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Abstract
The classical probabilistic entailment problem is to
determine upper and lower bounds on the probab-
ility of formulas, given a consistent set of prob-
abilistic assertions. We generalize this problem
by omitting the consistency assumption and, thus,
provide a general framework for probabilistic reas-
oning under inconsistency. To do so, we util-
ize inconsistency measures to determine probabil-
ity functions that are closest to satisfying the know-
ledge base. We illustrate our approach on several
examples and show that it has both nice formal and
computational properties.
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1 Introduction
Many branches in artificial intelligence deal with reasoning
under uncertainty and inconsistency, e. g., default reasoning
[Reiter, 1980], paraconsistent logics [Béziau et al., 2007], be-
lief dynamics [Hansson, 2001], computational argumentation
[Bench-Capon and Dunne, 2007] and probabilistic reasoning
[Nilsson, 1986]. Inconsistencies arise easily in many applic-
ations, e. g., when several experts share their knowledge in
order to solve a problem [Konieczny and Perez, 2011].

We consider the scenario that our knowledge is both un-
certain and inconsistent. As a simple example, consider two
experts, the one arguing that the price of a stock will prob-
ably rise, the other arguing that the price will probably fall.
Even though uncertain, taken together both statements are in-
consistent. How can a rational agent incorporate both beliefs
simultaneously?

To represent uncertain knowledge, we use an extension
of classical probabilistic logic [Nilsson, 1986] and consider
probabilistic conditionals (ψ |φ)[d] that encode uncertain
rules ’if φ then ψ with probability d’ [Benferhat et al., 1999;
Kern-Isberner, 2001]. Inconsistencies occur in this frame-
work when multiple conditionals cannot be satisfied jointly
by a probability function. To deal with inconsistencies,
we generalize the probabilistic entailment problem [Jaumard
et al., 1991; Lukasiewicz, 1999] to inconsistent knowledge
bases by using inconsistency measures [Grant and Hunter,
2013b]. An inconsistency measure I is a function that maps
a knowledge base to a non-negative real number such that
larger values indicate larger inconsistency. For probabilistic
conditional logic, several inconsistency measures have been

proposed, see, e. g. [Thimm, 2013; Picado-Muiño, 2011].
We apply the family of minimal violation measures from
[Potyka, 2014] since they allow us to extend the classical no-
tion of models of a probabilistic knowledge base to inconsist-
ent ones. Intuitively, the generalized models are those prob-
ability functions that minimally violate the knowledge base
[Potyka and Thimm, 2014]. We incorporate integrity con-
straints and study a family of generalized entailment prob-
lems for probabilistic knowledge bases. More specifically,
the contributions of this work are as follows:

1. We introduce the computational problem of generalized
entailment with integrity constraints in probabilistic lo-
gics and thus provide an approach to reasoning with in-
consistent probabilistic knowledge (Section 3).

2. We analyse the behaviour of our approach by showing
that it satisfies several rationality postulates (Section 4),

3. We show how to solve the generalized entailment prob-
lem and that this is computationally not harder than solv-
ing the classical probabilistic entailment problem for
consistent knowledge bases (Section 5).

We explain the necessary basics in Section 2, discuss related
work in Section 6, and conclude in Section 7.

2 Preliminaries
We consider a propositional language L(At) built up over a
finite set of propositional variables At in the usual way. For
φ, ψ ∈ L(At) we abbreviate φ ∧ ψ by φψ and ¬φ by φ.

A possible world assigns a truth value to each a ∈ At.
Let Ω(At) denote the set of all possible worlds. ω ∈ Ω(At)
satisfies an atom a ∈ At, denoted by ω |= a, if and only if
ω(a) = true. |= is extended to complex formulas in L(At)
in the usual way. Formulas ψ, φ ∈ L(At) are equivalent,
denoted by φ ≡ ψ, if and only if ω |= φ whenever ω |= ψ for
every ω ∈ Ω(At) and vice versa.

We build up a probabilistic language (L(At) | L(At))pr

containing a probabilistic conditional (ψ |φ)[d] for all φ, ψ ∈
L(At) and d ∈ [0, 1]. Intuitively, (ψ |φ)[d] says that if φ is
true then ψ is also true with probability d (see below). If φ is
tautological, φ ≡ >, we abbreviate (ψ |φ)[d] by (ψ)[d].

A knowledge base K is an ordered finite subset of
(L(At) | L(At))pr. We impose an ordering on the condition-
als in a knowledge base only for technical convenience. The



order can be arbitrary and has no further meaning other than
to enumerate the conditionals of a knowledge base in an un-
ambiguous way.

Semantics are given to probabilistic conditionals by prob-
ability functions over Ω(At), which are denoted by P(At).
The probability of a formula φ ∈ L(At) with respect to
P ∈ P(At) is defined by P (φ) =

∑
ω|=φ P (ω). As usual in

this context, P satisfies a probabilistic conditional (ψ |φ)[d],
denoted by P |=pr (ψ |φ)[d], if and only if P (ψφ) = dP (φ)
[Nilsson, 1986; Paris, 1994]. A probability function P sat-
isfies a knowledge base K (or is a model of K), denoted by
P |=pr K, if and only if P |=pr c for every c ∈ K. Let
Mod(K) ⊆ P(At) be the set of models of K. If Mod(K) = ∅
then K is called inconsistent.

Broadly speaking, there are two main approaches to reason
with probabilistic logics. First, we can consider the whole
set of models Mod(K) of K and use it to derive probability
intervals for given formulas [Nilsson, 1986; Jaumard et al.,
1991]. Second, we can search for a best model P ∗ ∈ Mod(K)
with respect to some common sense rationales and use P ∗
to compute the probabilities directly [Nilsson, 1986; Paris,
1994; Kern-Isberner, 2001]. However, if K is inconsistent,
there is no way to infer reasonable information with these
approaches because there exists no model at all.

Inconsistency measures help analyzing inconsistent know-
ledge bases by assigning nonnegative values to knowledge
bases that quantify the degree of inconsistency, see, e. g.,
[Knight, 2002; Hunter and Konieczny, 2010; Thimm, 2013].
The family of minimal violation measures is defined by meas-
uring the violation of the equations defined by the probabil-
istic satisfaction relation [Potyka, 2014]. To understand how,
note that the condition P (ψφ) = dP (φ) is a linear constraint
over P . With a slight abuse of notation, let us identify P
with a probability vector (P (ω1) . . . P (ωn)), n = |Ω(At)|;
and for a formula F , let the indicator function 1{F}(ω) map
to 1 iff ω |= F and to 0 otherwise. Then we can rewrite
P (ψφ) = dP (φ) in vector notation as acP = 0, where ac is
the transpose of the vector

(1{ψφ}(ωj) · (1− d)− 1{ψφ}(ωj) · d)1≤j≤n,

see also [Nilsson, 1986; Jaumard et al., 1991]. Now given a
knowledge base K, we associate K with the (m× n)-matrix

AK =

(
a1

. . .
am

)
.

The linear equation system AKx = 0 can be solved by a
probability vector P if and only if K is consistent, see also
[Nilsson, 1986; Jaumard et al., 1991]. The minimal violation
value IpΠ(K) ofKwith respect to the minimal violation meas-
ure IpΠ is the solution of the following optimization problem

min
x∈Rn

‖AKx‖p (1)

subject to
n∑
i=1

xi = 1

x ≥ 0,

where ‖.‖p denotes the p-norm defined by ‖x‖p =
p
√∑n

i=1 |xi|p for p ≥ 1. Well-known special cases are the
1-norm ‖x‖1 =

∑n
i=1 |xi|, the Euclidean norm ‖x‖2 =

2
√∑n

i=1 x
2
i and the limit for p → ∞, the maximum norm

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.
Note that the constraints of (1) guarantee that each feasible

solution is a probability vector. By definiteness of norms, it
holds IpΠ(K) = 0 iff there is a P such that AKP = 0, i. e., iff
K is consistent. As K becomes ’more’ inconsistent, IpΠ(K)
increases continuously, see [Potyka, 2014] for the details and
further properties.

The probability functions minimizing (1) can be regarded
to be as close as possible to a model of K in the sense that
they minimally violate the corresponding equation system. In
fact, if K is consistent, they correspond to the models of K
and are therefore called generalized models of K [Potyka and
Thimm, 2014]. More formally, the set of generalized models
is defined as follows:

GModp(K) = {P ∈ P(At) | ‖AKP‖p = IpΠ(K)}.

In [Potyka and Thimm, 2014] generalized maximum entropy
reasoning is considered. That is, among all generalized mod-
els one selects the one maximizing entropy. The generalized
maximum entropy model can be used to repair the knowledge
base or to compute probabilities for arbitrary formulas. This
approach has some nice properties and can be computed by
convex programming techniques [Potyka and Thimm, 2014].

3 Generalized Entailment with Integrity
Constraints

We will now focus on generalizing the second major approach
to reason with consistent knowledge, namely reasoning with
all models. This problem is usually called the probabilistic
entailment problem [Jaumard et al., 1991].

Given a consistent knowledge base K and a query (ψ |φ),
φ, ψ ∈ L(At), the probabilistic entailment problem is to find
a tight probability interval [l, u] such that P (ψ |φ) ∈ [l, u]
for all P ∈ Mod(K) with P (φ) > 0 [Jaumard et al., 1991;
Lukasiewicz, 1999]. ’Tight’ means that the probability in-
terval cannot be further decreased without violating the con-
dition [Lukasiewicz, 1999]. This condition is important for
otherwise the interval [0, 1] always yields a feasible and
completely non-informative solution. We denote the clas-
sical probabilistic entailment relation by |=c, i. e., if [l, u] is
the corresponding tight probability interval, we write K |=c

(ψ |φ)[l, u]. If there is no P ∈ Mod(K) with P (φ) > 0, we
follow [Lukasiewicz, 1999] and let l = 1, u = 0.

By replacing Mod(K), with the generalized models
GModp(K), the generalized entailment problem can be
defined. The lower and upper bounds l and u can be obtained
by solving the two optimization problems

optP∈GModp(K) P (ψ |φ) (2)

subject to P (φ) > 0,

where opt stands for min and max, respectively. We want to
consider a slightly more general problem. In addition to our
knowledge base K, which might be inconsistent, we consider



a second knowledge base IC which is assumed to be consist-
ent. The conditionals in IC are called integrity constraints.
To begin with, we generalize some basic concepts.
Definition 1 (Minimal Violation Measures with Integrity
Constraints). The minimal violation value IpIC(K) of K with
respect to the minimal violation measure IpIC with integrity
constraints IC is the solution of the optimization problem

min
P∈Mod(IC)

‖AKP‖p (3)

Definition 2 (Generalized Models with Integrity Constraints).
The set of probability functions minimizing (3) is called the
set of generalized models of K with respect to the integrity
constraints IC and is denoted by GModpIC(K), that is,

GModpIC(K) = {P ∈ Mod(IC) | ‖AKP‖p = IpIC(K)}.

Proposition 1. Let IC be a set of integrity constraints.
1. If IC = ∅, then IpIC = IpΠ and GModpIC(K) =

GModp(K) for all knowledge bases K.
2. GModpIC(K) is always non-empty, compact and convex.
3. If K ∪ IC is consistent, GModpIC(K) = Mod(K ∪ IC).

Proof sketch. 1. follows immediately from the fact that
Mod(∅) = P(At) and the definitions. 2. and 3. follow
exactly like the corresponding properties of GModp(K) ob-
tained in [Potyka, 2014] and [Potyka and Thimm, 2014].

Now we can define the generalized entailment problem
with integrity constraints.
Definition 3 (Generalized entailment problem with integrity
constraints). Given a knowledge baseK, integrity constraints
IC and a query (ψ |φ), φ, ψ ∈ L(At), the generalized entail-
ment problem with integrity constraints is to solve

optP∈GModpIC(K) P (ψ |φ) (4)

subject to P (φ) > 0,

where opt stands for min and max respectively.
We denote the generalized entailment relation by |=p

IC ,
i. e., if l and u are the lower and upper bounds obtained from
(4), we write K |=p

IC (ψ |φ)[l, u]. As before, if there is no
P ∈ GModpIC(K) with P (φ) > 0, we let l = 1, u = 0.

Before looking at this problem in more detail, we consider
some examples to illustrate that generalized entailment can
yield reasonable results even if K is inconsistent. By reas-
onable we mean that the generalized entailment results can
be regarded as merging contradictory opinions. The way in
which the opinions are merged depends on the selected p-
norm. Intuitively, p = 1 takes the violation of all opinions
into account without regarding how strong a single opinion is
violated. On the other extreme, p = ∞ takes only the max-
imal violation of a single opinion into account and ignores the
overall violation of all opinions.
Example 1. Suppose we have some experts with dif-
ferent opinions on the probability of some event A,
say, that the price of a stock rises. We consider
the knowledge bases K1 = 〈(A)[0], (A)[1]〉, K2 =
〈(A)[0.1], (A)[0.8]〉, K3 = 〈(A)[0.1], (A)[0.8], (A)[0.7]〉,

I1
IC I2

IC I∞IC
K1 [0, 1] [0.5, 0.5] [0.5, 0.5]
K2 [0.1, 0.8] [0.45, 0.45] [0.45, 0.45]
K3 [0.7, 0.7] [0.533, 0.533] [0.45, 0.45]
K4 [0.8, 0.8] [0.6, 0.6] [0.5, 0.5]
K5 [0.8, 0.8] [0.566, 0.566] [0.45, 0.45]

Table 1: Generalized entailment results (rounded to 3 digits)
for the probability of A (Example 1).

Query I1
IC I2

IC I∞IC
(P |N) [0.1, 0.9] [0.384, 0.615] [0.376, 0.624]
(P |Q) [0.1, 0.9] [0.517, 0.615] [0.520, 0.624]
(P |R) [0.1, 0.9] [0.384, 0.482] [0.376, 0.481]
(N) [1, 1] [1, 1] [1, 1]

Table 2: Generalized entailment results (rounded to 3 digits)
for Nixon diamond with IC = {(N)[1]} (Example 2).

K4 = 〈(A)[0.1], (A)[0.8], (A)[0.9]〉, K5 =
〈(A)[0.1], (A)[0.8], (A)[0.8]〉, In K1 both experts are
completely convinced of their opinion. In K2 both experts
choose a more conservative formulation and in K3, K4 and
K5 we have a third expert who also thinks that A is rather
likely. We do not need any integrity constraints and set
IC = ∅. Table 1 shows generalized entailment results for the
query (A) and p = 1, 2,∞.

For p = 1, we get most conservative results. For two ex-
perts, the whole interval between both opinions is possible. If
we add a third expert, the results corresponds to the median
of the experts’ opinions. As p increases, larger violations are
penalized more heavily and we end up with point probabil-
ities somewhere between the experts’ opinions. Finally, for
p =∞, only the maximal violation counts and so there is no
difference betweenK2,K3 andK5 since the extreme opinions
are represented by probabilities 0.1 and 0.8 in each case.

Example 2. Let us consider the Nixon diamond. We believe
that quakers (Q) are usually pacifists (P ) while republicans
(R) are usually not. However, we know that Nixon (N ) was
both a quaker and a republican. We do not doubt the exist-
ence of Nixon and therefore consider the integrity constraint
IC = 〈(N)[1]〉. The remaining knowledge is represented
as follows: K = 〈(P |Q)[0.9], (P |R)[0.1], (QR |N)[1]〉.
Table 2 shows the generalized entailment results.

Again, p = 1 yields most conservative results. For p > 1,
we maintain the knowledge that quakers are probably paci-
fists and that republicans are probably not.

Example 3. We consider a variant of Kyburg’s Lottery Para-
dox [Kyburg, 1992] similar to [Knight, 2002]. There is a lot-
tery and exactly one player will win. However, for a partic-
ular player p, we do not believe that p will win. We model
the lottery paradox with k players by the knowledge base
Kk = 〈(p1)[0], . . . , (pk)[0]〉, where pk expresses that player
k will win. The fact that one player will win is represented
as an integrity constraint, i. e., ICk = 〈(

∨k
i=1 pi)[1]〉. As the

number of players goes to infinity, the degree of inconsistency



k I1
IC I2

IC I∞IC
1 [1, 1] [1, 1] [1, 1]
2 [0, 1] [0.5, 0.5] [0.5, 0.5]
4 [0, 1] [0.25, 0.25] [0.25, 0.25]
8 [0, 1] [0.125, 0.125] [0.125, 0.125]

Table 3: Probabilities that a particular player will win in the
lottery paradox with k players (Example 3).

of the knowledge base goes to 0. If we perform generalized
entailment to compute the probability that a particular player
will win, the probability is equal for each player. Table 3
shows the results for different k.

Since the knowledge base does not favor any player, we
cannot conclude anything for p = 1. For p > 1, the probab-
ility that a player wins is uniformly distributed as one would
expect under the given premises.

4 Analysis
Our proposal of the generalized entailment relation |=p

IC aims
at extending the classical entailment relation |=c to inconsist-
ent knowledge bases. The examples at the end of the pre-
vious section suggest that generalized entailment results are
also intuitive in the case of inconsistency. In the spirit of
other non-classical reasoning approaches like, e. g., [Kraus
et al., 1990], we will now propose a set of rationality postu-
lates that each probabilistic entailment relation |=IC should
satisfy that extends probabilistic entailment to inconsistent
knowledge bases while maintaining integrity constraints IC.

Let ] denote disjoint union, i. e., A = A1 ] A2 means
A = A1 ∪ A2 and A1 ∩ A2 = ∅. We consider the following
postulates for a probabilistic entailment relation |=IC .

1. Consistency: If K ∪ IC is consistent, then it holds
(K ∪ IC) |=c (ψ |φ)[l, u] iff K |=IC (ψ |φ)[l, u].

2. Integrity: For all (ψ |φ)[d] ∈ IC, it holds that either
K |=IC (ψ |φ)[d, d] or K |=IC (φ)[0, 0].

3. Consistent Independence: Let At = At1 ] At2 and let
K = K1 ] K2 such that Ki is a knowledge base over
L(Ati), i = 1, 2. If Ki ∪ IC is consistent and (ψi |φi)
is a query over L(Ati), then Ki ∪ IC |=c (ψi |φi)[l, u]
holds in L(Ati) iff K |=IC (ψi |φi)[l, u] holds in L(At).

4. Independence: Let At = At1 ] At2 and let K =
K1 ] K2 such that Ki is a knowledge base over L(Ati),
i = 1, 2. If (ψi |φi) is a query over L(Ati), then
K |=IC (ψi |φi)[l, u] holds in L(At) if and only if
Ki |=IC (ψi |φi)[l, u] holds in L(Ati).

5. Continuity: If K is ’close’ to a consistent knowledge
base K0 such that (K0 ∪ IC) |=c (ψ |φ)[l0, u0], (K0 ∪
IC) 6|=c (φ)[0, 0] and K |=IC (ψ |φ)[l, u], then [l, u] is
’close’ to [l0, u0].

Consistency states that the extended entailment relation
should agree with probabilistic entailment if the given in-
formation is consistent. Integrity assures that all integrity
constraints are either obeyed or not applicable at all (then
K |=IC (ψ |φ)[1, 0]). Consistent Independence states that

consistency remains true for subsets of the language if there
is only consistent information about this subset. Independ-
ence states that knowledge about a subset of the language
should not influence entailment results about the remaining
language. In particular, this property can be exploited to de-
compose the extended entailment problem into two smaller
problems. Continuity says that if K0 is consistent and does
not classically entail P (φ) = 0, then minor changes in K0

shall not result in major changes in the entailed probability
P (ψ |φ) even if K0 becomes inconsistent. Since the defini-
tion of closeness is very subtle in this context, it will be dis-
cussed later on in more detail. We have the following rela-
tionships between our postulates.
Proposition 2.

1. Consistent Independence implies Consistency.
2. Consistency and Independence implies Consistent Inde-

pendence.

Proof. 1 follows immediately by letting At2 = K2 = ∅. To
prove 2, note that by Independence, generalized entailment
w.r.t. K over L(At) is equivalent to generalized entailment
w.r.t. K1 over L(At1). But since K1 is consistent, the claim
follows with Consistency applied to K1 over L(At1).

Note that there are some interesting relationships to other
properties. Consistent Independence implies Reflexivity
[Kraus et al., 1990], i. e., if (ψ |φ)[p] is a satisfiable con-
ditional and contains no atoms mentioned in K, then K ∪
{(ψ |φ)[p]} |=IC (ψ |φ)[p, p]. Independence implies Lan-
guage Invariance [Paris, 1994], i. e., just adding additional
atoms to the language does not change the entailment results.

Generalized entailment satisfies our first four desiderata.
Theorem 1. The generalized entailment relation |=p

IC satis-
fies Consistency, Integrity, Consistent Independence and In-
dependence.

Proof sketch. To prove consistency, note that Proposition 1,
3, implies that GModpIC(K) = Mod(K∪IC). But then (4) is
just the definition of the probabilistic entailment problem.

Integrity follows from GModpIC(K) ⊆ Mod(IC).
By consistency and Proposition 2, Consistent Independ-

ence follows from Independence.
To prove Independence, show that for each probability

function P over Ω(At) that satisfies K, there are corres-
ponding probability function Pi over Ω(Ati) that satisfy Ki,
i = 1, 2 and agree with P for all formulas from L(Ati) and
vice versa. To get from P to Pi just marginalize. To get from
P1 and P2 to P let P (ω) = P1(ω|At1) · P2(ω|At2). To meet
space restriction, we leave out the details of the proof.

To prove continuity, we need a more precise notion of
closeness of knowledge bases. However, using a too strong
notion of closeness, continuity cannot be satisfied by any ex-
tended entailment relation that extends probabilistic entail-
ment in a reasonable way, because even probabilistic entail-
ment behaves discontinuously in some cases. Consider the
following non-trivial example from [Paris, 1994]1.

1The example was originally proposed in P. Courtney, Doctoral
thesis, Manchester University, Manchester, U.K., 1992.



Example 4. Consider a disease d, a symptom s and a possible
complication c. Let K contain the conditionals (d | s)[0.75],
(d | s)[0.25], (cd | s)[0.15], (c | ds)[0.6], (c | ds)[0.8] and
(cd | s)[0.1]. K is consistent and, for instance,K |=c (s)[0, 1].
However, if we constructK′ fromK by replacing (cd | s)[0.1]
with (cd | s)[0.0999], we have K |=c (s)[0, 0]. Such discon-
tinuities are connected to each conditional in K, see [Paris,
1994], p. 90, for more details.

To exclude such discontinuities, Paris defined conver-
gence of knowledge bases as follows: (Ki) converges to
K iff (Mod(Ki)) converges to Mod(K) with respect to the
Blaschke metric. Roughly speaking, S1, S2 ⊆ Rn have
Blaschke distance d, ‖S1, S2‖B = d, iff for every x1 ∈ S1,
there is a x2 ∈ S2 such that ‖x1 − x2‖2 ≤ d and vice versa.
By replacing the models with the generalized models in this
notion of convergence, we obtain the following weak form of
continuity for generalized entailment.
Theorem 2 (Weak Continuity). Let (Ki) be a sequence
of knowledge bases such that (GModpIC(Ki)) converges to
GModpIC(K) with respect to the Blaschke metric. If K 6|=p

IC
(φ)[0, 0], K |=p

IC (ψ |φ)[l, u] and Ki |=p
IC (ψ |φ)[li, ui],

then li and ui converge to l and u, respectively.

Proof sketch. For ease of notation, let G = GModpIC(K) and
Gi = GModpIC(Ki). The claim follows from (A), where

(A) for all ε > 0 that are sufficiently small, there is a δ > 0
such that ‖G,Gi‖B < δ implies that for all P ∈ G (P ′ ∈ Gi)
with P (φ) > 0 (P ′(φ) > 0) there is a P ′ ∈ Gi (P ∈ G) such
that |P (ψ |φ)− P ′(ψ |φ)| < ε

We know from Real Analysis that ‖x‖1 ≤
√
n ‖x‖2 for all

x ∈ Rn. Note also that |P (F ) − P ′(F )| ≤ ‖P − P ′‖1 for
all F ∈ L(At). Therefore, ‖G,Gi‖B < ε/

√
n implies that

for all P ∈ G (P ′ ∈ Gi), there is a P ′ ∈ Gi (P ∈ G) with
|P (F )− P ′(F )| < ε. Since K 6|=p

IC (φ)[0, 0], there is a P ∈
G with P (φ) > 0. Hence, if δ < P (φ)

2
√
n

, there is a P ′ ∈ Gi
with P ′(φ) > P (φ)/2 > 0. Hence, if δ is sufficiently small,
both [l, u] and [li, ui] are non-trivial. Finally, check that for
0 < ε < 1 and δ < ε P (φ)

4
√
n

(δ < ε Pi(φ)
4
√
n

), (A) holds.

Note that if (K ∪ IC) is consistent, Consistency implies
that (K ∪ IC) 6|=p

IC (φ)[0, 0] and (K ∪ IC) |=c (ψ |φ)[l, u],
so that li and ui converge to the probabilistic entailment result
as demanded in Convergence.

5 Computational Aspects
We cannot expect to find highly efficient algorithms for the
generalized entailment problem, since even the probabil-
istic satisfiability problem is NP-hard [Georgakopoulos et al.,
1988]. However, it is interesting to ask how much more diffi-
cult is the generalized entailment problem as compared to the
probabilistic entailment problem.

Our first goal is to show that the generalized entailment
problem can be solved by linear programming techniques. To
do so, we introduce a vector aF = (1{F}(ωj))1≤j≤n for each
formula F . Note that aFP = P (F ), see also [Nilsson, 1986;
Jaumard et al., 1991]. We will also need the following
lemma, which is a straightforward generalization of [Potyka
and Thimm, 2014], Lemma 1.

Lemma 1. Let K be a knowledge base, let IC be a set of in-
tegrity constraints and let 1 < p <∞. Let P ∈ GModpIC(K)
be a generalized model and let x = AKP . Then it holds
AKP

′ = x for all P ′ ∈ GModpIC(K) and we call x = xpK the
violation vector of K.
Theorem 3. The generalized entailment problem with integ-
rity constraints has a well-defined solution and (4) is equi-
valent to the following linear programs, where εp = IpIC(K),
Rn+ denotes the non-negative real vectors and opt stands for
min and max, respectively.

• For p = 1, (4) is equivalent to

opt(x,y,t)∈Rn+m+1
+

aψφ x (5)

subject to −y ≤ AK x ≤ y
m∑
i=1

yi = t · ε1

AIC x = 0

a> x = t

aφ x = 1.

• For 1 < p <∞, (4) is equivalent to

opt(x,t)∈Rn+1
+

aψφ x (6)

subject to AK x = t · εp
AIC x = 0

a> x = t

aφ x = 1.

• For p =∞, (4) is equivalent to

opt(x,t)∈Rn+1
+

aψφ x (7)

subject to −t · ε∞ ≤ AK x ≤ t · ε∞
AIC x = 0

a> x = t

aφ x = 1.

In particular, the linear programs are feasible if and only if
there is a P ∈ GModpIC(K) with P (φ) > 0.

Proof sketch. To begin with, recall that GModpIC(K) 6= ∅ is
guaranteed. (4) can be rewritten as

optx∈Rn+
aψφ x

aφ x
(8)

subject to ‖AK x‖p = εp,

AIC x = 0,

a> x = 1,

aφ x > 0,

To get rid of the non-linear constraint ‖AKx‖p = εp, we
can apply Lemma 1 for 1 < p <∞, to replace ‖AKx‖p = εp
with AKP ′ = xpK. For p = 1 and p = ∞, we can exploit
piecewise linearity to replace ‖AK x‖1 = ε1 with the con-
straints −y ≤ AK x ≤ y and

∑m
i=1 yi = ε1, where y ∈ Rm;

and to replace ‖AK x‖∞ = ε∞ with −ε∞ ≤ AK x ≤ ε∞.



Problem n m Cost
PSAT |Ω| + |K| |K| nm2

I1
IC |Ω| + 3|K| 2|K| + |IC| nm2

I2
IC |Ω| |IC| n2 m

I∞
IC |Ω| + 2|K| 2|K| + |IC| nm2

Ip
IC |Ω| |IC| n3

PENT |Ω| |K| nm2

GENT p = 1 |Ω| + 3|K| 2|K| + |IC| nm2

GENT 1 < p < ∞ |Ω| |K| + |IC| nm2

GENT p = ∞ |Ω| + 2|K| 2|K| + |IC| nm2

Table 4: Number of optimization variables n, number of
constraints m (ignoring constants and non-negativity con-
straints) and rough performance estimates for testing sat-
isfiability (PSAT), computing minimal violations measures,
probabilistic entailment (PENT) and generalized entailment
(GENT) with standard algorithms.

To get rid of the non-linear objective, we can apply a result
from [Charnes and Cooper, 1962], which is also used to solve
the probabilistic entailment problem [Jaumard et al., 1991].
Basically, the feasible solutions are scaled such that aφ x = 1
holds. Then aψφ x

aφ x
equals aψφ x. This transformation does not

change the optimal objective as the scaling factor cancels out
in the fraction, see [Charnes and Cooper, 1962] for details.

Equivalence of the linear programs with (2) follows with
the arguments sketched above and guarantees that all linear
programs are feasible if and only if P (φ) > 0 for some
P ∈ GModpIC(K). If there is some P ∈ GModpIC(K) with
P (φ) > 0, existence of the solutions follows from the theory
of linear programming.

Now let us look at the cost of solving the generalized en-
tailment problem. Reasoning is usually a two-stage process.
First, we test satisfiability, then we perform a reasoning al-
gorithm. In our approach, the satisfiability phase is replaced
with an inconsistency measuring phase. Expected costs when
using standard algorithms are summarized in Table 4, see
[Potyka, 2014] for details regarding minimal violation meas-
ures. The cost is estimated with respect to the number of
optimization variables n and the number of constraints m.
Note that we have to introduce additional slack variables for
linear programs whenever inequalities are present. For linear
programs, we consider estimates proposed in [Matousek and
Gärtner, 2007] for the Simplex algorithm. For quadratic and
convex programs, we use estimates proposed in [Boyd and
Vandenberghe, 2004] for interior-point methods.

To compute I2
IC , we have to solve a quadratic program.

To compute IpIC for general p, we have to solve a convex
program. All other problems can be solved by means of the
Simplex algorithm. In practice, |Ω| is the dominating factor
because it depends exponentially on the number of propos-
itional variables in our language. Taking this into account,
we see that computing minimal violation measures for p = 1
and p = ∞ is asymptotically not harder than testing satis-
fiability. Similarly, performing generalized entailment, when
the inconsistency values are known, is asymptotically not

harder than performing probabilistic entailment. In fact, for
1 < p <∞, we get basically the same cost because the viol-
ation constraints can be represented by linear equalities as ex-
plained in Lemma 1. To deal with larger instances of the gen-
eralized entailment problem, we can exploit Independence
and apply column generation techniques to reduce the expo-
nential influence of |At| on |Ω| [Hansen and Perron, 2008;
Finger and De Bona, 2011; Cozman and Ianni, 2013].

6 Related Work
An overview of inconsistency measures for classical logics
can be found in [Grant and Hunter, 2013b], an overview of
measures for probabilistic logics in [Thimm, 2013]. The idea
of generalized reasoning transfers primarily to approaches
that measure inconsistency by a notion of distance from in-
terpretations to actual models. An interesting family of such
measures for classical logics has been proposed in [Grant and
Hunter, 2013a]. The idea is to extend the models of single
formulas in the knowledge base until the intersection for all
formulas is non-empty. The resulting set can be understood
as a classical notion of a set of generalized models and it is
interesting to ask if reasonable generalized inference relations
for classical logics can be derived. Note also that minimal vi-
olation measures have recently been generalized to languages
allowing probability intervals [l, u], 0 ≤ l ≤ u ≤ 1 rather
than point probabilities [d] and some properties have been
strengthened in this framework [De Bona and Finger, 2014].

To deal with inconsistencies in classical logics, several ap-
proaches have been proposed. For instance, one can introduce
new connectives, consider consistent subsets of the know-
ledge base or apply belief merging approaches [Konieczny
et al., 2005; Béziau et al., 2007; Konieczny and Perez, 2011].
For probabilistic logics, several revision, fusion and merging
approaches have been considered, see, for instance, [Kern-
Isberner and Rödder, 2004; Weydert, 2011; Wilmers, 2015].

The idea of generalizing the notion of a probabilistic model
has also been employed in [Daniel, 2009]. There, reasoning
in inconsistent probabilistic knowledge is realized by a fuzzy
notion of a model and this is used to generalize reasoning
based on the principle of maximum entropy. However, the
general probabilistic entailment problem and computational
issues are not discussed in [Daniel, 2009].

7 Summary
We defined the generalized entailment problem with integ-
rity constraints and showed that it satisfies several desirable
properties. These properties seem to be reasonable desiderata
for each approach that extends probabilistic entailment to in-
consistent knowledge bases. Generalized entailment satisfies
only a weak form of continuity, but this seems to be true for
all reasonable extensions because of discontinuities that are
inherent to the probabilistic entailment problem. Computa-
tionally, generalized entailment for p = 1,∞ is barely harder
than performing a probabilistic satisfiability test and probab-
ilistic entailment.

The approach proposed in this paper has been implemented
in Java and is available as open source2.

2tweetyproject.org
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