combine probabilities coming

2BLPs allow the use of multi-valued predicates, i. e. predicates that may have other ranges than the usual

boolean range {true, false}. For example, an appropriate range for the predicate bloodtype may be {a, b, ab, null}, cf.

[14, Ch. 10]. This behavior can be simulated by adding an additional argument to the predicate but we will omit a

deeper discussion of this topic. In the following, we only use boolean predicates for knowledge representation with

BLPs.
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from different clauses that derive the same head. For most applications, noisy-or is
a reasonable choice for a combining rule as it models a disjunctive combination in a
probabilistic sense. Given clauses (flu(X) | symptomA(X)) and (flu(X) | symptomB(X))
using noisy-or for combining the probabilities of flu(X) when both symptoms A and B
are present yields a higher probability of X having a flu compared to considering both
clauses by themselves. But not in every scenario the use of noisy-or is reasonable.
Consider the clauses (flies(X) | bird(X)) (with a probability of 0.9 that flies(X) is true
given that bird(X) is true) and (flies(X) | penguin(X)) (with a probability of 0.01 that
flies(X) is true given that penguin(X) is true), cf. [11]. Using noisy-or as combining
rules for flies yields a probability of approximately 0.476 for an actual penguin-bird,
a much more higher probability than intended. It is up to the knowledge engineer to
specify the right combining rule for each predicate. The approach discussed in this
paper does not suffer from this problem as probabilities are implicitly combined when
determining the model with maximum entropy. As for propositional probabilistic rea-
soning under maximum entropy [20] the relational extension discussed here satisfies
the same properties in this examples for non-monotonic reasoning, cf. [36].

Another major difference between the approaches as pursued in this paper and
most approaches to statistical relational learning such as MLNs and BLPs is that
our approaches provide explicit model theories that give a clear logical foundation
for defining inductive inference. Both MLNs and BLPs do not allow for multiple
models of a knowledge base and thus restrict inference to this single model. Albeit
we used inference based on the principle of maximum entropy throughout the paper
it is possible to apply other paradigms. Furthermore, the explicit model theories of
our approaches allow for a more flexible way to analyze problems of consistency such
as inconsistency measurements [34].

6 Conclusion and Discussion

Probabilistic inference based on the principle of maximum entropy has proven to be a
powerful reasoning method in propositional frameworks for knowledge representation
and reasoning [27, 20]. Indeed, this principle has been characterized as an optimal
inference method in various frameworks and there exist several axiomatic derivations,
cf. e. g. [33, 28, 20]. In the past ten years a lot of work has been done on lifting propo-
sitional models for probabilistic reasoning to the relational case [14] so it seems natural
to investigate the possibilities of applying the principle of maximum entropy on rela-
tional settings. Early attempts on doing so had been made during the 90s by Grove,
Halpern, and Koller [18, 16, 17] and they have shown that probabilistic reasoning
in first-order logic is—in general—problematic. While employing general first-order
logic restricted to unary predicates yielded satisfactory results [17] the general case
of non-unary predicates led to unintuitive properties and intractable inferences [16].
These results stem mainly from the employment of full first-order logic using an infi-
nite universe and the statistical interpretation of probabilities. Our approaches rely
on a finite universe and an interpretation of probabilities with subjective degrees of
belief and, consequently, we do not face these problems. But restricting the language
to finite universes and function-free signatures may seem as a major drawback that
renders the framework in fact propositional. While this is true from a conceptual
point of view and particularly in comparison to the works [16, 17] the motivation of
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the presented work is a different one, namely knowledge representation and reasoning
for rational agents that are situated in real-world environments. Clearly, for these
agents considering a finite universe is not only justifiable but highly recommendable.
Although our language restrictions might seem severe the framework is capable of
performing commonsense reasoning tasks in relational environments as was shown
in this paper. Furthermore, in contrast to other works on applying ME-inference in
relational settings [24, 13] our approaches do not feature a direct propositional cor-
respondent and thus cannot be modeled with existing propositional frameworks in
a concise way. One the one hand this is a drawback as we cannot employ existing
reasoner for propositional ME-inference [32]. On the other hand this shows the advan-
tage of our approaches. Although employing a rather restricted first-order language
our semantical proposals clearly extend the expressive power of other approaches and
allow for the representation of complex interrelationships between different pieces of
knowledge.

In this paper, we devised a set of desirable properties of inference operators and
investigated two different probabilistic semantics for relational conditional logic. Both
operators fulfill (in principle) the catalogue of desired properties so the question re-
mains which semantics and therefore which inference operator is the more favorable
choice? Or even are there other reasonable possibilities for semantics and inference
operators that should be investigated? The second question cannot be answered right
now as none of the proposed two inference operators can be characterized by our
desired principles for reasoning. To do so other principles have to be found that may
fully characterize ME-inference in relational settings like e. g. [33] for propositional
frameworks. As for the first question, from a computational point of view the opera-
tor I� and thus the semantics |=� seems to be the favorable choice for reasoning in
first-order conditional logic. While (4.1) describes a non-convex optimization prob-
lem that is hard to solve in practice (4.35) induces a convex optimization problem
for which efficient algorithms are available [5]. Still, a straightforward implementa-
tion of both problems yields an exponential transformation due to the exponential
number of Herbrand interpretations. We implemented both inference operators in
Java and employed the free optimization software OpenOpt3 to solve the optimiza-
tion problems. Performing inference using these prototypical implementations took
from hours up to days for all but the smallest examples. Part of future work is the
development of efficient and approximate algorithms for inference based on the pro-
posed semantics. Recently, lifted inference [30, 25] has been introduced in order to
efficiently perform inference in relational probabilistic settings. This approach aims
at avoiding redundant computations of terms that turn out to be equal due to simi-
lar inner structures. Although these techniques have been developed for approaches
that extend undirected graphical models for probabilistic reasoning an adaptation of
the ideas for our framework might be reasonable. The satisfaction of the property
Prototypical Indifference of both operators shows that there is a lot of redundant
information in a complete specification of a ME-distribution that might be exploited
by efficient reasoning algorithms.
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A Proofs of Results

Proposition 2.10
Let P ∈ Prob be a probability distribution, D ⊆ U , and (B)[α] ∈ (LΣ | LΣ)prob a
probabilistic fact. Then it holds that P,D |=∅ (B)[α] iff P,D |=� (B)[α].

Proof. It holds P,D |=∅ (B)[α] iff∑
B′∈groundD(B) P (B′)

|groundD(B)|
= α

by definition and furthermore due to P (>) = 1 it holds

P,D |=� (B)[α] ⇔
∑
B′∈groundD(B) P (B′)∑
B′∈groundD(B) P (>)

= α

⇔
∑
B′∈groundD(B) P (B′)

|groundD(B)|
= α

Lemma 2.12
Let n ∈ N+ be some positive integer and let α1, . . . , αn, β1, . . . , βn ∈ (0, 1] with αi ≤ βi
for all i = 1, . . . , n. Then∣∣∣∣α1/β1 + . . .+ αn/βn

n
− α1 + . . .+ αn
β1 + . . .+ βn

∣∣∣∣ <
n− 1

n
(6.1)

Proof. For reasons of simplicity we give the proof only for n = 2 but the approach
is the same for n > 2. We have to show that

−1

2
<
α1/β1 + α2/β2

2
− α1 + α2

β1 + β2
<

1

2

Consider first

α1/β1 + α2/β2

2
− α1 + α2

β1 + β2
<

1

2

⇔ α1

β1
+
α2

β2
− 2α1 + 2α2

β1 + β2
< 1

⇔ α1β1β2 + α1β
2
2 + α2β

2
1 + α2β1β2 − 2α1β1β2 − 2α2β1β2 < β2

1β2 + β1β
2
2

⇔ α1β1β2 + α2β1β2 + β2
1β2 + β1β

2
2 − α1β

2
2 − α2β

2
1 > 0

⇔ α1β1β2 + α2β1β2 + β2
1(β2 − α2︸ ︷︷ ︸

x1

) + β2
2(β1 − α1︸ ︷︷ ︸

x2

) > 0

Due to α1 ≤ β1 and α2 ≤ β2 it follows x1, x2 ≥ 0. Due to the strict positivity of all
αi, βi (i = 1, . . . , n) the above inequality is true. For the other side we assume the
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contrary. Consider

α1/β1 + α2/β2

2
− α1 + α2

β1 + β2
≤ −1

2

⇔ α1β
2
2 + α2β

2
1 + β2

1β2 + β1β
2
2 − α1β1β2 − α2β1β2 ≤ 0

Due to α1 ≤ β1 and α2 ≤ β2 it follows

⇒ α1β
2
2 + α2β

2
1 + β2

1β2 + β1β
2
2 − β2

1β2 − β1β
2
2 ≤ 0

⇔ α1β
2
2 + α2β

2
1 ≤ 0

which is a contradiction since α1, α2, β1, β2 > 0.

Corollary 2.14
Let P be some probability distribution, D ⊆ U , and (B(~X) | A(~X)) be some condi-

tional. If P,D |=∅ (B(~X) |A(~X))[α1] and P,D |=� (B(~X) |A(~X))[α2] then

|α1 − α2| <
|groundD(B(~X) | A(~X))| − 1

|groundD(B(~X) | A(~X))|

Proof. This follows directly from Lemma 2.12 and the fact that P both ∅- and �-
satisfies (B(~X) |A(~X))[α] under D for some α (therefore all appearing probabilities of
premises are non-zero).

Proposition 3.3
If I satisfies Name Irrelevance then I satisfies Prototypical Indifference.

Proof. Let R be a knowledge base and d1, d2 ∈ U \D. Let furthermore c1, c2 ∈ D
with c1 ≡R c2 and c1 6= c2. Then it holds for a ground sentence A:

I(R, D)(A) = I(R[d1/c1], (D ∪ {d1}) \ {c1})(A[d1/c1])

= I(R[d1/c1, d2/c2], (D ∪ {d1, d2}) \ {c1, c2})(A[d1/c1, d2/c2])

As c1, c2 /∈ (D ∪ {d1, d2}) \ {c1, c2} it holds that

I(R[d1/c1, d2/c2], (D ∪ {d1, d2}) \ {c1, c2})(A[d1/c1, d2/c2])

= I(R[d1/c1, d2/c2][c2/d1, c1/d2], (((D ∪ {d1, d2}) \ {c1, c2}) ∪ {c1, c2}) \ {d1, d2})
(A[d1/c1, d2/c2][c2/d1, c1/d2]) .

Due to

R[d1/c1, d2/c2][c2/d1, c1/d2] = R[c2/c1, c1/c2] = R
(((D ∪ {d1, d2}) \ {c1, c2}) ∪ {c1, c2}) \ {d1, d2} = D

and

A[d1/c1, d2/c2][c2/d1, c1/d2] = A[c1/c2, c2/c1]

this yields I(R, D)(A) = I(R, D)(A[c1/c2, c2/c1]).
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Proposition 3.4
Let I satisfy Prototypical Indifference. Let R be a knowledge base on LΣ and D ⊆ U .

1. Let G1, G2 be two ground sentences. For c1, c2 ∈ D with c1 ≡R c2 it holds
I(R, D)(G2 |G1) = I(R, D)(G2[c1 ↔ c2] |G1[c1 ↔ c2]).

2. Let S ∈ SR, c1, . . . , cn ∈ S, and σ : S → S be a permutation on S, i. e. a bijective
function on S. Then it holds I(R, D)(A) = I(R, D)(A[σ(c1)/c1, . . . , σ(cn)/cn]).

Proof.

1. Because of Prototypical Indifference it holds that

I(R, D)(A2) = I(R, D)(A2[c1 ↔ c2]) and

I(R, D)(A1 ∧A2) = I(R, D)((A1 ∧A2)[c1 ↔ c2])

and hence

I(R, D)(G2 |G1) =
I(R, D)(G2 ∧G1)

I(R, D)(G1)

=
I(R, D)((G2 ∧G1)[c1 ↔ c2])

I(R, D)(G1[c1 ↔ c2])

= I(R, D)(G2[c1 ↔ c2] |G1[c1 ↔ c2])

due to (G2 ∧G1)[xi/yi]i=1,...,n = G2[xi/yi]i=1,...,n ∧G1[xi/yi]i=1,...,n.

2. This follows from the fact that every permutation can be represented as a product
of transpositions [3], i. e. permutations that exactly transpose two elements. Let
σ1, . . . , σm be these transpositions of σ and let σ1...i = σi ◦ . . .◦σ1 for i = 1, . . . ,m.
Note, that σ1...1 = σ1 and σ1...m = σ. Due to Prototypical Indifference it holds

I(R, D)(A) = I(R, D)(A[σ1(c1)/c1, . . . , σ1(cn)/cn])

and for any i = 2, . . . ,m it holds that

I(R, D)(A[σ1...i−1(c1)/c1, . . . , σ1...i−1(cn)/cn])

= I(R, D)(A[σ1...i(c1)/c1, . . . , σ1...i(cn)/cn]) .

Via transitivity and σ1...m = σ it follows

I(R, D)(A) = I(R, D)(A[σ(c1)/c1, . . . , σ(cn)/cn]) .

Proposition 4.1
The inference operator I∅ satisfies Name Irrelevance, Prototypical Indifference, ME-
Compatibility, Compensation, and Strict Inference. If I∅ satisfies Well-Definedness
then I∅ satisfies Conditional Probability in the Limit.
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Proof.

(Name Irrelevance) This is obvious as the principle of maximum entropy is unbi-
ased to renaming of constants, cf. [33].

(Prototypical Indifference) This follows from Proposition 3.2.

(ME-Compatibility) Let R be a ground knowledge base. Due to Remark 2 the
operator |=∅ is equivalent to |= in the propositional case. Then Equation (3) also
becomes equivalent to the propositional case and is in particular uniquely solvable.
Hence, it holds that ME(R′)(A) = I∅(R, consts(R))(A) for any ground sentence
A.

(Compensation) Let R be a knowledge base and (B(~X) |A(~X))[α] ∈ R a non-
ground conditional with α ∈ (0, 1). Suppose I∅(R, D)(B(~c) |A(~c)) < α for all
(B(~c) |A(~c))[α] ∈ groundD(B(~c) |A(~c)). Then it holds that∑

(B(~c) |A(~c))∈groundD((B(~X) |A(~X))) P (B(~c) |A(~c))

|groundD(B(~X) |A(~X))|

<
α · |groundD(B(~X) |A(~X))|
|groundD(B(~X) |A(~X))|

= α

contradicting I∅(R, D), D |=∅ R.

(Strict Inference) Let R be a knowledge base and (B(~X) |A(~X))[α] ∈ R a non-
ground conditional with α = 1 (the case of α = 0 can be shown analogously). Sup-
pose I∅(R, D)(B(~c) |A(~c)) < 1 for some (B(~c) |A(~c))[α] ∈ groundD(B(~c) |A(~c)).
Then it holds that∑

(B(~c) |A(~c))∈groundD((B(~X) |A(~X))) P (B(~c) |A(~c))

|groundD(B(~X) |A(~X))|

<
|groundD(B(~X) |A(~X))|
|groundD(B(~X) |A(~X))|

= 1

contradicting I∅(R, D), D |=∅ R.

(Conditional Probability in the Limit) Assume that the inference operator I∅
satisfies Well-Definedness. Let R be a knowledge base on LΣ such that P ∗ :=
I∅(R, D) 6= undef. Let r = (B(~X) |A(~X))[α] ∈ R be a conditional with ~X =
(X1, . . . ,Xh) and consts(R) = {c1, . . . , cn}. Let furthermore {d1, . . . , dm} = D \
{c1, . . . , cn}, so it holds that |D| = n+m. Let ~d1, . . . ,~dk be all vectors of constants

of d1, . . . , dm with length h such that for any ~di with 1 ≤ i ≤ k no two elements
are the same. Let ~c1, . . . ,~cl be all remaining vectors of constants in D. It follows
that (l + k) = (|D|)h = (n+m)h and

k = mh = m(m− 1) . . . (m− h+ 1) (the falling factorial)

and thus l = (n + m)h − mh. Let P ∗~c denote P ∗(B(~c) |A(~c)) for a vector ~c. In
order to have P ∗, D |=∅ r it must hold P ∗~c1 + . . .+P ∗~cl +P ∗~d1

+ . . .+P ∗~dk
= α · (k+ l).

From Prototypical Indifference and Proposition 3.3 it follows that P ∗~d1
= . . . = P ∗~dk

.
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Define P ∗k := P ∗~d1
, so it holds that P ∗~d1

+ . . .+ P ∗~dk
= kP ∗k . It follows

P ∗k =
α · (k + l)− P ∗~c1 − . . .− P

∗
~cl

k

≤ α · (k + l)

k

= α
(n+m)h

mh︸ ︷︷ ︸
m→∞→ 1

m→∞→ α

Similarly it holds

P ∗k =
α · (k + l)− P ∗~c1 − . . .− P

∗
~cl

k

≥ α · (k + l)− l
k

= α
(n+m)h

mh︸ ︷︷ ︸
m→∞→ 1

− (n+m)h −mh

mh︸ ︷︷ ︸
m→∞→ 0

m→∞→ α .

Due to Well-Definedness the probability distributions P ∗k are well-defined for any
k and it follows P ∗k → α for m→∞.

Lemma 4.5
Let r = (B(~X) |A(~X))[α] be a probabilistic conditional. Then ModD�({r}) is convex
for any D with consts(r) ⊆ D.

Proof. LetD ⊆ U and let P1 and P2 be some probability distributions with P1, D |=�
r and P2, D |=� r. We have to show that any convex combination of P1 and
P2 satisfies r as well. Let Q be a convex combination of P1 and P2, i. e. let
δ ∈ (0, 1) fixed and define Q(ω) = δP1(ω) + (1 − δ)P2(ω) for any ω ∈ Ω. Then
it holds Q(A) = δP1(A) + (1 − δ)P2(A) for any ground formula A as well. Let

{(B1 |A1), . . . , (Bn |An)} = groundD((B(~X) |A(~X))). Then it holds that∑n
i=1 Pj(BiAi)∑n
i=1 Pj(Ai)

= α (6.2)

for j = 1, 2 and we have to show that∑n
i=1Q(BiAi)∑n
i=1Q(Ai)

= α (6.3)
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which is equivalent to

δ
∑n
i=1 P1(BiAi) + (1− δ)

∑n
i=1 P2(BiAi)

δ
∑n
i=1 P1(Ai) + (1− δ)

∑n
i=1 P2(Ai)

= α (6.4)

If α = 0 then Pj(Bi ∧Ai) = 0 for all i = 1, . . . , n and j = 1, 2 due to (6.2). Then also
Q(Bi ∧ Ai) = 0 for all i = 1 . . . , n and it follows Q,D |=� r. We continue for α > 0.
Then (6.4) is equivalent to

δ

n∑
i=1

P1(BiAi) + (1− δ)
n∑
i=1

P2(BiAi) = αδ

n∑
i=1

P1(Ai) + α(1− δ)
n∑
i=1

P2(Ai)

⇔
δ
∑n
i=1 P1(BiAi)

αδ
∑n
i=1 P1(Ai)

+
(1− δ)

∑n
i=1 P2(BiAi)

αδ
∑n
i=1 P1(Ai)

= 1 +
α(1− δ)

∑n
i=1 P2(Ai)

αδ
∑n
i=1 P1(Ai)

⇔ 1 +
(1− δ)

∑n
i=1 P2(BiAi)

αδ
∑n
i=1 P1(Ai)

= 1 +
(1− δ)

∑n
i=1 P2(Ai)

δ
∑n
i=1 P1(Ai)

⇔ 1

α
(1− δ)

n∑
i=1

P2(Bi ∧Ai) = (1− δ)
n∑
i=1

P2(Ai)

⇔ 1 = 1

and it follows Q,D |=� r.

Proposition 4.6
Let R be a �-consistent knowledge base and D a set D ⊆ U . Then I�(R, D) is
uniquely determined.

Proof. For any knowledge base R the set of probability distributions that satisfy R
is a convex set due to Lemma 4.6 and the fact that the intersection of two convex sets
is again a convex set. The entropy is a strict concave function and maximization of a
strict concave function over a convex set has a unique solution [5].

Proposition 4.7
I� satisfies Well-Definedness, Name Irrelevance, Prototypical Indifference, ME-Com-
patibility, Conditional Probability in the Limit, Strict Inference, and Compensation.

Proof.

(Well-Definedness) This is true due to Proposition 4.7.

(Name Irrelevance) This is obvious as the principle of maximum entropy is unbi-
ased to renaming of constants, cf. [33].

(Prototypical Indifference) This follows directly from Proposition 3.2.

(ME-Compatibility) For ground conditional knowledge bases R, the semantics is
the same as for the propositional case, so ME(R) = I�(R, consts(R)).
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(Conditional Probability in the Limit) LetD ⊆ U ,R be a relational conditional

knowledge base, and C0 = D \ consts(R). Let r = (B(~X) |A(~X))[α] ∈ R be a
relational conditional in R with free variables, and let rg = (B(~c) |A(~c))[α] be
a proper instantiation of r with constants ~c from C0. Let Dn = consts(R) ∪
C0 ∪ Cn with Cn ⊂ Cn+1 and |C0 ∪ Cn| = n, n ∈ N, n ≥ |C0|, be a sequence
of sets of constants with Cn ⊆ U for all n ∈ N. Let P ∗n = I�(R, Dn) be the
ME-distribution of R that takes the constants from Dn into account. Due to
Prototypical Indifference, any constant from C0 can be replaced by any constant
from Cn when calculating P ∗n(B(~a)|A(~a)), since neither of them appears in R.
So, all probabilities of instantiations P ∗n(B(~a)|A(~a)) are given by instantiations
over consts(R) ∪ C0, but we have to take proper multiplicities into regard. Let

(B(~X) |A(~X)) have arity s, and let (B(~a) |A(~a)) be a proper instantiation. Then ~a
is a vector of arity s that might have m components from En = C0∪Cn, 0 ≤ m ≤ s,
and s − m components from consts(R). Without loss of generality we assume
t = |consts(R)|, |C0| ≥ s. Since the positions of these components can make a
difference, we have

(
s
m

)
non-indifferent instantiations (B(~amkm,lm) |A(~amkm,lm)), 1 ≤

km ≤
(
s
m

)
, 1 ≤ lm ≤ ts−m, with vectors ~amkm,lm over consts(R) ∪ C0 such that

P ∗n(B(~amkm,lm) |A(~amkm,lm)) occurs nm times among the instantiations over Dn. In
particular, for m = s, all ns instantiations over En are individually indifferent
with respect to P ∗n , one of them being the instantiation for ~c, so P ∗n(B(~c)|A(~c))
can serve as a representative for these ns probabilities. Similar statements hold for
all instantiations of P ∗n(A(~X)B(~X)) and P ∗n(A(~X)). P ∗n , Dn |=� R, so in particular,
P ∗n , Dn |=� r, which means that

α =

∑
(B(~a) |A(~a))∈groundDn

((B(~X) |A(~X)))

P (A(~a)B(~a))∑
(B(~a) |A(~a))∈groundDn

((B(~X) |A(~X)))

P (A(~a))

=:
Σ(A(~a)B(~a), Cn)

Σ(A(~a), Cn)
.

For the numerator, we obtain

Σ(A(~a)B(~a), Dn)

=

ts∑
l0=1

P ∗n(A(~al0)B(~al0)) + n

s∑
k1=1

ts−1∑
l1=1

P ∗n(A(~a1
k1,l1)B(~a1

k1,l1))

+ n2

(s
2)∑

k2=1

ts−2∑
l2=1

P ∗n(A(~a2
k2,l2)B(~a2

k2,l2)) + . . .

+ ns−1

( s
s−1)∑

ks−1=1

t∑
ls−1=1

P ∗n(A(~as−1
ks−1,ls−1

)B(~as−1
ks−1,ls−1

))

+ nsP ∗n(A(~c)B(~c))
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= ns[
1

ns

ts∑
l0=1

P ∗n(A(~al0)B(~al0)) +
1

ns−1

s∑
k1=1

ts−1∑
l1=1

P ∗n(A(~a1
k1,l1)B(~a1

k1,l1))

+
1

ns−2

(s
2)∑

k2=1

ts−2∑
l2=1

P ∗n(A(~a2
k2,l2)B(~a2

k2,l2)) + . . .

+
1

n

( s
s−1)∑

ks−1=1

t∑
ls−1=1

P ∗n(A(~as−1
ks−1,ls−1

)B(~as−1
ks−1,ls−1

)) + P ∗n(A(~c)B(~c)) ]

= ns[ ε1(n) + P ∗n(A(~c)B(~c)) ]

with ε1(n) ≤ 1
ns t

s + 1
ns−1 st

s−1 + 1
ns−2

(
s
2

)
ts−2 + . . . + 1

nst = O( 1
n ). In the same

way, for the denominator, we have

Σ(A(~a), Cn) = ns[ε2(n) + P ∗n(A(~c))]

with ε2(n) = O( 1
n ). This shows that for n→∞, P ∗n(A(~c)B(~c)) and P ∗n(A(~c)) are

the dominant terms, hence

α = lim
n→∞

P ∗n(A(~c)B(~c))

P ∗n(A(~c))
= lim
n→∞

P ∗n(B(~c)|A(~c)),

what was to be shown.

(Compensation) Let R be a knowledge base and (B(~X) |A(~X))[α] ∈ R with α ∈
(0, 1), and let ~c1 be a vector of constants such that I�(R, D)(B(~c1) |A(~c1)) < α.

Let P ∗ = I�(R, D). From the presupposition (B(~X) |A(~X))[α] ∈ R and P ∗, D |=�
R, in particular, we have P ∗, D |=� (B(~X) |A(~X))[α], which means

α =

∑
(B(~a) |A(~a))∈groundD((B(~X) |A(~X)))

P ∗(A(~a)B(~a))∑
(B(~a) |A(~a))∈groundD((B(~X) |A(~X)))

P ∗(A(~a))
.

Assume that for all (proper) instantiations ~a 6= ~c1, P
∗(B(~a) |A(~a)) ≤ α. Then we

had ∑
(B(~a) |A(~a))∈groundD((B(~X) |A(~X)))

P ∗(A(~a)B(~a))

= P ∗(A(~c1)B(~c1)) +
∑

(B(~a) |A(~a))∈groundD((B(~X) |A(~X))),~a 6=~c1

P ∗(A(~a)B(~a))

< αP ∗(A(~c1)) +
∑

(B(~a) |A(~a))∈groundD((B(~X) |A(~X))),~a 6=~c1

αP ∗(A(~a))

= α
∑

(B(~a) |A(~a))∈groundD((B(~X) |A(~X)))

P ∗(A(~a)),
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hence ∑
(B(~a) |A(~a))∈groundD((B(~X) |A(~X)))

P ∗(A(~a)B(~a))∑
(B(~a) |A(~a))∈groundD((B(~X) |A(~X)))

P ∗(A(~a))
< α,

which contradicts P ∗, D |=� (B(~X) |A(~X))[α]. So, there must be another vector
of constants ~c2 with P ∗(A(~c2) |B(~c2)) > α.

(Strict Inference) LetR be a ◦-consistent knowledge base underD and (B(~X) |A(~X))[α] ∈
R a non-ground conditional with α ∈ {0, 1}. Let

(B(~c) | A(~c)) ∈ groundD(A(~X) | B(~X)) .

It is to be shown that I(R, D)(B(~c) | A(~c)) = α. Suppose that α = 0. Since

P ∗ = I�(R, D) is a model of R, in particular, we have P ∗, D |=� (B(~X) |A(~X))[0].
This implies that ∑

(B(~c) |A(~c))∈groundD((B(~X) |A(~X)))

P (B(~c) ∧A(~c)) = 0 ,

so for all (B(~c) |A(~c)) ∈ groundD((B(~X) |A(~X))), P (B(~c)∧A(~c)) = 0. In case that

α = 1, P ∗, D |=� (B(~X) |A(~X))[1] yields∑
(B(~c) |A(~c))∈groundD((B(~X) |A(~X)))

P (B(~c) ∧A(~c))

=
∑

(B(~c) |A(~c))∈groundD((B(~X) |A(~X)))

P (A(~c)) .

If there were ~c such that P (B(~c) |A(~c)) < 1, i.e. P (B(~c) ∧ A(~c)) < P (A(~c)), this
would result in ∑

(B(~c) |A(~c))∈groundD((B(~X) |A(~X)))

P (B(~c) ∧A(~c))

<
∑

(B(~c) |A(~c))∈groundD((B(~X) |A(~X)))

P (A(~c)) ,

a contradiction. Hence, Strict Inference is also satisfied in this case.
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