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Abstract. We investigate the problem of inconsistency measurement on large
knowledge bases by considering stream-based inconsistency measurement, i. e.,
we investigate inconsistency measures that cannot consider a knowledge base as
a whole but process it within a stream. For that, we present, first, a novel in-
consistency measure that is apt to be applied to the streaming case and, second,
stream-based approximations for the new and some existing inconsistency mea-
sures. We conduct an extensive empirical analysis on the behavior of these incon-
sistency measures on large knowledge bases, in terms of runtime, accuracy, and
scalability. We conclude that for two of these measures, the approximation of the
new inconsistency measure and an approximation of the contension inconsistency
measure, large-scale inconsistency measurement is feasible.

1 Introduction

Inconsistency measurement [1] is a subfield of Knowledge Representation and Reason-
ing (KR) that is concerned with the quantitative assessment of the severity of inconsis-
tencies in knowledge bases. Consider the following two knowledge bases K1 and K2

formalized in propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Both knowledge bases are classically inconsistent as for K1 we have {a,¬a∧¬b} |=⊥
and for K2 we have, e. g., {a,¬a} |=⊥. These inconsistencies render the knowledge
bases useless for reasoning if one wants to use classical reasoning techniques. In order
to make the knowledge bases useful again, one can either use non-monotonic/para-
consistent reasoning techniques [2,3] or one revises the knowledge bases appropriately
to make them consistent [4]. Looking again at the knowledge bases K1 and K2 one can
observe that the severity of their inconsistency is different. In K1, only two out of four
formulas (a and ¬a ∧ ¬b) are participating in making K1 inconsistent while for K2 all
formulas contribute to its inconsistency. Furthermore, for K1 only two propositions (a
and b) participate in a conflict and using, e. g., paraconsistent reasoning one could still
infer meaningful statements about c and d. ForK2 no such statement can be made. This
leads to the assessment that K2 should be regarded more inconsistent than K1. Incon-
sistency measures can be used to quantitatively assess the inconsistency of knowledge
bases and to provide a guide for how to repair them, cf. [5]. Moreover, they can be used
as an analytical tool to assess the quality of knowledge representation. For example,
one simple inconsistency measure is to take the number of minimal inconsistent subsets
(MIs) as an indicator for the inconsistency: the more MIs a knowledge base contains,



the more inconsistent it is. For K1 we have then 1 as its inconsistency value and for K2

we have 2.
In this paper, we consider the computational problems of inconsistency measure-

ment, particularly with respect to scalable inconsistency measurement on large knowl-
edge bases, as they appear in, e. g., Semantic Web applications. To this end we present
a novel inconsistency measure Ihs that approximates the η-inconsistency measure from
[6] and is particularly apt to be applied to large knowledge bases. This measure is based
on the notion of a hitting set which (in our context) is a minimal set of classical in-
terpretations such that every formula of a knowledge base is satisfied by at least one
element of the set. In order to investigate the problem of measuring inconsistency in
large knowledge bases we also present a stream-based processing framework for incon-
sistency measurement. More precisely, the contributions of this paper are as follows:

1. We present a novel inconsistency measure Ihs based on hitting sets and show how
this measure relates to other measures and, in particular, that it is a simplification
of the η-inconsistency measure [6] (Section 3).

2. We formalize a theory of inconsistency measurement in streams and provide ap-
proximations of several inconsistency measures for the streaming case (Section 4).

3. We conduct an extensive empirical study on the behavior of those inconsistency
measures in terms of runtime, accuracy, and scalability. In particular, we show that
the stream variants of Ihs and of the contension measure Ic are effective and ac-
curate for measuring inconsistency in the streaming setting and, therefore, in large
knowledge bases (Section 5).

We give necessary preliminaries for propositional logic and inconsistency measurement
in Section 2 and conclude the paper with a discussion in Section 6. Proofs of technical
results are omitted but can be found in an extended version of this paper1.

2 Preliminaries

Let At be a propositional signature, i. e., a (finite) set of propositions, and let L(At)
be the corresponding propositional language. We use the symbol ⊥ to denote con-
tradiction. Then a knowledge base K is a finite set of formulas K ⊆ L(At). Let
K(At) be the set of all knowledge bases. We write K instead of K(At) when there
is no ambiguity regarding the signature. Semantics to L(At) is given by interpretations
ω : At → {true, false}. Let Int(At) denote the set of all interpretations for At. An
interpretation ω satisfies (or is a model of) an atom a ∈ At, denoted by ω |= a (or
ω ∈ Mod(a)), if and only if ω(a) = true. Both |= and Mod(·) are extended to arbitrary
formulas, sets, and knowledge bases as usual.

Inconsistency measures are functions I : K → [0,∞) that aim at assessing the
severity of the inconsistency in a knowledge base K, cf. [5]. The basic idea is that
the larger the inconsistency in K the larger the value I(K). However, inconsistency
is a concept that is not easily quantified and there have been a couple of proposals for
inconsistency measures so far, see e. g. [6,7,8,1,9,10]. There are two main paradigms for

1 http://www.mthimm.de/misc/thimm_inc_ki2014_extended.pdf
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assessing inconsistency [9], the first being based on the (number of) formulas needed to
produce inconsistencies and the second being based on the proportion of the language
that is affected by the inconsistency. Below we recall some popular measures from
both categories but we first introduce some necessary notations. Let K ∈ K be some
knowledge base.

Definition 1. A set M ⊆ K is called minimal inconsistent subset (MI) of K if M |=⊥
and there is no M ′ ⊂M with M ′ |=⊥. Let MI(K) be the set of all MIs of K.

Definition 2. A formula α ∈ K is called free formula of K if there is no M ∈ MI(K)
with α ∈M . Let Free(K) denote the set of all free formulas of K.

We adopt the following definition of a (basic) inconsistency measure from [5].

Definition 3. A basic inconsistency measure is a function I : K→ [0,∞) that satisfies
the following three conditions: 1.) I(K) = 0 if and only ifK is consistent, 2.) ifK ⊆ K′
then I(K) ≤ I(K′), and 3.) for all α ∈ Free(K) we have I(K) = I(K \ {α}).

For the remainder of this paper we consider the following selection of inconsistency
measures: the MI measure IMI, the MIc measure IMIc , the contension measure Ic, and
the η measure Iη , which will be defined below, cf. [5,6]. In order to define the con-
tension measure Ic we need to consider three-valued interpretations for propositional
logic [3]. A three-valued interpretation υ on At is a function υ : At→ {T, F,B} where
the values T and F correspond to the classical true and false, respectively. The addi-
tional truth value B stands for both and is meant to represent a conflicting truth value
for a proposition. The function υ is extended to arbitrary formulas as shown in Table 1.
Then, an interpretation υ satisfies a formula α, denoted by υ |=3 α if either υ(α) = T

α β α ∧ β α ∨ β ¬α α β α ∧ β α ∨ β ¬α α β α ∧ β α ∨ β ¬α
T T T T F B T B T B F T F T T
T B B T F B B B B B F B F B T
T F F T F B F F B B F F F F T

Table 1: Truth tables for propositional three-valued logic [3].

or υ(α) = B.
For defining the η-inconsistency measure [6] we need to consider probability func-

tions P of the form P : Int(At) → [0, 1] with
∑
ω∈Int(At) P (ω) = 1. Let P(At) be the

set of all those probability functions and for a given probability function P ∈ P(At)
define the probability of an arbitrary formula α via P (α) =

∑
ω|=α P (ω).

Definition 4. Let IMI, IMIc , Ic, and Iη be defined via

IMI(K) = |MI(K)|, Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ},

IMIc(K) =
∑

M∈MI(K)

1

|M |
, Ic(K) = min{|υ−1(B)| | υ |=3 K}

All these measures are basic inconsistency measures as defined in Definition 3.



Example 1. For the knowledge bases K1 = {a, b ∨ c,¬a ∧ ¬b, d} and K2 = {a,¬a, b,
¬b} from the introduction we obtain IMI(K1) = 1, IMIc(K1) = 0.5, Ic(K1) = 2,
Iη(K1) = 0.5, IMI(K2) = 2, IMIc(K2) = 1, Ic(K2) = 2, Iη(K2) = 0.5.

For a more detailed introduction to inconsistency measures see e. g. [1,5,6] and for some
recent developments see e. g. [8,11].

As for computational complexity, the problem of computing an inconsistency value
wrt. any of the above inconsistency measures is at least FNP-hard2 as it contains a
satisfiability problem as a sub problem.

3 An Inconsistency Measure based on Hitting Sets

The basic idea of our novel inconsistency measure Ihs is inspired by the measure Iη
which seeks a probability function that maximizes the probability of all formulas of a
knowledge base. Basically, the measure Iη looks for a minimal number of models of
parts of the knowledge base and maximizes their probability in order to maximize the
probability of the formulas. By just considering this basic idea we arrive at the notion
of a hitting set for inconsistent knowledge bases.

Definition 5. A subset H ⊂ Int(At) is called a hitting set of K if for every α ∈ K
there is ω ∈ H with ω |= α. H is called a card-minimal hitting set if it is minimal wrt.
cardinality. Let hK be the cardinality of any card-minimal hitting set (define hK = ∞
if there does not exist a hitting set of K).

Definition 6. The function Ihs : K→ [0,∞] is defined via Ihs(K) = hK− 1 for every
K ∈ K.

Note, that if a knowledge base K contains a contradictory formula (e. g. a ∧ ¬a) we
have Ihs(K) = ∞. In the following, we assume that K contains no such contradictory
formulas.

Example 2. Consider the knowledge base K3 defined via

K3 = {a ∨ d, a ∧ b ∧ c, b,¬b ∨ ¬a, a ∧ b ∧ ¬c, a ∧ ¬b ∧ c}

Then {ω1, ω2, ω3} ⊂ Int(At) with ω1(a) = ω1(b) = ω1(c) = true, ω2(a) = ω2(c) =
true, ω1(b) = false, and ω3(a) = ω3(b) = true, ω3(c) = false is a card-minimal
hitting set for K3 and therefore Ihs(K3) = 2. Note that for the knowledge bases K1

and K2 from Example 1 we have Ihs(K1) = Ihs(K2) = 1.

Proposition 1. The function Ihs is a (basic) inconsistency measure.

The result below shows that Ihs also behaves well with some more properties men-
tioned in the literature [9,10]. For that, we denote with At(F ) for a formula or a set
of formulas F the set of propositions appearing in F . Furthermore, two knowledge
bases K1, K2 are semi-extensionally equivalent (K1 ≡σ K2) if there is a bijection
σ : K1 → K2 such that for all α ∈ K1 we have α ≡ σ(α).

2 FNP is the generalization of the class NP to functional problems.



Proposition 2. The measure Ihs satisfies the following properties:

– If α ∈ K is such that At(α)∩At(K \ {α}) = ∅ then Ihs(K) = Ihs(K \ {α}) (safe
formula independence).

– If K ≡σ K′ then Ihs(K) = Ihs(K′) (irrelevance of syntax).
– If α |= β and α 6|=⊥ then Ihs(K ∪ {α}) ≥ Ihs(K ∪ {β}) (dominance).

The measure Ihs can also be nicely characterized by a consistent partitioning of a
knowledge base.

Definition 7. A set Φ = {Φ1, . . . , Φn} with Φ1 ∪ . . . ∪ Φn = K and Φi ∩ Φj = ∅ for
i, j = 1, . . . , n, i 6= j, is called a partitioning of K. A partitioning Φ = {Φ1, . . . , Φn}
is consistent if Φi 6|=⊥ for i = 1, . . . , n. A consistent partitioning Φ is called card-
minimal if it is minimal wrt. cardinality among all consistent partitionings of K.

Proposition 3. A consistent partitioning Φ is a card-minimal partitioning of K if and
only if Ihs(K) = |Φ| − 1.

As Ihs is inspired by Iη we go on by comparing these two measures.

Proposition 4. Let K be a knowledge base. If∞ > Ihs(K) > 0 then

1− 1

Ihs(K)
< Iη(K) ≤ 1− 1

Ihs(K) + 1

Note that for Ihs(K) = 0 we always have Iη(K) = 0 as well, as both are basic incon-
sistency measures.

Corollary 1. If Iη(K1) ≤ Iη(K2) then Ihs(K1) ≤ Ihs(K2).

However, the measures Iη and Ihs are not equivalent as the following example shows.

Example 3. Consider the knowledge bases K1 = {a,¬a} and K2 = {a, b,¬a ∨ ¬b}.
Then we have Ihs(K1) = Ihs(K2) = 1 but Iη(K1) = 0.5 > 1/3 = Iη(K2).

It follows that the order among knowledge bases induced by Iη is a refinement of the or-
der induced by Ihs. However, Ihs is better suited for approximation in large knowledge
bases than Iη , cf. the following section.

The idea underlying Ihs is also similar to the contension inconsistency measure Ic.
However, these measures are not equivalent as the following example shows.

Example 4. Consider the knowledge bases K1 = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c} and K2 =
{a∧ b,¬a∧ b, a∧¬b}. Then we have Ihs(K1) = 2 < 3 = Ihs(K2) but Ic(K1) = 3 >
2 = Ic(K2).

4 Inconsistency Measurement in Streams

In the following, we discuss the problem of inconsistency measurement in large knowl-
edge bases. We address this issue by using a stream-based approach of accessing the
formulas of a large knowledge base. Formulas of a knowledge base then need to be
processed one by one by a stream-based inconsistency measure. The goal of this for-
malization is to obtain stream-based inconsistency measures that approximate given
inconsistency measures when the latter would have been applied to the knowledge base
as a whole. We first formalize this setting and, afterwards, provide concrete approaches
for some inconsistency measures.



4.1 Problem Formalization

We use a very simple formalization of a stream that is sufficient for our needs.

Definition 8. A propositional stream S is a function S : N → L(At). Let S be the set
of all propositional streams.

A propositional stream models a sequence of propositional formulas. On a wider scope,
a propositional stream can also be interpreted as a very general abstraction of the output
of a linked open data crawler (such as LDSpider [12]) that crawls knowledge formalized
as RDF (Resource Description Framework) from the web, enriched, e. g. with OWL
semantics. We model large knowledge bases by propositional streams that indefinitely
repeat the formulas of the knowledge base. For that, we assume for a knowledge base
K = {φ1, . . . , φn} the existence of a canonical enumeration Kc = 〈φ1, . . . , φn〉 of the
elements of K. This enumeration can be arbitrary and has no specific meaning other
than to enumerate the elements in an unambiguous way.

Definition 9. Let K be a knowledge base and Kc = 〈φ1, . . . , φn〉 its canonical enu-
meration. The K-stream SK is defined as SK(i) = φ(imodn)+1 for all i ∈ N.

Given a K-stream SK and an inconsistency measure I we aim at defining a method that
processes the elements of SK one by one and approximates I(K).
Definition 10. A stream-based inconsistency measure J is a function J : S × N →
[0,∞).

Definition 11. Let I be an inconsistency measure and J a stream-based inconsistency
measure. Then J approximates (or is an approximation of) I if for all K ∈ K we have
limi→∞ J (SK, i) = I(K).

4.2 A Naive Window-based Approach

The simplest form of implementing a stream-based variant of any algorithm or function
is to use a window-based approach, i. e., to consider at any time point a specific excerpt
from the stream and apply the original algorithm or function on this excerpt. For any
propositional stream S let Si,j (for i ≤ j) be the knowledge base obtained by taking
the formulas from S between positions i and j, i. e., Si,j = {S(i), . . . ,S(j)}.
Definition 12. Let I be an inconsistency measure, w ∈ N∪{∞}, and g some function
g : [0,∞) × [0,∞) → [0,∞) with g(x, y) ∈ [min{x, y},max{x, y}]. We define the
naive window-based measure J w,gI : S× N→ [0,∞) via

J w,gI (S, i) =
{
0 if i = 0
g(I(Smax{0,i−w},i),J w,gI (S, i− 1)) otherwise

for every S and i ∈ N.

The function g in the above definition is supposed to be an aggregation function that
combines the new obtained inconsistency value I(Smax{0,i−w},i

K ) with the previous
value J w,gI (S, i − 1). This function can be, e. g., the maximum function max or a
smoothing function gα(x, y) = αx + (1 − α)y for some α ∈ [0, 1] (for every x, y ∈
[0,∞)).



Proposition 5. Let I be an inconsistency measure, w ∈ N∪{∞}, and g some function
g : [0,∞)× [0,∞)→ [0,∞) with g(x, y) ∈ [min{x, y},max{x, y}].
1. If w is finite then J w,gI is not an approximation of I.
2. If w =∞ and g(x, y) > min{x, y} if x 6= y then J w,gI is an approximation of I.
3. J w,gI (SK, i) ≤ I(K) for every K ∈ K and i ∈ N.

4.3 Approximation Algorithms for Ihs and Ic

The approximation algorithms for Ihs and Ic that are presented in this subsection are
using concepts of the programming paradigms of simulated annealing and genetic pro-
gramming [13]. Both algorithms follow the same idea and we will only formalize the
one for Ihs and give some hints on how to adapt it for Ic.

The basic idea for the stream-based approximation of Ihs is as follows. At any
processing step we maintain a candidate set C ∈ 2Int(At) (initialized with the empty
set) that approximates a hitting set of the underlying knowledge base. At the beginning
of a processing step we make a random choice (with decreasing probability the more
formulas we already encountered) whether to remove some element of C. This action
ensures that C does not contain superfluous elements. Afterwards we check whether
there is still an interpretation in C that satisfies the currently encountered formula. If
this is not the case we add some random model of the formula to C. Finally, we update
the previously computed inconsistency value with |C|−1, taking also some aggregation
function g (as for the naive window-based approach) into account. In order to increase
the probability of successfully finding a minimal hitting set we do not maintain a single
candidate set C but a (multi-)set Cand = {C1, . . . , Cm} for some previously specified
parameter m ∈ N and use the average size of these candidate hitting sets.

Definition 13. Let m ∈ N, g some function g : [0,∞) × [0,∞) → [0,∞) with
g(x, y) ∈ [min{x, y},max{x, y}], and f : N → [0, 1] some monotonically decreasing
function with limn→∞ f(n) = 0. We define Jm,g,fhs via

Jm,g,fhs (S, i) =
{
0 if i = 0

update
m,g,f
hs (S(i)) otherwise

for every S and i ∈ N. The function update
m,g,f
hs is depicted in Algorithm 1.

At the first call of the algorithm update
m,g,f
hs the value of currentV alue (which con-

tains the currently estimated inconsistency value) is initialized to 0 and the (mulit-)set
Cand ⊆ 2Int(At) (which contains a population of candidate hitting sets) is initialized
with m empty sets. The function f can be any monotonically decreasing function with
limn→∞ f(n) = 0 (this ensures that at any candidate C reaches some stable result).
The parameter m increases the probability that at least one of the candidate hitting sets
attains the global optimum of a card-minimal hitting set.

As Jm,g,fhs is a random process we cannot show that Jm,g,fhs is an approximation of
Ihs in the general case. However, we can give the following result.

Proposition 6. For every probability p ∈ [0, 1), g some function g : [0,∞)× [0,∞)→
[0,∞) with g(x, y) ∈ [min{x, y},max{x, y}] and g(x, y) > min{x, y} if x 6= y,
a monotonically decreasing function f : N → [0, 1] with limn→∞ f(n) = 0, and



Algorithm 1 update
m,g,f
hs (form)

1: Initialize currentV alue and Cand
2: N = N + 1
3: newV alue = 0
4: for all C ∈ Cand do
5: rand ∈ [0, 1]
6: if rand < f(N) then
7: Remove some random ω from C
8: if ¬∃ω ∈ C : ω |= form then
9: Add random ω ∈ Mod(form) to C

10: newV alue = newV alue+ (|C| − 1)/|Cand|
11: currentV alue = g(newV alue, currentV alue)
12: return currentV alue

K ∈ K there is m ∈ N such that with probability greater or equal p it is the case that
limi→∞ Jm,g,fhs (SK, i) = Ihs(K).

This result states that Jm,g,fhs indeed approximates Ihs if we choose the number of
populations large enough. In the next section we will provide some empirical evidence
that even for small values of m results are satisfactory.

Both Definition 13 and Algorithm 1 can be modified slightly in order to approximate
Ic instead of Ihs, yielding a new measure Jm,g,fc . For that, the set of candidates Cand
contains three-valued interpretations instead of sets of classical interpretations. In line 7,
we do not remove an interpretation fromC but flip some arbitrary proposition fromB to
T or F . Similarly, in line 9 we do not add an interpretation but flip some propositions to
B in order to satisfy the new formula. Finally, the inconsistency value is determined by
taking the number of B-valued propositions. For more details see the implementations
of both Jm,g,fhs and Jm,g,fc , which will also be discussed in the next section.

5 Empirical Evaluation

In this section we describe our empirical experiments on runtime, accuracy, and scala-
bility of some stream-based inconsistency measures. Our Java implementations3 have
been added to the Tweety Libraries for Knowledge Representation [14].

5.1 Evaluated Approaches and Experiment Setup

For our evaluation, we considered the inconsistency measures IMI, IMIc , Iη , Ic, and
Ihs. We used the SAT solver lingeling4 for the sub-problems of determining consis-

3 IMI, IMIc , Iη , J w,gI : http://mthimm.de/r?r=tweety-inc-commons
Ic, Ihs: http://mthimm.de/r?r=tweety-inc-pl
Jm,g,fhs : http://mthimm.de/r?r=tweety-stream-hs
Jm,g,fc : http://mthimm.de/r?r=tweety-stream-c
Evaluation framework: http://mthimm.de/r?r=tweety-stream-eval

4 http://fmv.jku.at/lingeling/

http://mthimm.de/r?r=tweety-inc-commons
http://mthimm.de/r?r=tweety-inc-pl
http://mthimm.de/r?r=tweety-stream-hs
http://mthimm.de/r?r=tweety-stream-c
http://mthimm.de/r?r=tweety-stream-eval
http://fmv.jku.at/lingeling/


tency and to compute a model of a formula. For enumerating the set of MIs of a knowl-
edge base (as required by IMI and IMIc ) we used MARCO5. The measure Iη was im-
plemented using the linear optimization solver lp solve6. The measures IMI, IMIc , and
Iη were used to define three different versions of the naive window-based measure
J w,gI (with w = 500, 1000, 2000 and g = max). For the measures Ic and Ihs we
tested each three versions of their streaming variants Jm,g0.75,f1c and Jm,g0.75,f1hs (with
m = 10, 100, 500) with f1 : N→ [0, 1] defined via f1(i) = 1/(i+ 1) for all i ∈ N and
g0.75 is the smoothing function for α = 0.75 as defined in the previous section.

For measuring the runtime of the different approaches we generated 100 random
knowledge bases in CNF (Conjunctive Normal Form) with each 5000 formulas (=dis-
junctions) and 30 propositions. For each generated knowledge base K we considered
its K-stream and processing of the stream was aborted after 40000 iterations. We fed
the K-stream to each of the evaluated stream-based inconsistency measures and mea-
sured the average runtime per iteration and the total runtime. For each iteration, we set
a time-out of 2 minutes and aborted processing of the stream completely if a time-out
occurred.

In order to measure accuracy, for each of the considered approaches we generated
another 100 random knowledge bases with specifically set inconsistency values7, used
otherwise the same settings as above, and measured the returned inconsistency values.

To evaluate the scalability of our stream-based approach of Ihs we conducted a third
experiment8 where we fixed the number of propositions (60) and the specifically set in-
consistency value (200) and varied the size of the knowledge bases from 5000 to 50000
(with steps of 5000 formulas). We measured the total runtime up to the point when the
inconsistency value was within a tolerance of ±1 of the expected inconsistency value.

The experiments were conducted on a server with two Intel Xeon X5550 QuadCore
(2.67 GHz) processors with 8 GB RAM running SUSE Linux 2.6.

5.2 Results

Our first observation concerns the inconsistency measure Iη which proved to be not
suitable to work on large knowledge bases9. Computing the value Iη(K) for some
knowledge base K includes solving a linear optimization problem over a number of
variables which is (in the worst-case) exponential in the number of propositions of the
signature. In our setting with |At| = 30 the generated optimization problem contained
therefore 230 = 1073741824 variables. Hence, even the optimization problem itself
could not be constructed within the timeout of 2 minutes for every step. As we are not
aware of any more efficient implementation of Iη , we will not report on further results
for Iη in the following.

As for the runtime of the naive window-based approaches of IMI and IMIc and our
stream-based approaches for Ic and Ihs see Table 2. There one can see that J w,gIMI

and

5 http://sun.iwu.edu/˜mliffito/marco/
6 http://lpsolve.sourceforge.net
7 The sampling algorithms can be found at http://mthimm.de/r?r=tweety-sampler
8 We did the same experiment with our stream-based approach of Ic but do not report the results

due to the similarity to Ihs and space restrictions.
9 More precisely, our implementation of the measure proved to be not suitable for this setting

http://sun.iwu.edu/~mliffito/marco/
http://lpsolve.sourceforge.net
http://mthimm.de/r?r=tweety-sampler


Measure RT (iteration) RT (total) Measure RT (iteration) RT (total)

J 500,max
IMI

198ms 133m J 10,g0.75,f1
c 0.16ms 6.406s

J 1000,max
IMI

359ms 240m J 100,g0.75,f1
c 1.1ms 43.632s

J 2000,max
IMI

14703ms 9812m J 500,g0.75,f1
c 5.21ms 208.422s

J 500,max
IMIc

198ms 134m J 10,g0.75,f1
hs 0.07ms 2.788s

J 1000,max
IMIc

361ms 241m J 100,g0.75,f1
hs 0.24ms 9.679s

J 2000,max
IMIc

14812ms 9874m J 500,g0.75,f1
hs 1.02ms 40.614s

Table 2: Runtimes for the evaluated measures; each value is averaged over 100 random
knowledge bases of 5000 formulas; the total runtime is after 40000 iterations

J w,gIMIc
on the one hand, and Jm,g,fc and Jm,g,fhs on the other hand, have comparable

runtimes, respectively. The former two have almost identical runtimes, which is obvious
as the determination of the MIs is the main problem in both their computations. Clearly,
Jm,g,fc and Jm,g,fhs are significantly faster per iteration (and in total) than J w,gIMI

and
J w,gIMIc

, only very few milliseconds for the latter and several hundreds and thousands of
milliseconds for the former (for all variants of m and w). The impact of increasing w
for Jm,g,fc and Jm,g,fhs is expectedly linear while the impact of increasing the window
size w for J w,gIMI

and J w,gIMIc
is exponential (this is also clear as both solve an FNP-hard

problem).
As for the accuracy of the different approaches see Figure 1. There one can see

that both Jm,g,fhs and Jm,g,fc (Figures 1a and 1b) converge quite quickly (almost right
after the knowledge base has been processed once) into a [−1, 1] interval around the
actual inconsistency value, where Jm,g,fc is even closer to it. The naive window-based
approaches (Figures 1c and 1d) have a comparable bad performance (this is clear as
those approaches cannot see all MIs at any iteration due to the limited window size).
Surprisingly, the impact of larger values of m for Jm,g,fhs and Jm,g,fc is rather small
in terms of accuracy which suggests that the random process of our algorithm is quite
robust. Even for m = 10 the results are quite satisfactory.

As for the scalability of Jm,g0.75,f1hs see Figure 2. There one can observe a linear
increase in the runtime of all variants wrt. the size of the knowledge base. Furthermore,
the difference between the variants is also linearly in the parameter m (which is also
clear as each population is an independent random process). It is noteworthy, that the
average runtime for J 10,g0.75,f1

hs is about 66.1 seconds for knowledge bases with 50000
formulas. As the significance of the parameterm for the accuracy is also only marginal,
the measure J 10,g0.75,f1

hs is clearly an effective and accurate stream-based inconsistency
measure.

6 Discussion and Conclusion

In this paper we discussed the issue of large-scale inconsistency measurement and pro-
posed novel approximation algorithms that are effective for the streaming case. To the
best of our knowledge, the computational issues for measuring inconsistency, in partic-
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Fig. 1: Accuracy performance for the evaluated measures (dashed line is actual incon-
sistency value); each value is averaged over 100 random knowledge bases of 5000 for-
mulas (30 propositions) with varying inconsistency values

ular with respect to scalability problems, have not yet been addressed in the literature
before. One exception is the work by Ma and colleagues [7] who present an anytime al-
gorithm that approximates an inconsistency measure based on a 4-valued paraconsistent
logic (similar to the contension inconsistency measure). The algorithm provides lower
and upper bounds for this measure and can be stopped at any point in time with some
guaranteed quality. The main difference between our framework and the algorithm of
[7] is that the latter needs to process the whole knowledge base in each atomic step and
is therefore not directly applicable for the streaming scenario. The empirical evaluation
[7] also suggests that our streaming variant of Ihs is much more performant as Ma
et al. report an average runtime of their algorithm of about 240 seconds on a knowl-
edge base with 120 formulas and 20 propositions (no evaluation on larger knowledge
bases is given) while our measure has a runtime of only a few seconds for knowledge
bases with 5000 formulas with comparable accuracy10. A deeper comparison of these
different approaches is planned for future work.

Our work showed that inconsistency measurement is not only a theoretical field but
can actually be applied to problems of reasonable size. In particular, our stream-based

10 Although hardware specifications for these experiments are different this huge difference is
significant.
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Fig. 2: Evaluation of the scalability of Jm,g0.75,f1hs ; each value is averaged over 10 ran-
dom knowledge bases of the given size

approaches of Ihs and Ic are accurate and effective for measuring inconsistencies in
large knowledge bases. Current and future work is about the application of our work on
linked open data sets [12].
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