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Abstract

We survey recent approaches to inconsistency measurement in propositional
logic and provide a comparative analysis in terms of their expressivity. For
that, we introduce four different expressivity characteristics that quantita-
tively assess the number of different knowledge bases that a measure can
distinguish. Our approach aims at complementing ongoing discussions on ra-
tionality postulates for inconsistency measures by considering expressivity as
a desirable property. We evaluate 16 different measures on the proposed char-
acteristics and conclude that the distance-based measure IΣ

dalal from (Grant
and Hunter, 2013) and the proof-based measure IPm from (Jabbour and Rad-
daoui, 2013) have maximal expressivity along all considered characteristics.
In our study, we discovered several interesting relationships of inconsistency
measurement to e. g. set theory and Boolean functions and we also report on
these findings.
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1. Introduction

Inconsistency measurement is about the quantitative assessment of the
severity of inconsistencies in knowledge bases. Consider the following two
knowledge bases K1 and K2 formalised in propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Both knowledge bases are classically inconsistent as for K1 we have {a,¬a∧
¬b} |=⊥ and for K2 we have, e. g., {a,¬a} |=⊥. These inconsistencies render
the whole knowledge bases useless for reasoning if one wants to use classical
reasoning techniques. In order to make the knowledge bases useful again,
one can either rely on non-monotonic/paraconsistent reasoning techniques
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(Makinson, 2005; Priest, 1979) or one revises the knowledge bases appropri-
ately to make them consistent (Hansson, 2001). Looking at the knowledge
bases K1 and K2 one can observe that the severity of their inconsistency is
different. In K1, only two out of four formulas (a and ¬a ∧ ¬b) are “partic-
ipating” in making K1 inconsistent while for K2 all formulas contribute to
its inconsistency. Furthermore, for K1 only two propositions (a and b) are
conflicting and using e. g. paraconsistent reasoning one could still infer mean-
ingful statements about c and d. For K2 no such statement can be made.
This leads to the assessment that K2 should be regarded more inconsistent
than K1.

Inconsistency measures can be used to analyse inconsistencies and to
provide insights on how to repair them. An inconsistency measure I is a
function on knowledge bases, such that the larger the value I(K) the more
severe the inconsistency in K. A lot of different approaches of inconsistency
measures have been proposed, mostly for classical propositional logic (Hunter
and Konieczny, 2004, 2008, 2010; Ma et al., 2009; Mu et al., 2011; Xiao and
Ma, 2012; Grant and Hunter, 2011, 2013; McAreavey et al., 2014; Jabbour
et al., 2014), but also for classical first-order logic (Grant and Hunter, 2008),
description logics (Ma et al., 2007; Zhou et al., 2009), default logics (Doder
et al., 2010), and probabilistic and other weighted logics (Ma et al., 2012;
Thimm, 2013; Potyka, 2014). Due to this plethora of inconsistency measures
it is hard to determine which measure to use for an application and which
measure is meaningful. Rationality postulates have been proposed that ad-
dress the issue of assessing the quality of a measure—see e. g. (Hunter and
Konieczny, 2006; Mu et al., 2011)—but many of these properties have been
criticised to address only a specific point of view, see (Besnard, 2014) for a
recent discussion on this topic.

In this paper, we take a different perspective on the evaluation of incon-
sistency measures by considering a quantitative analysis of their expressivity,
that is, we study how many different (inconsistent) knowledge bases can
be distinguished by a given inconsistency measure. By the term expressiv-
ity we here refer to the property of a semantical concept—here, an incon-
sistency measure—and its capability to distinguish syntactical constructs—
here, knowledge bases—, similarly as it has been done for the analysis of
expressivity of semantics for other logical languages, see e. g. skepticism rela-
tions for formal argumentation (Baroni and Giacomin, 2008). Our analysis
is meant to complement the study on rationality postulates and is, of course,
not meaningful on its own as the compliance of measures with the basic in-
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tuitions behind inconsistency measures can only be assessed by rationality
postulates. However, we introduce expressivity of inconsistency measures as
an additional method to evaluate their quality. In particular, we propose
four different expressivity characteristics that quantify the relation between
the number of different values of an inconsistency measure wrt. different
notions of the size of the knowledge base, such as number of formulas or
number of propositions. We conduct a thorough comparative analysis of 16
different inconsistency measures from the literature (Hunter and Konieczny,
2008, 2010; Grant and Hunter, 2011; Knight, 2002; Thimm, 2016; Grant and
Hunter, 2013; Mu et al., 2011; Jabbour and Raddaoui, 2013; Xiao and Ma,
2012; Doder et al., 2010) and classify these measures in a hierarchy of ex-
pressivity. In our study, we made several interesting observations, such as
the relation between the measure IMI (Grant and Hunter, 2011) and Sperner
families (Sperner, 1928) and of the measure IMIC (Grant and Hunter, 2011)
with profiles of Boolean functions. One of our results is that the distance-
based measure IΣ

dalal from (Grant and Hunter, 2013) and the proof-based
measure IPm from (Jabbour and Raddaoui, 2013) have maximal expressivity
along all considered characteristics.

In summary, the contributions of this paper are as follows:

1. We conduct a focused survey of 16 inconsistency measures from the
recent literature (Section 3).

2. We propose four different expressivity characteristics, evaluate the con-
sidered inconsistency measures wrt. these characteristics, and study our
findings (Section 4).

3. We classify the evaluated measures into hierarchies of expressivity and
thus provide a means to quantitatively compare different measures (Sec-
tion 5).

We give necessary preliminaries in Section 2 and provide a summary in Sec-
tion 6. Appendix A contains proofs of technical results and Appendix B
lists all example knowledge bases and families of knowledge bases used in
the paper. All inconsistency measures discussed in this paper have been
implemented and an online interface to try out these measures is available1.

1http://tweetyproject.org/w/incmes/
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2. Preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set
of propositions, and let L(At) be the corresponding propositional language
constructed using the usual connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At).
Let K be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the
set of propositions appearing in X. Semantics to a propositional language
is given by interpretations and an interpretation ω on At is a function ω :
At→ {true, false}. Let Ω(At) denote the set of all interpretations for At. An
interpretation ω satisfies (or is a model of) a proposition a ∈ At, denoted by
ω |= a, if and only if ω(a) = true. The satisfaction relation |= is extended to
formulas in the usual way.

As an abbreviation we sometimes identify an interpretation ω with its
complete conjunction, i. e., if a1, . . . , an ∈ At are those propositions that
are assigned true by ω and an+1, . . . , am ∈ At are those propositions that are
assigned false by ω we identify ω by a1 . . . anan+1 . . . am (or any permutation of
this). For example, the interpretation ω1 on {a, b, c} with ω(a) = ω(c) = true
and ω(b) = false is abbreviated by abc.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
Define furthermore the set of models Mod(X) = {ω ∈ Ω(At) | ω |= X} for
every formula or set of formulas X. If Mod(X) = ∅ we also write X |=⊥ and
say that X is inconsistent.

3. Inconsistency Measures

Let R∞≥0 be the set of non-negative real values including∞. Inconsistency
measures are functions I : K→ R∞≥0 that aim at assessing the severity of the
inconsistency in a knowledge baseK, cf. (Grant and Hunter, 2011). The basic
idea is that the larger the inconsistency in K the larger the value I(K) and
I(K) = 0 if and only if K is consistent. However, inconsistency is a concept
that is not easily quantified and there have been a couple of proposals for
inconsistency measures so far, in particular for classical propositional logic,
see e. g. (Besnard, 2014; McAreavey et al., 2014; Jabbour et al., 2014; Hunter
et al., 2014) for some recent works. We selected 16 inconsistency measures
from the literature in order to conduct our analysis on expressivity, taken
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from (Hunter and Konieczny, 2008, 2010; Grant and Hunter, 2011; Knight,
2002; Thimm, 2016; Grant and Hunter, 2013; Mu et al., 2011; Jabbour and
Raddaoui, 2013; Xiao and Ma, 2012; Doder et al., 2010). We briefly introduce
these measures in this section for the sake of completeness, but we refer for
a detailed explanation to the corresponding original papers.

To illustrate the different inconsistency measures we will use the knowl-
edge bases K1 and K2 from the introduction as running examples.

Example 1. Let At = {a, b, c, d} and define knowledge bases K1 and K2 as
follows:

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

A summary of the formal definitions of the considered inconsistency mea-
sures can be found in Table 1. We will discuss these measures in more detail
below.

3.1. The drastic inconsistency measure

The basic motivation for measuring inconsistency is to provide a graded
assessment of inconsistency and not only a “consistent”/“inconsistent” as-
sessment. However, in order to evaluate more sophisticated measures and the
usefulness of rationality postulates (cf. beginning of Section 4), the drastic
inconsistency measure Id—that can only distinguish between consistent and
inconsistent knowledge bases—is usually used as a baseline approach, cf. e. g.
(Hunter and Konieczny, 2008).

Definition 2. The drastic inconsistency measure Id : K → R∞≥0 is defined
as

Id(K) =

{
1 if K |=⊥
0 otherwise

for K ∈ K.

In other words, Id(K) = 1 if and only if K is inconsistent (and 0 other-
wise).

Example 2. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

As both K1 and K2 are inconsistent we obtain Id(K1) = Id(K2) = 1.

5



Id(K) =

{
1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

IMIC(K) =
∑

M∈MI(K)

1

|M |

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

Ic(K) = min{|υ−1(B)| | υ |=3 K}

ILPm(K) = Ic(K)/|At(K)|

Imc(K) = |MC(K)|+ |SC(K)| − 1

Ip(K) = |
⋃

M∈MI(K)

M |

Ihs(K) = min{|H| | H is a hitting set of K} − 1

IΣ
dalal(K) = min{

∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

Imax
dalal(K) = min{max

α∈K
dd(Mod(α), ω) | ω ∈ Ω(At)}

Ihit
dalal(K) = min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

IDf
(K) = 1− Π

|K|
i=1(1−Ri(K)/i)

IPm(K) =
∑
a∈At

|PKm(a)| · |PKm(¬a)|

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

Table 1: Definitions of the considered inconsistency measures
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3.2. Inconsistency Measures based on Minimal Inconsistencies

One approach to assess the severity of inconsistency in a knowledge base
is to focus on its set of minimal inconsistent subsets. A set M ⊆ K is called
minimal inconsistent subset (MI) of K if M |=⊥ and there is no M ′ ⊂ M
with M ′ |=⊥. Let MI(K) be the set of all MIs of K. Informally speaking,
minimal inconsistent subsets contain the essence of the inconsistency in a
knowledge base. Every formula participating in creating an inconsistency is
part of at least one minimal inconsistent subset.

A straightforward approach to use minimal inconsistent subsets for mea-
suring inconsistency is to take their number as an indicator (Hunter and
Konieczny, 2008).

Definition 3. The MI-inconsistency measure IMI : K→ R∞≥0 is defined as

IMI(K) = |MI(K)|

for K ∈ K.

One drawback of IMI is that it treats every inconsistent subset of K
equally. A knowledge base with one minimal inconsistent subset of size 2
has the same inconsistency value as another knowledge base with one mini-
mal inconsistent subset of size 10. It is usually acknowledged that a smaller
minimal inconsistent subset is more severe than a larger one, cf. (Hunter and
Konieczny, 2008). The MIc inconsistency measure takes this into account
and is defined as follows.

Definition 4. The MIc-inconsistency measure IMIC : K→ R∞≥0 is defined as

IMIC(K) =
∑

M∈MI(K)

1

|M |

for K ∈ K.

In other words, for every minimal inconsistent subset M of K, 1/|M | is
added up in order to obtain IMIC(K). In this way, larger minimal inconsistent
subset contribute less to the overall inconsistency value than smaller ones.

Example 3. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}
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Here we have

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Therefore we obtain IMI(K1) = 1 and IMI(K2) = 2 and

IMIC(K1) =
1

|{a,¬a ∧ ¬b}|
=

1

2

IMIC(K2) =
1

|{a,¬a}|
+

1

|{b,¬b}|
= 1

The measure IMIC has been further extended in (Mu et al., 2011) where
not only the sizes of the different minimal inconsistent subsets but also their
distribution in a knowledge base has been considered. For every knowledge
base K and i = 1, . . . , |K|, define

MI(i)(K) = {M ∈ MI(K) | |M | = i}
CN(i)(K) = {C ⊆ K | |C| = i ∧ C 6|=⊥}

That is, MIi(K) is the set of minimal inconsistent subsets of K of size i and
CN(i)(K) is the set of consistent subsets of K of size i. Furthermore define

Ri(K) =

{
0 if |MI(i)(K)|+ |CN(i)(K)| = 0

|MI(i)(K)|/(|MI(i)(K)|+ |CN(i)(K)|) otherwise

for i = 1, . . . , |K|. The value Ri(K) thus gives the ratio of minimal incon-
sistent sets of size i to the number of minimal inconsistent and consistent
subsets of size i. Obviously, if for two knowledge bases K and K′, a value
Ri(K) is larger than Ri(K′) (for some i and everything else being equal) than
K should be regarded more inconsistent than K′. The idea of the approach
of (Mu et al., 2011) is to weigh these values also wrt. the sizes, i. e., a large
Ri(K) has more impact than a large Rj(K), with j > i.

Definition 5. The Df -inconsistency measure IDf
: K→ R∞≥0 is defined as

IDf
(K) = 1− Π

|K|
i=1(1−Ri(K)/i)

for K ∈ K.
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Note that the above definition of IDf
represents only a single instance of

the family introduced in (Mu et al., 2011). Other variants can be obtained
by other ways of aggregating the values R1(K), . . . , R|K|(K).

Example 4. We continue Example 3 and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Then we have

MI(2)(K1) = {{a,¬a ∧ ¬b}} and MI(i)(K1) = ∅ for i 6= 2

MI(2)(K2) = {{a,¬a}, {b,¬b}} and MI(i)(K2) = ∅ for i 6= 2

Furthermore, we have

CN(1)(K1) = {{a}, {b ∨ c}, {¬a ∧ ¬b}, {d}}
CN(2)(K1) = {{a, b ∨ c}, {a, d}, {b ∨ c,¬a ∧ ¬b}, {b ∨ c, d}, {¬a ∧ b, d}}
CN(3)(K1) = {{a, b ∨ c, d}, {b ∨ c,¬a ∧ ¬b, d}}
CN(4)(K1) = ∅

and

CN(1)(K2) = {{a}, {¬a}, {b}, {¬b}}
CN(2)(K2) = {{a, b}, {a,¬b}, {¬a, b}, {¬a,¬b}}
CN(3)(K2) = ∅
CN(4)(K2) = ∅

yielding

R1(K1) = 0 R2(K1) = 1/6 R3(K1) = 0 R4(K1) = 0

and

R1(K2) = 0 R2(K2) = 2/6 R3(K2) = 0 R4(K2) = 0

Finally, we obtain

IDf
(K1) = 1− (1−R1(K1))(1−R2(K1)/2)(1−R3(K1)/3)(1−R4(K1)/4)

=
1

6 · 2
=

1

12
IDf

(K2) = 1− (1−R1(K2))(1−R2(K2)/2)(1−R3(K2)/3)(1−R4(K2)/4)

=
2

6 · 2
=

1

6
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Another simple approach for utilizing minimal inconsistent subsets is to
use the number of formulas occurring in some minimal inconsistent subsets—
that is, the number of problematic formulas—as the inconsistency value, cf.
e. g. (Grant and Hunter, 2011).

Definition 6. The problematic inconsistency measure Ip : K → R∞≥0 is
defined as

Ip(K) = |
⋃

M∈MI(K)

M |

for K ∈ K.

Example 5. We continue Example 3 and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Then Ip(K1) = 2 and Ip(K2) = 4.

3.3. Inconsistency Measures based on Maximal Consistency

Another family closely related to the family of measures based on minimal
inconsistent subsets is the one based on maximal consistent subsets. Let
MC(K) be the set of maximal consistent subsets of K, i. e.

MC(K) = {K′ ⊆ K | K′ 6|=⊥ ∧∀K′′ ) K′ : K′′ |=⊥}

Note, that a maximal consistent subset can be obtained by removing one
formula from each minimal inconsistent subset from the knowledge base.
Thus, the number of maximal consistent subsets and the number of minimal
inconsistent sets correlate.

Furthermore, let SC(K) be the set of self-contradictory formulas of K, i. e.

SC(K) = {φ ∈ K | φ |=⊥}

An inconsistency measure that takes both maximal consistent subsets and
self-contradictory formulas into account can be defined as follows, cf. e. g.
(Grant and Hunter, 2011).

Definition 7. The MC-inconsistency measure Imc : K→ R∞≥0 is defined as

Imc(K) = |MC(K)|+ |SC(K)| − 1

for K ∈ K.
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Note that the subtraction of 1 in the definition of Imc is to ensure that
a consistent knowledge base has inconsistency value 0 (a consistent knowl-
edge base has one maximal consistent subset, itself, and no self-contradictory
formulas).

Another approach utilizing the idea of maximum consistency is the ap-
proach of Doder et al. (2010).

Definition 8. The nc-inconsistency measure Inc : K→ R∞≥0 is defined as

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

for K ∈ K.

In other words, the inconsistency of K is assessed by seeking a maximal
value n ∈ {1, . . . , |K|} such that all subsets of size n of K are consistent.
The larger this value n, the smaller the inconsistency. Note that the above
definition of Inc differs from the original definition in (Doder et al., 2010)
(where only the max-term was considered) in order to ensure that consistent
knowledge bases receive a value of zero and the inconsistency value increases
with increasing inconsistency.

Example 6. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Here we have

MC(K1) = {{a, b ∨ c, d}, {b ∨ c,¬a ∧ ¬b, d}}
MC(K2) = {{a, b}, {a,¬b}, {¬a, b}, {¬a,¬b}}

and SC(K1) = SC(K2) = ∅. Therefore we obtain

Imc(K1) = 1

Imc(K2) = 3

Furthermore, note that for both K1 and K2 we can find subsets of size 2 that
are inconsistent: {a,¬a ∧ ¬b} for K1 and {a,¬a} for K2. Furthermore, all
one-element subsets of K1 and K2 are consistent, respectively. Therefore, we
obtain

Inc(K1) = 3

Inc(K2) = 3
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3.4. Probabilistic Inconsistency Measures

One of the first approaches to measuring inconsistency is Knight’s mea-
sure Iη, which is based on probability functions over the underlying proposi-
tional language (Knight, 2002). Recall that Ω(At) is the set of interpretations
of the propositional language L(At). A probability function P on L(At) is a
function P : Ω(At)→ [0, 1] with

∑
ω∈Ω(At) P (ω) = 1. We extend P to assign

a probability to any formula φ ∈ L(At) by defining

P (φ) =
∑
ω|=φ

P (ω)

Let P(At) be the set of all those probability functions. The idea of (Knight,
2002) is to seek a probability function that maximizes the probability of each
formula of a knowledge base K. If we can find a probability function that
assigns probability 1 to each formula this means that the knowledge base is
consistent. If the knowledge base is inconsistent, then the probability mass
must be distributed (recall that an inconsistent set of formulas cannot be
satisfied by a single interpretation ω; thus the probability P (ω) can only be
associated with a subset of this set). Therefore, the smaller the maximal
probability that can be assigned to all formulas the more inconsistent the
knowledge base.

Definition 9. The η-inconsistency measure Iη : K→ R∞≥0 is defined as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

for K ∈ K.

Note that we modified the definition of Iη slightly compared to the orig-
inal definition in order to ensure that consistent knowledge bases receive an
inconsistency value of zero.

Instead of seeking a probability function to maximize the probabilities
of the formulas in K, one can simplify this idea and seek only a minimal
set of interpretations that need to receive a positive probability in order to
ensure that every formula has a positive probability (Thimm, 2016). In other
words, a subset H ⊆ Ω(At) is called a hitting set of K if for every φ ∈ K
there is ω ∈ H with ω |= φ. Focusing only on minimizing the number of
interpretations needed to form a hitting set we can define another measure
as follows.
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Definition 10. The hitting-set inconsistency measure Ihs : K → R∞≥0 is
defined as

Ihs(K) = min{|H| | H is a hitting set of K} − 1

for K ∈ K with min ∅ =∞.

Note that Ihs(K) = ∞ if and only if K contains a self-contradictory
formula, i. e., α ∈ K with α |=⊥. In this case, no hitting set of K exists.

Example 7. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Consider the probability function P1 ∈ P({a, b, c, d}) defined via

P1(abcd) = P1(abcd) = 0.5

P1(ω) = 0 for ω ∈ Ω({a, b, c, d}) \ {abcd, abcd}

Then we obtain

P1(a) = P1(¬a ∧ ¬b) = 0.5

P1(b ∨ c) = P1(d) = 1

and thus P1(φ) ≥ 0.5 for all φ ∈ K1. Furthermore, there can be no other
P ′ that assigns larger probability to all φ ∈ K1. Hence, we have Iη(K1) =
1− 0.5 = 0.5. The function P1 can also be used to determine Iη(K2) = 0.5.

The set H1 = {abcd, abcd} is also a hitting set of both K1 and K2 and
there is no smaller set that is a hitting set. Therefore we obtain Ihs(K1) =
Ihs(K2) = 1.

3.5. Variable-based Inconsistency Measures

Another approach to assess the severity of inconsistency is to take the
number of propositions from At that participate in the inconsistency. The
approach of (Xiao and Ma, 2012) is to take the ratio of the propositions
appearing in a minimal inconsistent subset wrt. the total number of propo-
sitions as the inconsistency value.
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α β υ(α ∧ β) υ(α ∨ β) α υ(¬α)
T T T T T F
T B B T B B
T F F T F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

Table 2: Truth tables for propositional three-valued logic (Priest, 1979).

Definition 11. The mv inconsistency measure Imv : K→ R∞≥0 is defined as

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

for K ∈ K.

In other words, Imv(K) is the ratio of the signature involved in minimal
inconsistent subsets.

Instead of utilizing minimal inconsistent subsets one can also using para-
consistent semantics to identify the part of the signature involved in inconsis-
tency. In this paper, we will only consider the contension measure Ic—cf. e. g.
(Grant and Hunter, 2011)—and its normalized variant ILPm from (Hunter
and Konieczny, 2010) as representatives of this family of measures. Similar
approaches relying on the same ideas can be found in e. g. (Ma et al., 2007,
2011).

The contension measure Ic utilizes three-valued interpretations for propo-
sitional logic (Priest, 1979). A three-valued interpretation υ on At is a func-
tion υ : At→ {T, F,B} where the values T and F correspond to the classical
true and false, respectively. The additional truth value B stands for both and
is meant to represent a conflicting truth value for a proposition. The function
υ is extended to arbitrary formulas as shown in Table 2. Then, an interpre-
tation υ satisfies a formula α, denoted by υ |=3 α if either υ(α) = T or
υ(α) = B. Then inconsistency can be measured by seeking an interpretation
υ that assigns B to a minimal number of propositions.
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Definition 12. The contension inconsistency measure Ic : K → R∞≥0 is
defined as

Ic(K) = min{|υ−1(B)| | υ |=3 K}
for K ∈ K.

In (Hunter and Konieczny, 2010) a variant ILPm of this measure was
defined that further normalizes the inconsistency value by the number of
propositions appearing in K.

Definition 13. The normalized contension inconsistency measure ILPm :
K→ R∞≥0 is defined as

ILPm(K) =
Ic(K)

|At(K)|
for K ∈ K.

Example 8. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Then we have

Imv(K1) =
|{a, b}|
|{a, b, c, d}|

= 1/2

Imv(K2) =
|{a, b}|
|{a, b}|

= 1

Furthermore, consider υ1 : {a, b, c, d} → {T, F,B} defined via

υ1(a) = B υ1(b) = F υ1(c) = υ1(d) = T

Then υ1 |=3 φ for all φ ∈ K1 and there is no other υ′ that assigns B to fewer
propositions, yielding Ic(K1) = 1 and ILPm(K1) = 1/4. For υ2 : {a, b} →
{T, F,B} defined via

υ2(a) = υ2(b) = B

we have υ2 |=3 φ for all φ ∈ K2 and there is no other υ′ that assigns B to
fewer propositions, yielding Ic(K2) = 2 and ILPm(K2) = 2/2 = 1.
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3.6. Distance-based Inconsistency Measures

In (Grant and Hunter, 2013) three families of inconsistency measures are
defined that are based on a notion of distance to consistency. More precisely,
an interpretation distance d is a function d : Ω(At) × Ω(At) → [0,∞) that
satisfies (let ω, ω′, ω′′ ∈ Ω(At))

1. d(ω, ω′) = 0 if and only if ω = ω′ (reflexivity),

2. d(ω, ω′) = d(ω′, ω) (symmetry), and

3. d(ω, ω′′) ≤ d(ω, ω′) + d(ω′, ω′′) (triangle inequality).

One prominent example of such a distance is the Dalal distance dd defined
via

dd(ω, ω′) = |{a ∈ At | ω(a) 6= ω′(a)}|

for all ω, ω′ ∈ Ω(At). In other words, dd(ω, ω
′) is the number of propositions

where ω and ω′ assign different truth values. If X ⊆ Ω(At) is a set of
interpretations we define dd(X,ω) = minω′∈X dd(ω′, ω) (if X = ∅ we define
dd(X,ω) =∞). While Grant and Hunter (2013) consider arbitrary distances,
we will focus here on the Dalal distance for reasons of simplicity.

The basic idea of the approaches in (Grant and Hunter, 2013) is to mea-
sure and aggregate the distances of the models of the formulas in a knowledge
base K. For example, if a knowledge base K has two formulas and their mod-
els have a large distance to each other, then K should be regarded as more
inconsistent compared to a knowledge base K′ with two formulas, where this
is not the case. More precisely, the first approach from (Grant and Hunter,
2013) considered here seeks an interpretation ω such that the sum of all
distances of the sets of models to ω is minimal.

Definition 14. The Σ-distance inconsistency measure IΣ
dalal : K → R∞≥0 is

defined as

IΣ
dalal(K) = min

{∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)

}

for K ∈ K.

Another approach of (Grant and Hunter, 2013) is to seek an interpretation
ω such that the maximum distance of the sets of models is minimal.
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Definition 15. The max-distance inconsistency measure Imax
dalal : K → R∞≥0

is defined as

Imax
dalal(K) = min

{
max
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)

}
for K ∈ K.

The final approach of (Grant and Hunter, 2013) is to minimize the number
of formulas, where their corresponding sets of models have a positive distance.

Definition 16. The hit-distance inconsistency measure Ihit
dalal : K → R∞≥0 is

defined as

Ihit
dalal(K) = min {|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

for K ∈ K.

Example 9. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Observe that for the interpretation ω1 = abcd ∈ Ω({a, b, c, d}) we have

dd(Mod(a), ω1) = 0

dd(Mod(b ∨ c), ω1) = 0

dd(Mod(¬a ∧ ¬b), ω1) = 1

dd(Mod(d), ω1) = 0

and therefore
∑

α∈K1
dd(Mod(α), ω1) = 1. There is no other interpretation

ω′ with a smaller total distance, so we have IΣ
dalal(K1) = 1. Furthermore, we

have maxα∈K1 dd(Mod(α), ω1) = 1 and there is also no other interpretation
ω′ with a smaller maximum distance. Hence, we have Imax

dalal(K1) = 1 and
similarly Ihit

dalal(K1) = 1. For K2 we obtain

IΣ
dalal(K2) = 2

Imax
dalal(K2) = 1

with a similar argumentation as above. For Ihit
dalal(K2) observe that every in-

terpretation ω must always falsify exactly one formula in {a,¬a} and exactly
one formula in {b,¬b}. Therefore we obtain Ihit

dalal(K2) = 2.
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3.7. Proof-based Inconsistency Measures

The final measure we consider in this paper is the proof-based measure
from (Jabbour and Raddaoui, 2013). The basic idea is to count, for all
propositions x ∈ At, both the number of minimal proofs for x and its negation
¬x. If there are many proofs for both, this indicates a large inconsistency
in the knowledge base. In the context of (Jabbour and Raddaoui, 2013) a
minimal proof for α ∈ {x,¬x | x ∈ At} in K is a set π ⊆ K such that

1. α appears as a literal in π

2. π |= α, and

3. π is minimal wrt. set inclusion.

Note that this definition does not require that π is consistent. In particular,
the set {a ∧ ¬a} is a minimal proof for both a and ¬a. Note furthermore,
that item 1.) requires that α appears in the exact same form in π, e. g. a
appears in a ∧ b but not in ¬a ∧ b (this is a syntactic criterion).

Let PKm(x) be the set of all minimal proofs of x in K. The proof-based
measure of (Jabbour and Raddaoui, 2013) can then be defined by summing
up the products of the number of minimal proofs for complementary literals.

Definition 17. The proof-based inconsistency measure IPm : K → R∞≥0 is
defined as

IPm(K) =
∑
a∈At

|PKm(a)| · |PKm(¬a)|

for K ∈ K.

Note that the definition of IPm is not the original definition but a char-
acterisation also provided in (Jabbour and Raddaoui, 2013).

Example 10. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

18



Observe that

PK1
m (a) = {{a}}

PK1
m (¬a) = {{¬a ∧ ¬b}}
PK1
m (b) = {{a, b ∨ c,¬a ∧ ¬b}}

PK1
m (¬b) = {{¬a ∧ ¬b}}
PK1
m (c) = {{a, b ∨ c,¬a ∧ ¬b}}

PK1
m (¬c) = ∅
PK1
m (d) = {{d}}

PK1
m (¬d) = ∅

and

PK2
m (a) = {{a}}

PK2
m (¬a) = {{¬a}}
PK2
m (b) = {{b}}

PK2
m (¬b) = {{¬b}}

It follows that

IPm(K1) = 1 · 1 + 1 · 1 + 1 · 0 + 1 · 0 = 2

IPm(K2) = 1 · 1 + 1 · 1 = 2

4. Expressivity Characteristics

In the literature, inconsistency measures are usually analytically evalu-
ated on a set of rationality postulates.2 Some basic example postulates given
in (Hunter and Konieczny, 2006) are the following (let I be any inconsistency
measure)

Consistency I(K) = 0 if and only if K is consistent

Monotony if K ⊆ K′ then I(K) ≤ I(K′)

2Some few works also consider empirical evaluation on computational performance and
accuracy of algorithms approximating existing inconsistency measures, see e. g. (Ma et al.,
2009; McAreavey et al., 2014; Thimm, 2016)
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Independence for all α ∈ K, if α /∈ M for every M ∈ MI(K) then I(K) =
I(K \ {α})

Satisfaction of the property consistency ensures that all consistent knowledge
bases receive a minimal inconsistency value and every inconsistent knowledge
base receives a positive inconsistency value (we already implicitly required
satisfaction of this postulate in the definition of an inconsistency measure).
The postulate monotony states that the value of inconsistency can only in-
crease when adding new information. Independence states that removing
“harmless” formulas from a knowledge base does not change the value of in-
consistency. Besides these three postulates a series of other postulates have
been proposed in the literature, see e. g. (Hunter and Konieczny, 2006; Mu
et al., 2011; Besnard, 2014). However, some of these postulates are disputed
as each of them usually covers only a single aspect of inconsistency, such as
independence, which focuses on the role of minimal inconsistent subsets. An
excellent discussion on the rationality of various postulates for inconsistency
measures can be found in (Besnard, 2014). Besides Besnard, several other au-
thors have also criticised the rationality of individual postulates—discussions
can be found in almost all papers cited before—and so there is some disagree-
ment on which postulates are meaningful and which are not. One the one
hand this calls for more work on rationality postulates and, on the other
hand, it also suggests to investigate additional means for comparison. In the
following, we propose a novel quantitative approach to evaluate and compare
inconsistency measures that aims at complementing the existing approach of
rationality postulates.

The drastic inconsistency measure Id (see Table 1) is usually considered as
a very naive baseline approach for inconsistency measurement. Surprisingly,
this measure already satisfies many rationality postulates such as consis-
tency, monotony, and independence (the proofs are straightforward). What
sets it apart from other more sophisticated inconsistency measures is that
it cannot differentiate between different inconsistent knowledge bases. How-
ever, this demand is exactly what inconsistency measures are supposed to
satisfy. While the qualitative behaviour of inconsistency measures is being
discussed quite deeply using rationality postulates, their quantitative prop-
erties in terms of expressivity have been almost neglected so far.3 With

3Some few rationality postulates such as Attenuation (Mu et al., 2011) are addressing
this issue only in some very limited form and from a particular point of view.
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expressivity of inconsistency measures we here mean the number of different
values an inconsistency measure can attain. We investigate the expressiv-
ity of inconsistency measures along four different dimensions of subclasses of
knowledge bases.

Definition 18. Let φ be a formula. The length l(φ) of φ is recursively defined
as

l(φ) =


1 if φ ∈ At
1 + l(φ′) if φ = ¬φ′
1 + l(φ1) + l(φ2) if φ = φ1 ∧ φ2

1 + l(φ1) + l(φ2) if φ = φ1 ∨ φ2

Definition 19. Define the following subclasses of the set of all knowledge
bases K:

Kv(n) = {K ∈ K | |At(K)| ≤ n}
Kf (n) = {K ∈ K | |K| ≤ n}
Kl(n) = {K ∈ K | ∀φ ∈ K : l(φ) ≤ n}
Kp(n) = {K ∈ K | ∀φ ∈ K : |At(φ)| ≤ n}

In other words, Kv(n) is the set of all knowledge bases that mention at
most n different propositions, Kf (n) is the set of all knowledge bases that
contain at most n formulas, Kl(n) is the set of all knowledge bases that
contain only formulas with maximal length n, and Kp(n) is the set of all
knowledge bases that contain only formulas that mention at most n different
propositions each. The motivation for considering these particular subclasses
of knowledge bases is that each of them considers a different aspect of the size
of a knowledge base. As a syntactical object, a knowledge base is a set of for-
mulas, and both the number of formulas (considered by the class Kf (n)) and
the length of each formula (Kl(n)) are the essential parameters that define its
size. From a semantical point of view, the number of propositions appearing
in each formula (Kp(n)) and in the complete knowledge base (Kv(n)) define
the scope of the knowledge. Larger numbers for both of them also indicate
larger scope and thus greater size. Inconsistency measures should adhere to
the size of the knowledge base in terms of their expressivity. For example,
the number of possible inconsistency values of a particular measure should
not decrease when moving from a set Kv(n) to set Kv(n′) with n′ > n, as
knowledge bases with n′ formulas should provide a larger variety in terms
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of inconsistency as knowledge bases of size n. Indeed, this property is true
for all considered measures as Kv(n) ⊆ Kv(n′) (the same holds for all classes
above).

The aim of our expressivity analysis is to investigate the number of dif-
ferent values that a specific inconsistency measure can attain on different
subclasses of knowledge bases. We formalise this idea using expressivity char-
acteristics as follows.

Definition 20. Let I be an inconsistency measure and n > 0. Let α ∈
{v, f, l, p}. The α-characteristic Cα(I, n) of I wrt. n is defined as

Cα(I, n) = |{I(K) | K ∈ Kα(n)}|

In other words, Cα(I, n) is the number of different inconsistency values I
assigns to knowledge bases from Kα(n). Note that these characteristics are
not always the same as the maximal value of an inconsistency measure on a
specific set of knowledge bases, even if the codomain of the measure is the
natural numbers. Indeed, it can be the case that intermediate values cannot
be attained.

Example 11. Consider Iη which has the codomain [0, 1] as each value Iη(K)
can be associated with a probability value, cf. Table 1. In (Knight, 2002) it
has already been shown that Iη(K) is always a rational number, so

√
2/2 /∈

Im Iη.4 Furthermore, the possible values of Iη are further constrained when
considering specific subclasses from above. For example, for every arbitrary
knowledge base K which contains at most 2 formulas, the only possible values
of Iη(K) are 0, 1/2, 1, so we have Cf (Iη, 2) = 3.

We now come to the main contribution of this paper, which is a thor-
ough study of the 16 considered inconsistency measures in terms of our four
proposed expressivity characteristics.

Theorem 1. The α-characteristics Cα(I, n) (α ∈ {f, v, l, p}) for the incon-
sistency measures Id, IMI, IMIC, Iη, Ic, ILPm, Imc, Ip, Ihs, IΣ

dalal, Imax
dalal, Ihitdalal,

IDf
, IPm, Imv, and Inc are as shown in Table 3.

The complete proof of the above theorem can be found in the appendix.
However, some of these proofs provide some interesting insights into the

4Im f is the image of a function f .
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Cv(I,n) Cf (I,n) Cl(I,n) Cp(I,n)

Id 2 2 2∗ 2
IMI ∞

(
n
bn/2c

)
+ 1 ∞∗ ∞

IMIC ∞ ≤ Ψ(n)‡ ∞∗ ∞
Iη Φ(2n)† ≤ Φ(

(
n
bn/2c

)
)† ∞∗∗ ∞∗

Ic n + 1 ∞ ∞∗ ∞
ILPm Φ(n) ∞ ∞∗ ∞
Imc ∞

(
n
bn/2c

)∗∗ ∞∗ ∞
Ip ∞ n + 1 ∞∗ ∞
Ihs 2n + 1 n + 1 ∞∗∗ ∞∗
IΣ

dalal ∞ ∞∗ ∞∗ ∞
Imax

dalal n + 2 ∞∗ b(n + 7)/3c∗∗ n + 2
Ihit

dalal ∞ n + 1 ∞∗ ∞
IDf

∞ ≤ Ψ(n)‡ ∞∗ ∞
IPm ∞ ∞ ∞∗ ∞
Imv n + 1 ∞∗ ∞∗ ∞
Inc ∞ n + 1 ∞∗ ∞

Table 3: Characteristics of inconsistency measures (n ≥ 1)
∗only for n > 1
∗∗only for n > 3
†Φ(x) is the number of fractions in the Farey series of order x and can be defined as
Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|, see e. g. http://oeis.org/A005728
‡Ψ(n) is the number of profiles of monotone Boolean functions of n variables, see e. g.
http://oeis.org/A220880

behaviour of particular inconsistency measures and provide relations to other
specific mathematical branches. Therefore, we will discuss these insights in
more detail in the following subsections before we continue with the actual
discussion on comparing expressivity in Section 5.

4.1. Sperner Families and Minimal Inconsistent Sets

Many of the inconsistency measures discussed above use the notion of
minimal inconsistent subset as a central tool for assessing the inconsistency of
a knowledge base. In its simplest implementation, the inconsistency measure
IMI is defined to be exactly the number of the minimal inconsistent subsets of
a knowledge base. Accordingly, in order to determine the number Cf (IMI, n)
it is necessary to investigate how many different minimal inconsistent subsets
a knowledge base with n formulas may possess. This question has already
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been investigated from a more abstract perspective in set theory under the
notion of Sperner families (also called independent systems).

Definition 21. Let S = {S1, . . . , Sn} with n ≥ 1 be a family of sets over a
set X 6= ∅, i. e., Si ⊆ X for all i = 1, . . . , n. The family S is called a Sperner
family over X if for all S, S ′ ∈ S with S 6= S ′, S * S ′.

In other words, S is a Sperner family if none of its elements is contained
in another. It can easily be seen that for every inconsistent knowledge base
K the set MI(K) is also a Sperner family over K: for M,M ′ ∈ MI(K) with
M 6= M ′ it cannot hold M ⊆ M ′, otherwise M ′ would not be a minimal
inconsistent set. Note that a consistent knowledge base yields MI(K) = ∅
which is not covered by the above definition.

As MI(K) is a Sperner family over K its maximal cardinality is bounded
by the maximal cardinality of any Sperner family over K. For the latter we
have the following result.

Theorem 2 (Sperner (1928)). Let X be a set with n = |X|.

1. There is a Sperner family Smax over X with |Smax| =
(

n
bn/2c

)
.5

2. For every Sperner family S ′ over X, |S ′| ≤ |Smax|.

A corollary of the above theorem is that |MI(K)| ≤
( |K|
b|K|/2c

)
for every

knowledge base K. Also taking into account that |MI(K)| is always a non-
negative integer we can directly entail Cf (IMI, n) ≤

(
n
bn/2c

)
+ 1 (the addition

of 1 is due to the fact that a consistent knowledge base K yields IMI(K) = 0,
which is not covered by the above theorem).

Interestingly, the set MI(K) is not only a Sperner family, but every Sperner
family can be represented as MI(K) of some knowledge base K. Let X =
{α1, . . . , αn} be any set and let S be a Sperner family over X. Consider
a propositional signature At = {a1, . . . , an} where each proposition ai ∈ At
corresponds to the element αi ∈ X. Consider now a knowledge base KSn =
{φ1, . . . , φn} defined via

φi = ai ∧
∧

M∈S,αi∈M

∨
αj∈M\{αi}

¬aj

5Smax can be constructed by taking the set of all subsets S ⊆ X with |S| = bn/2c.
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for i = 1, . . . , n. Every φi states that ai is accepted and for each set M in S
which contains αi at least one of the other elements must not be accepted.
Thus, every φi lists the conditions under which any set containing αi does
not contain an element of the Sperner family.

Example 12. Let X = {α, β, γ, δ} be a set and consider the Sperner family
S = {S1, S2, S3} over X defined via

S1 = {β, γ, δ} S2 = {α, β} S3 = {α, γ}

Consider now the signature At = {a, b, c, d} where the proposition a corre-
sponds to α, b to β, c to γ, and d to δ. Then KS4 = {φ1, φ2, φ3, φ4} is defined
via

φ1 = a ∧ ¬b ∧ ¬c
φ2 = b ∧ (¬c ∨ ¬d) ∧ ¬a
φ3 = c ∧ (¬b ∨ ¬d) ∧ ¬a
φ4 = d ∧ (¬b ∨ ¬c)

For example, φ3 states that if some set S contains γ (c), either not β or not
δ (¬b ∨ ¬d), and not α (¬a), then S does not contain any element of S.

By construction, it follows thatM = {αk1 , . . . , αkm} (for some k1, . . . , km ∈
{1, . . . , n}) is an element of the Sperner family S if and only if the set
{φk1 , . . . , φkm} is a minimal inconsistent subset of KSn = {φ1, . . . , φn}.

Example 13. We continue Example 12 and consider S1 = {β, γ, δ} ∈ S.
The set S1 corresponds to the set {φ2, φ3, φ4} ⊆ KS4 with

φ2 = b ∧ (¬c ∨ ¬d) ∧ ¬a
φ3 = c ∧ (¬b ∨ ¬d) ∧ ¬a
φ4 = d ∧ (¬b ∨ ¬c)

As one can see {φ2, φ3, φ4} is also a minimal inconsistent subset of KS4 . Fur-
ther, the set of minimal inconsistent subsets of KS4 is indeed

MI(KS4 ) = {{φ2, φ3, φ4}, {φ1, φ2}, {φ1, φ3}}

which is in direct correspondence to S.
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From these observations it follows that IMI(KSn) = |MI(KSn)| = |S|. Ob-
serve that if S is a Sperner family over X and S ∈ S then S \ {S} is also a
Sperner family over X (provided that it is non-empty). Then for a set X with
|X| = n and for every i = 1, . . . ,

(
n
bn/2c

)
we can define a Sperner family Si over

X with |Si| = i. This means in our setting, for every i = 1, . . . ,
(

n
bn/2c

)
we can

define a knowledge base K with |K| = n such that IMI(K) = i. Together with
the fact that 0 is also a possible value of IMI we obtain Cf (IMI, n) =

(
n
bn/2c

)
+1.

Furthermore, also the set of maximal consistent subsets MC(K) of a
knowledge base K form a Sperner family over K, which is the reason why the
value Cf (Imc, n) =

(
n
bn/2c

)
is almost the same as Cf (IMI, n) (please see the

appendix for the detailed proof of Cf (Imc, n) =
(

n
bn/2c

)
).

4.2. Monotone Boolean Functions and Minimal Inconsistent Sets

Another interesting observation is the relation of the measures IMIC and
IDf

with the number Ψ(n) of profiles of monotone Boolean functions of n
variables (Stephen and Yusun, 2012). Let us recall some basics on Boolean
functions.

Definition 22. A Boolean function f of n variables (n ∈ N0) is a function
f : {0, 1}n → {0, 1}.

Let B(n) be the set of all Boolean functions of n variables. It can easily
be seen that |B(n)| = 22n .

Definition 23. A Boolean function f of n variables (n ∈ N0) is monotone
if for every i = 1, . . . , n we have

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

Let MB(n) be the set of all monotone Boolean functions of n vari-
ables. Obviously |MB(n)| ≤ |B(n)|. However, no closed form for m(n) =
|MB(n)|—which is also called Dedekind number 6 (Dedekind, 1897)—is known
and only values up to n = 8 could be determined yet, cf. (Stephen and
Yusun, 2012). The Dedekind number m(n) has also a meaning in the con-
text of Sperner families (see previous subsection). In fact, m(n) is also the
number of different Sperner families over a set X with |X| = n.

6See also http://oeis.org/A000372
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For the issue of analyzing inconsistency measures, the Dedekind num-
ber m(n) itself is not directly applicable as it is somewhat syntax-sensitive.
More precisely, consider the set X = {α, β, γ} and the two Sperner families
{{α, β}} and {{β, γ}}. Each of these families count one in the Dedekind
number m(3). From the perspective of inconsistency measurement, the sets
of minimal inconsistent subsets MI(K1) = {{α, β}} and MI(K2) = {{α, γ}}
for some knowledge bases K1,K2 ∈ Kf (3) are indistinguishable for all incon-
sistency measures solely based on utilizing minimal inconsistent sets. While
for IMI only the number of minimal inconsistent sets is important, even for
more elaborate measures such as IMIC and IDf

these sets are equivalent as
they coincide in both the number of minimal inconsistent sets and the car-
dinalities of each of those. Recall that in order to define the measure IDf

we
defined for a knowledge base K the sets

MI(i)(K) = {M ∈ MI(K) | |M | = i}

for i = 1, . . . , |K|. Given these values, we can also redefine the inconsistency
measure IMIC via

IMIC(K) =

|K|∑
i=1

|MI(i)(K)|
i

Let us call profile(K) = (|MI(1)(K)|, . . . , |MI(|K|)(K)|) ∈ N|K|0 the MI-profile of
K. One can see that IMIC depends only on profile(K) and not the actual
structure of the minimal inconsistent subsets.7 However, this property of
indifference has a corresponding property in the context of Boolean functions.

Definition 24. Two Boolean functions f1, f2 of n variables (n ∈ N0) are
equivalent, denoted by f1 ∼ f2, if there is a permutation σ : {1, . . . , n} →
{1, . . . , n} such that

f1(x1, . . . , xn) = f2(xσ(1), . . . , xσ(n))

for all x1, . . . , xn ∈ {0, 1}.

7The same holds for IDf
as an MI-profile (MI0(K), . . . ,MIn(K)) also uniquely deter-

mines the corresponding CN-profile (CN0(K), . . . ,CNn(K))
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Let MB(n)/∼ be the quotient set of MB(n) wrt. ∼, i. e.

MB(n)/∼ = {[f ]∼|f ∈MB(n)}

where [f ]∼ is the equivalence class (also called profile) of f , i. e., [f ]∼ = {f ′ ∈
MB(n) | f ′ ∼ f}. Then Ψ(n) is defined as Ψ(n) = |MB(n)/∼|, i. e., Ψ(n) is
the number of profiles of monotone Boolean functions of n variables. As for
the Dedekind number m(n), no closed form for Ψ(n) is known (Stephen and
Yusun, 2012).8 However, we can observe an intriguing relationship of this
number to inconsistency measures via

Ψ(n) = |{profile(K) | K ∈ Kf (n)}|

In other words, the number of different MI-profiles of knowledge bases of size
n is the same as the number of profiles of monotone Boolean functions of n
variables. In order to see this, recall that there is a one-to-one correspondence
of MI(K) with Sperner families. It has already been mentioned that there is
also a relationship between Sperner families and monotone Boolean functions.
More precisely, let S be any Sperner family over X = {a1, . . . , an} and define
a Boolean function fS via

fS(x1, . . . , xn) =

{
1 if ∃S ∈ S : S ⊆ {ai | xi = 1}
0 otherwise

. (1)

for all x1, . . . , xn ∈ {0, 1}. In other words, the function fS(x1, . . . , xn) evalu-
ates to 1 if there is a member S ∈ S such that the corresponding variables of
the elements of S are 1. Observe that fS is monotone for every Sperner family
S. Moreover, it can also be seen that for every monotone Boolean function f
there is a uniquely determined Sperner family S such that f = fS . Consider
now two monotone Boolean functions f1, f2 with f1 ∼ f2. Then these corre-
spond to two Sperner families S1,S2 over X, where S2 can be obtained from
S1 by only permuting the elements of X. The only invariant between the
Sperner families corresponding to the functions in [f ]∼ is the number of sets
in each, and the sizes of each set. In the context of minimal inconsistent sets,
this means that there is a one-to-one correspondence between any MI-profile
and an equivalence class [f ]∼, leading to Equation (1).

For the specific case of IMIC it has to be observed that the assignment of
an MI-profile to the inconsistency value is not injective, i. e., there may be
more than one MI-profile that is mapped to the same inconsistency value.

8See also http://oeis.org/A220880.
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n Cf (IMIC , n) Ψ(n)
1 2 2
2 4 4
3 7 9
4 15 25
5 43 95

Table 4: Values of Cf (IMIC , n) and Ψ(n) for n = 1, . . . , 5.

Example 14. Consider the knowledge bases K3,K4 ∈ Kf (5) defined via

K3 = {a,¬a, b, c, d}
K4 = {a, b, c,¬a ∨ ¬b ∨ ¬c,¬(a ∧ b ∧ c)}

Here we have

MI(K3) = {{a,¬a}}
MI(K4) = {{a, b, c,¬a ∨ ¬b ∨ ¬c}, {a, b, c,¬(a ∧ b ∧ c)}}

and therefore

profile(K3) = (0, 1, 0, 0, 0)

profile(K4) = (0, 0, 0, 2, 0)

yielding IMIC(K3) = IMIC(K4) = 1/2.

This behavior is the reason that Ψ(n) is only an upper bound for Cf (IMIC , n)
in Theorem 1. As for m(n) and Ψ(n), no closed form for Cf (IMIC , n) could
be found in our investigation. Using a computational brute-force approach
we could however determine the first five values for Cf (IMIC , n) (n = 1, . . . , 5)
which are listed in Table 4 together with their corresponding upper bounds
Ψ(n). The measure IMIC is quite simplistic in its way to aggregate an MI-
profile into a single inconsistency measure. A more elaborated measure is
IDf

(see Definition 5) where this aggregation is more fine-grained. For this
measure, we obtain Cf (IMIC , n) ≤ Cf (IDf

, n) ≤ Ψ(n), i. e., IDf
is more ex-

pressive than IMIC but still bounded by Ψ(n). Note again that Definition 5
represents only a single instance of a more general family of inconsistency
measures presented in (Mu et al., 2011). Using an injective function h from
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the set of MI-profiles to real numbers one can instantiate this family with an
instance I ′Df

where we could actually have Cf (I ′Df
, n) = Ψ(n).9 In any case,

Ψ(n) is always an upper bound for every measure following the paradigm of
IDf

.

4.3. Knight’s Inconsistency Measure and the Farey Series

Let us now turn to another interesting relationship, namely that of the
inconsistency measure Iη (Knight, 2002) with the Farey series10,11. The
latter is defined as the series of numbers generated by the function Φ : N→ N
defined via

Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|

for all x ∈ N. In other words, Φ(x) is the number of different fractional
expressions in [0, 1] with maximal denominator x (where both nominator
and denominator are natural numbers). For example, for x = 3 we have{
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1
,
1

1
,
0

2
,
1

2
,
2

2
,
0

3
,
1

3
,
2

3
,
3

3

}
=

{
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1

3
,
1

2
,
2

3
, 1

}
yielding Φ(3) = 5. Let us now recall the measure Iη which is defined as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

for every K ∈ K. So in order to determine Iη(K) we are seeking a probability
function P ∈ P(At) that maximizes the minimum probability it assigns to
formulas in K. For the remainder of this section, let PK be any probability
function that maximizes the minimum probability of all formulas of K, i. e.,
we have Iη(K) = 1− ξK with ξK = min{PK(α) | α ∈ K}.

A first observation one can make about PK and Iη—which also sets it
apart from many other inconsistency measures—is that it does not care for
the syntactic representation of formulas. More precisely, for any knowledge

9Note that injective functions of the form h : Nk → R do indeed exist for arbitrary
(and infinite) k but require complex constructions. However, it is questionable whether
there are instances that would lead to meaningful inconsistency measures.

10See http://oeis.org/A005728 for more information on the Farey series.
11The measure ILPm also has a relationship with the Farey series via Cv(ILPm , n) =

Φ(n), but it is quite straightforwardly explained. See the proof of Theorem 1 for details.
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base K, formulas φ, φ′ with φ ≡ φ′ we have Iη(K ∪ {φ}) = Iη(K ∪ {φ′}) as
P (φ) = P (φ′) for every probability function. Moreover, we also have Iη(K∪
{φ}) = Iη(K ∪ {φ, φ′}) for the same reason; adding syntactic variations of
already present formulas does not change the inconsistency value. It follows
that we can identify every formula φ ∈ K with its set of models Mod(φ) in
all matters related to determining Iη(K). By abusing notation we therefore
can rewrite K as

K′ = {Mod(φ) | φ ∈ K} ⊆ P(Ω(At))

where P(X) is the power set of a set X and At is the signature of the
underlying propositional language. Assume that At = {a1, . . . , an}, then
Ω(At) has 2n elements and every Mod(φ) is a subset of those.

Let us first consider the question of how K′ and K could look like if we
want to have ξK′ = k/l for l ∈ {1, . . . , 2n} and k ∈ {1, . . . , l}. Consider
an arbitrary set {ω1, . . . , ωl} ⊆ Ω(At) of interpretations (as l ≤ 2n there
are enough different interpretations) and define PK′(ω) = 1/l for all ω ∈
{ω1, . . . , ωl} and PK′(ω′) = 0 for all remaining ω′. Then PK′ is indeed a
probability function that assigns equal probability to all {ω1, . . . , ωl}. Then
define a formula φ in such a way that Mod(φ) is any k-element subset of
{ω1, . . . , ωl}. Then we obtain PK(φ) = k/l. Populating K with all φ that
can be defined as such, we obtain a knowledge base K with ξK = k/l.

Example 15. Consider the propositional signature At3 = {a1, a2, a3}, i. e.,
we have n = 3 and 2n = 8. Choose ξK′ = 5/6 (note that 6 ∈ {1, . . . , 8}
and 5 ∈ {1, . . . , 6}) and consider the following 6 interpretations ω1, . . . , ω6 ∈
Ω(At3):

ω1 = a1a2a3 ω2 = a1a2a3 ω3 = a1a2a3

ω4 = a1a2a3 ω5 = a1a2a3 ω6 = a1a2a3

The following sets M1, . . . ,M6 are all 5-element subsets of ω1, . . . , ω6:

M1 = {ω1, ω2, ω3, ω4, ω5} M2 = {ω1, ω2, ω3, ω4, ω6}
M3 = {ω1, ω2, ω3, ω5, ω6} M4 = {ω1, ω2, ω4, ω5, ω6}
M5 = {ω1, ω3, ω4, ω5, ω6} M6 = {ω2, ω3, ω4, ω5, ω6}

Consider formulas φi with Mod(φi) = Mi for i = 1, . . . , 6. For example,
we have φ1 = a1 ∨ (a2 ∧ a3). For the knowledge base K = {φ1, . . . , φ6}

31



consider the probability function PK with PK(ω1) = . . . = PK(ω6) = 1/6 and
P (ω) = 0 for ω ∈ Ω(At3) \ {ω1, . . . ω6}. By construction we have PK(φ1) =
. . . = PK(φ6) = 5/6. Note also that there cannot be any other probability
function that gives larger probability to all formulas.

So given a signature At = {a1, . . . , an} and any l ∈ {1, . . . , 2n} and k ∈
{1, . . . , l} we can construct a knowledge base K such that ξK = k/l (and
therefore Iη(K) = 1− k/l). This gives us Cv(Iη, n) ≥ Φ(2n).

The remaining question is whether there are numbers x ∈ [0, 1] that are
not of the form x = k/l with l ∈ {1, . . . , 2n} and k ∈ {1, . . . , l} and for
which a knowledge base K can be found such that ξK = x. Knight already
showed in (Knight, 2002) that ξK must always be a rational number in the
unit interval, so it is clear that x = p/q for some p, q ∈ N with p ≤ q. So
what about e. g. x = 1/(2n + 1)? It can be shown (see the complete proof in
the appendix) that due to combinatorial reasons a value such as 1/(2n + 1)
cannot be attained for ξK if the underlying signature has n elements. For
example, the uniform probability function P with P (ω) = 1/2n already yields
P (φ) ≥ 1/2n for every formula φ ∈ K as it has at least one model (note that
if K contains a contradictory formula we always have ξK = 0).

Although the expressivity of Iη is characterized by Φ(2n) it has to be
noted that Φ(2n) increases quite rapidly which makes Iη a quite expressive
inconsistency measure (see Section 5).

4.4. Normal Forms for Knowledge Bases

Many proofs of statements in Theorem 1 (in particular those showing in-
finite characteristics) involve the construction of particular families of knowl-
edge bases that exhibit extreme inconsistency values, such as for Cf (IΣ

dalal, n) =
∞ (for n > 1). Recall that IΣ

dalal is defined by determining an interpretation
ω ∈ Ω(At) such that each formula φ ∈ K has minimal distance to ω (mea-
sured in the number of propositions that have to be flipped in ω order to
obtain a model of φ). Then IΣ

dalal is the sum of all these distances.
In the proof of Cf (IΣ

dalal, n) = ∞ (for n > 1) the following family of
knowledge bases Ki is used:

K1
i = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai}

for i ∈ N. Note that each K1
i consists of only two formulas but the num-

ber of mentioned propositions increases with increasing i. It can be seen
that for every interpretation ω ∈ Ω(At) the sum of its distances to both
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formulas amounts to exactly i, i. e., IΣ
dalal(K1

i ) = i and for i → ∞ we obtain
IΣ

dalal(K1
i )→∞ and thus Cf (IΣ

dalal, n) =∞.
Constructions such as the above can be used to characterize normal forms

of knowledge bases for inconsistency measures. For example, the above family
K1
i for i ∈ N exhaustively describes the image of IΣ

dalal, i. e.,

Im IΣ
dalal = {IΣ

dalal(K1
0), IΣ

dalal(K1
1), IΣ

dalal(K1
2), . . .}

Note that K1
0 = ∅. Every other knowledge base can be transformed into one

of these knowledge bases while retaining its inconsistency value. While this
transformation, of course, does not maintain semantic equivalence (even in a
paraconsistent context), it can be used for illustration purposes. In each K1

i

the inconsistency is boiled down to its essential core as it is measured by IΣ
dalal.

Inspecting this normal form, instead of the original knowledge base where the
inconsistency might be obfuscated, can lead to better understanding of the
severity of the inconsistency. We leave a deeper investigation of this matter
for future work.

4.5. About the Distinction between {α, β} and {α ∧ β}
By studying Table 3 it can be observed that almost all inconsistency

measures have trivial characteristic values, i. e., a value of∞, wrt. Cl and Cp,
and the characteristics Cv and Cf seem to be much better suited for assessing
the expressivity. The reason for this is that for many inconsistency measures
some conjunctions α ∧ β can be replaced by two distinct formulas α and
β without decreasing the inconsistency value, so large inconsistency values
can be attained by either having few long formulas or many short formulas.
As Cl and Cp only consider the formula-length as fixed (or the number of
propositions per formula), arbitrary different inconsistency values can be
attained by considering arbitrary large knowledge bases. The only exception,
besides the drastic inconsistency measure Id, is the measure Imax

dalal. Recall
that the measure Imax

dalal is defined as the maximal distance of an optimally
chosen ω ∈ Ω(At) to each formula of the knowledge base. If formulas are
short, i. e., they each mention only few propositions, this distance is bounded,
independently of the number of formulas in the knowledge base.

The important distinction between a set of formulas {α, β} and the con-
junction α∧ β has already been recognized within e. g. the fields of inconsis-
tent-tolerant reasoning and belief revision (Konieczny et al., 2005; Delgrande
and Jin, 2012). For example, in the context of contracting from a knowl-
edge base K5 = {a, b} the inference a, the usually accepted result should be
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K5 − a = {b}. However, contracting from a knowledge base K6 = {a ∧ b}
the inference a would result in K6 − a = ∅. More generally, a conjunction
α∧β establishes a relationship between the formulas α and β and stipulates
that they have to appear together (if one does not appear then the other
one should also not appear). For a more detailed discussion see (Konieczny
et al., 2005; Delgrande and Jin, 2012).

Our study on the characteristics Cl and Cp (for details see the proofs
in the appendix) shows that many inconsistency measures do not recognize
this difference and, moreover, behave quite incoherently in the general case
of adding either separate formulas or a conjunction of the formulas to a
knowledge base. Consider the following three properties for inconsistency
measures. Let I be an inconsistency measure, K ∈ K, and φ, ψ ∈ L(At) be
arbitrary.

∧-Indifference I(K ∪ {α, β}) = I(K ∪ {α ∧ β}).

∧-Penalty I(K ∪ {α, β}) ≤ I(K ∪ {α ∧ β}).

∧-Mitigation I(K ∪ {α, β}) ≥ I(K ∪ {α ∧ β}).

Note that Besnard (2014) proposed ∧-Indifference under the name Adjunc-
tion Invariancy as a desirable property. However, we do not aim to discuss
which (if any) of these properties may be desirable.

But interestingly, only very few of the discussed measures satisfy any of
them.

Theorem 3.

1. The measures Id, Ic, and ILPm satisfy ∧-Indifference, ∧-Penalty, and
∧-Mitigation.

2. The measures Iη, Ihs, and Imax
dalal satisfy ∧-Penalty, but not ∧-Mitigation.

3. The measures Ihitdalal and IPm satisfy ∧-Mitigation, but not ∧-Penalty.

4. None of the measures IMI, IMIC, Imc, Ip, IΣ
dalal, IDf

, Imv, Inc satisfies
any of ∧-Indifference, ∧-Penalty, or ∧-Mitigation.

As a consequence, the inconsistency values for many measures change
quite arbitrarily when a conjunction α ∧ β is replaced by it conjuncts α and
β.
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Example 16. Consider the knowledge base K7 given via

K7 = {a,¬a}

and

MI(K7) = {{a,¬a}} (2)

MI(K7 ∪ {a, b}) = {{a,¬a}} (3)

MI(K7 ∪ {a ∧ b}) = {{a,¬a}, {a ∧ b,¬a}} (4)

MI(K7 ∪ {a ∧ ¬a,¬¬a}) = {{a,¬a}, {¬a,¬¬a}, {a ∧ ¬a}} (5)

MI(K7 ∪ {a ∧ ¬a ∧ ¬¬a}) = {{a,¬a}, {a ∧ ¬a ∧ ¬¬a}} (6)

As one can see, the set MI(K) may change quite differently when adding sepa-
rate formulas or conjunctions to K. In Equations (3) and (4) the addition of a
conjunction leads to more minimal inconsistent sets than the addition of sep-
arate formulas. In Equations (5) and (6) it is exactly the other way around.
It follows that for measures I based on minimal inconsistent subsets—such as
IMI—there is no general relationship such as I(K∪{α, β}) ≤ I(K∪{α∧β})
or I(K ∪ {α, β}) ≥ I(K ∪ {α ∧ β}) for arbitrary knowledge bases K and
formulas α and β.

5. Expressivity Orders

Let us now come back to the original motivation of comparing inconsis-
tency measures wrt. their expressivity. Definition 20 provides the basis for a
comparative analysis of inconsistency measures wrt. their expressivity, which
we address with the following definition.

Definition 25. An inconsistency measure I is at least as expressive as an
inconsistency measure I ′ wrt. a characteristic Cα (α ∈ {f, v, l, p}), denoted
by I �α I ′, if there is n0 ∈ N such that for all n > n0, Cα(I, n) ≥ Cα(I ′, n).

If both I �α I ′ and I ′ �α I, we say that I and I ′ are equally expressive
wrt. Cα and denote this by I ∼α I ′. If I �α I ′ but not I ∼α I ′ we write
I �α I ′ (I is strictly more expressive than I ′). Note that the expressivity
order � is not to be confused with the refinement order v sometimes used
for pairwise comparisons of inconsistency measures, see e. g. (Thimm, 2016).
The refinement order v is defined as I1 v I2 iff I2(K) ≥ I2(K′) implies
I1(K) ≥ I1(K′) for all K,K′. If I1 v I2 this means that I2 is a refinement of
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IMI, IMIC , Imc, Ip, IΣ
dalal, Ihit

dalal, IDf
, IPm , Inc �v Iη �v Ihs

�v ILPm �v Imax
dalal �v Ic, Imv �v Id

Ic, ILPm , IΣ
dalal, Imax

dalal, IPm , Imv �f IMI �f Imc �f Ip, Ihs, Ihit
dalal, Inc �f Id

Ic, ILPm , IΣ
dalal, IPm , Imv, Ip, Ihs, Ihit

dalal, Inc, IDf
, IMIC , Iη, IMI, Imc �l Imax

dalal �l Id

Ic, ILPm
, IΣ

dalal, IPm
, Imv, Ip, Ihs, Ihit

dalal, Inc, IDf
, IMIC , Iη, IMI, Imc �p Imax

dalal �p Id

Figure 1: Expressivity orders of the investigated inconsistency measures; measures within
the same box are equally expressive wrt. the particular expressivity characteristic

I1. Note that �α compares measures in a quantitative way and also allows
comparison of measures that induce totally different orders on knowledge
bases. However, it is also easy to see that I1 v I2 implies I2 �α I1 (for all
α ∈ {f, v, l, p}).

By exploiting the results from Theorem 1 we obtain the following simple
corollary.

Corollary 1. The expressivity orders wrt. α-characteristics Cα(I, n) (α ∈
{f, v, l, p}) for the inconsistency measures Id, IMI, IMIC, Iη, Ic, ILPm, Imc,
Ip, Ihs, IΣ

dalal, Imax
dalal, Ihitdalal, IDf

, IPm, Imv, and Inc are as shown in Figure 1.

The proof of the above corollary is omitted as the results follow directly
from Theorem 1.

In Figure 1 the order �f does not show the placement of the measures
IDf

, IMIC , and Iη as we only provided upper bounds for the corresponding
characteristics in Theorem 1. However, we can give the following partial
classification.

Corollary 2. For I ∈ {Ic, ILPm , IΣ
dalal, Imax

dalal, IPm , Imv}, I �f IDf
, I �f

IMIC, I �f Iη.

The proof of the above corollary is straightforward as, e. g., we provided
a finite bound for Cf (Iη, n) (for every n) while Cf (Ic, n) is unbounded. Em-
pirical evidence suggests also the following relationships, but a formal proof
has yet to be found.
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Conjecture 1. IDf
�f IMIC �f Iη �f IMI.

Figure 1 shows that the measures IΣ
dalal and IPm are the only measures

that have maximal expressivity wrt. all four expressivity characteristics (among
the considered inconsistency measures) and, as expected, the drastic incon-
sistency measure Id is the least expressive one. One can also observe that for
many measures their positioning in the orders �v and �p is complementary,
i. e., if a measure has high expressivity wrt. Cf it has low expressivity wrt. Cv
(consider e. g. Ic and Ip). This is due to the fact that many measures mea-
sure only a specific aspect of inconsistency and usually belong either to the
MI-based family of inconsistency measures—which focus on using minimal in-
consistent subsets for measuring—or the variable-based family—which focus
on conflicting propositions—, cf. (Hunter and Konieczny, 2008). Therefore,
they are constrained in their expressivity if one of these dimensions is limited.
For example, if the number of formulas in a knowledge base is restricted, so
is the number of minimal inconsistent subsets.

Again, it should be noted that expressivity characteristics are meant to
complement the investigation of rationality postulates, not to replace them.
Rationality postulates are important to analyze the meaningfulness of the
values of inconsistency measures, while our characteristics provide a quanti-
tative assessment of their expressivity. However, we believe that the concept
of expressivity characteristics and the results reported in this work will nur-
ture general comparative analyses of inconsistency measures.

The expressivity characteristics considered in this paper each tackle one
specific aspect of size of a knowledge base. Of course, one can also combine
these characteristics to obtain hybrid versions via

Cα,α′
(I, n,m) = |{I(K) | K ∈ Kα(n) ∩Kα′

(m)}|

with α, α′ ∈ {v, f, l, p}, α 6= α′, and n,m > 0. For example, Cv,f (I, n,m)
is the number of different inconsistency values on knowledge bases which
mention at most n propositions and consist of at most m formulas. A simple
observation on these new characteristics is the following one.

Proposition 1. Let α, α′ ∈ {v, f, l, p}, α 6= α′, and n,m > 0. Then

Cα,α′
(I, n,m) ≤ min{Cα(I, n), Cα′

(I,m)}

The proof of the above proposition is straightforward. An investiga-
tion of these hybrid and other characteristics—and the resulting expressivity
orders—is left for future work.
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6. Summary and Conclusion

We conducted a focused but extensive comparative analysis of 16 inconsis-
tency measures from the recent literature in terms of their expressivity. For
that, we introduced 4 different expressivity characteristics and conducted
an analytical evaluation of the considered measures wrt. these expressivity
characteristics. Our findings revealed some interesting relationships of in-
consistency measures to, e. g., set theory and monotone Boolean functions.
Finally, the measures IΣ

dalal (Grant and Hunter, 2013) and IPm (Jabbour and
Raddaoui, 2013) have been proven to be maximally expressive wrt. all our
characteristics.

Expressivity characteristics provide a novel evaluation method for assess-
ing the quality of inconsistency measures. It has to be noted again, however,
that high expressivity alone is not a sufficient criterion for doing this. It
is straightforward to construct measures that exhibit maximal expressivity
along all discussed dimensions, but fail to comply with the intuitions one ex-
pects from inconsistency measures. The use of rationality postulates—such
as the ones presented and discussed in (Hunter and Konieczny, 2006; Mu
et al., 2011; Besnard, 2014)—must still serve as first-level evaluation crite-
rion. If measures satisfy the same (or a similar set of) rationality postulates,
expressivity can be used to make further quality assessments.

To the best of our knowledge, our work is the most extensive compar-
ative analysis of inconsistency measures so far. All inconsistency measures
discussed in this paper have been implemented and an online interface to try
out these measures is available12.
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Cv(I,n) Cf (I,n) Cl(I,n) Cp(I,n)
Id 2 2 2∗ 2
IMI ∞

(
n
bn/2c

)
+ 1 ∞∗ ∞

IMIC ∞ ≤ Ψ(n)‡ ∞∗ ∞
Iη Φ(2n)† ≤ Φ(

(
n
bn/2c

)
)† ∞∗∗ ∞∗

Ic n+ 1 ∞ ∞∗ ∞
ILPm Φ(n) ∞ ∞∗ ∞
Imc ∞

(
n
bn/2c

)∗∗ ∞∗ ∞
Ip ∞ n+ 1 ∞∗ ∞
Ihs 2n + 1 n+ 1 ∞∗∗ ∞∗
IΣ

dalal ∞ ∞∗ ∞∗ ∞
Imax

dalal n+ 2 ∞∗ b(n+ 7)/3c∗∗ n+ 2
Ihit

dalal ∞ n+ 1 ∞∗ ∞
IDf

∞ ≤ Ψ(n)‡ ∞∗ ∞
IPm ∞ ∞ ∞∗ ∞
Imv n+ 1 ∞∗ ∞∗ ∞
Inc ∞ n+ 1 ∞∗ ∞

Table A.5: Characteristics of inconsistency measures (n ≥ 1)
∗only for n > 1
∗∗only for n > 3
†Φ(x) is the number of fractions in the Farey series of order x and can be defined as
Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|, see e. g. http://oeis.org/A005728
‡Ψ(n) is the number of profiles of monotone Boolean functions of n variables, see e. g.
http://oeis.org/A220880

Appendix A. Proofs of Technical Results

Theorem 1. The α-characteristics Cα(I, n) (α ∈ {f, v, l, p}) for the incon-
sistency measures Id, IMI, IMIC, Iη, Ic, ILPm, Imc, Ip, Ihs, IΣ

dalal, Imax
dalal, Ihitdalal,

IDf
, IPm, Imv, and Inc are as shown in Table A.5.

Proof. Let n > 0 except in proofs regarding Cl where n > 1 is assumed (note
that Cl(I, 1) = 1 for every measure I as every K ∈ Kl(1) does not contain a
negation and is therefore always consistent).

1. Cv(Id, n) = 2
By definition, Id has co-domain {0, 1} and therefore Cv(Id, n) ≤ 2. For
the knowledge bases K8 = {a} and K9 = {a ∧ ¬a} we get Id(K8) = 0
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and Id(K9) = 1 and therefore Cv(Id, n) ≥ 2. As K8 and K9 use only
one proposition the statement is true for all n > 0.

2. Cf (Id, n) = 2
Analogous to 1.

3. Cl(Id, n) = 2
Note that n > 1 is assumed as trivially Cl(Id, 1) = 1. Analogous to 1
but consider K8 = {a} and K7 = {a,¬a}.

4. Cp(Id, n) = 2
Analogous to 1.

5. Cv(IMI, n) =∞
Consider for i ∈ N the knowledge bases K2

i = {¬a, a, a ∧ a, a ∧ a ∧
a, . . . ,

∧i
j=1 a}. Then IMI(K2

i ) = i and limi→∞ IMI(K2
i ) = ∞. As each

K2
i only uses one proposition the statement is true for every n > 0.

6. Cf (IMI, n) =
(

n
bn/2c

)
+ 1

Note that for every inconsistent knowledge base K the set MI(K) is a
Sperner family of K, i. e. a set S of subsets from a set T for which
X ⊆ Y for no two X, Y ∈ S. According to Sperner’s theorem the
maximal cardinality (which is also attained) of any Sperner family of a
set T with |T | = n is

(
n
bn/2c

)
(Sperner, 1928). If K is consistent we have

MI(K) = ∅ and IMI(K) = 0, yielding Cf (IMI, n) ≤
(

n
bn/2c

)
+ 1. To show

Cf (IMI, n) ≥
(

n
bn/2c

)
+ 1 we show that every Sperner family can be rep-

resented through MI(K) of a knowledge base K. Let T = {α1, . . . , αn}
be a set and define a propositional signature At = {a1, . . . , an}. Let S
be any Sperner family of T with cardinality

(
n
bn/2c

)
. Define a knowledge

base KSn = {φ1, . . . , φn} via

φi = ai ∧
∧

M∈S,αi∈M

∨
αj∈M\{αi}

¬aj

for i = 1, . . . , n. Informally, every φi states that ai is accepted and
for each set M in S which contains αi at least one of the other el-
ements must not be accepted. If follows that M = {αk1 , . . . , αkm}
(for some k1, . . . , km ∈ {1, . . . , n}) is an element of S if and only if
the set {φk1 , . . . , φkm} is a minimal inconsistent set. It follows that
IMI(KSn) = |MI(KSn)| = |S| =

(
n
bn/2c

)
. As removing any element from

a Sperner family still yields a Sperner family, every value between 1
and

(
n
bn/2c

)
can be attained. Together with the fact that 0 is also
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a possible value of IMI we obtain Cf (IMI, n) ≥
(

n
bn/2c

)
+ 1 and thus

Cf (IMI, n) =
(

n
bn/2c

)
+ 1.

7. Cl(IMI, n) =∞
Note that n > 1 is assumed as trivially Cl(IMI, 1) = 1. Consider the
family of knowledge bases K3

i = {a1, . . . , ai,¬a1, . . . ,¬ai} for i ∈ N.
Then IMI(K3

i ) = i and Cl(IMI, n) = ∞ as only formulas of maximum
length two have been used.

8. Cp(IMI, n) =∞
Analogous to 7 (note that every formula in K3

i mentions only one propo-
sition).

9. Cv(IMIC , n) =∞
Consider the family of knowledge bases K2

i from 5. Observe that
IMIC(K2

i ) = i/2 and therefore Cv(IMIC , n) =∞.

10. Cf (IMIC , n) ≤ Ψ(n)
Consider the vector profile(K) = (MI0(K), . . . ,MIn(K)), called MI-profile
of K in the following, where MIi(K) is the set of i-size minimal in-
consistent subsets of K. Note that every MI-profile induces the in-
consistency value wrt. IMIC of its corresponding knowledge base by
IMIC(K) =

∑n
i=1 |MIi(K)| · 1/i. Furthermore, note that two distinct

MI-profiles may yield the same inconsistency value, e. g. (1, 0, 0) and
(0, 2, 0) yield the same inconsistency value 1. It follows that

Cf (IMIC , n) ≤ |{(|MI0(K)|, . . . , |MIn(K)|) |
(MI0(K), . . . ,MIn(K)) is an

MI-profile for some K ∈ Kf (n)}|

As discussed in 6, for every knowledge base K the set MI(K) is a Sperner
family. It is well-known that there is an equivalence between Sperner
families and monotone boolean functions, cf. (Stephen and Yusun,
2012). In (Stephen and Yusun, 2012) the number of inequivalent mono-
tone boolean functions has been investigated, see also http://oeis.org/A220880.
These numbers are the same of inequivalent Sperner families as well.
Here, two Sperner families MI(K) and MI(K′) are equivalent if they
yield the same MI-profiles. The number of different MI-profiles is also
the number on the right-hand side of the above equation, thus showing
the claim Cf (IMIC , n) ≤ Ψ(n) where Ψ(n) is the number of inequivalent
monotone Boolean functions on n variables.
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11. Cl(IMIC , n) =∞
Note that n > 1 is assumed as trivially Cl(IMIC , 1) = 1. Consider then
the family of knowledge bases K3

i from 7 and observe that IMIC(K3
i ) =

i/2 and therefore Cl(IMIC , n) =∞.

12. Cp(IMIC , n) =∞
Analogous to 11 (note that every formula in K3

i mentions only one
proposition).

13. Cv(Iη, n) = Φ(2n)
We first show Cv(Iη, n) ≤ Φ(2n). In (Knight, 2002) it has already
been shown that Iη(K) ∈ [0, 1] ∩ Q for every K (Definition 2.7 and
Theorem 2.28). Hence, assume η = k/l and Iη(K) = 1− η for k, l ∈ N
and k ≤ l. We also assume for now that K contains no contradictory
formula. Furthermore, we assume that K contains no free formulas (as
Iη satisfies independence they have no influence on the inconsistency
value, cf. (Thimm, 2013)). Let P be a probability function such that
P (φ) ≥ k/l for all φ ∈ K. It can be assumed that there is no ω ∈ Ω(At)
such that P (ω) > 0 but ω 6|= φ for every φ ∈ K (otherwise one could set
P (ω) = 0 and distribute the “probability mass” P (ω) on the remaining
interpretations which have already a positive probability; this cannot
change the fact that P (φ) ≥ k/l for all φ ∈ K). So for all ω ∈ Ω(At),
if P (ω) > 0 then ω |= φ for some φ ∈ K. Define FK(ω) = {φ ∈
K | ω |= φ} for all ω ∈ Ω(At), i. e., FK(ω) is the set of formulas in
K that are satisfied by ω. We can furthermore assume that for all
ω, ω′ ∈ Ω(At) with P (ω) > 0 and P (ω′) > 0 we have FK(ω) 6⊆ FK(ω′)
(otherwise we could set P (ω) = 0 and add the probability mass P (ω) to
P (ω′), without decreasing the probabilities of the formulas). Assume
furthermore, that among all probability functions that satisfy the above
constraints, P is one such that |{ω|P (ω) > 0}| is minimal.
Now consider the case |{ω | P (ω) > 0}| = 2, i. e., there are two inter-
pretations ω1, ω2 that receive positive probability. For every formula
φ ∈ K, either φ ∈ FK(ω1), or φ ∈ FK(ω2), or φ ∈ FK(ω1) ∩ FK(ω2).
Note that the latter case cannot be possible for all φ ∈ K as other-
wise FK(ω1) = FK(ω2). Furthermore, there is one formula φ′ ∈ K with
P (φ′) = P (ω1) and one formula φ′′ ∈ K with P (φ′′) = P (ω2), otherwise
we would have FK(ω1) ⊆ FK(ω2) or FK(ω2) ⊆ FK(ω1). As P (φ) has to
be maximal for all φ ∈ K we can conclude P (ω1) = P (ω2) and therefore
η = 1/2.
Now consider the case |{ω | P (ω) > 0}| = 3, i. e., there are three
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interpretations ω1, ω2, ω3 that receive positive probability. For each
φ ∈ K let ∆P (φ) = {ω ∈ Ω(At) | P (ω) > 0, ω |= φ}, i. e., ∆P (φ) is
such that P (φ) =

∑
ω∈∆P (φ) P (ω). Note that it cannot be the case

that |∆P (φ)| = 3 for any φ ∈ K (otherwise φ would be free in K) or
that |∆P (φ)| = 0 (then φ would be self-contradictory). Consider the
following sub-cases:
(a) for all φ ∈ K we have |∆P (φ)| = 1:

Then for all φ ∈ K we have P (φ) = P (ω) for some ω ∈ {ω1, ω2, ω3}
and as there are no subset relations between any FK(ω1), FK(ω2),
and FK(ω3), it follows that P (ω1) = P (ω2) = P (ω3) = 1/3 maxi-
mizes each probability and we have η = 1/3.

(b) for all φ ∈ K we have |∆P (φ)| = 2:
Then for all φ ∈ K we have P (φ) = P (ω) +P (ω′) for some ω, ω′ ∈
{ω1, ω2, ω3} with ω 6= ω′ and as there are no subset relations
between any FK(ω1), FK(ω2), and FK(ω3), it follows that P (ω1) =
P (ω2) = P (ω3) = 1/3 maximizes each probability and we have
η = 2/3.

(c) otherwise:
Let φ1 ∈ K with |∆P (φ1)| = 1. Without loss of generality assume
∆P (φ1) = {ω1}. As FK(ω2) 6⊆ FK(ω1) there is φ2 ∈ FK(ω2) with
φ2 /∈ FK(ω1). Consider the case that for all φ ∈ FK(ω3) either
φ ∈ FK(ω1) or φ ∈ FK(ω2). Then P ′ defined via P ′(ω1) = 0.5,
P ′(ω2) = 0.5, and P ′(ω) = 0 for all other ω yields P ′(φ) ≥ 0.5
for all φ ∈ K. Assuming P obtains a larger probability for all
formulas implies that P (ω) > 0.5 (in order to have P (φ1) > 0.5),
but then P (φ2) < 0.5. So we have a contradiction since P is
supposed to be minimal wrt. |{ω|P (ω) > 0}|. It follows that
there is φ3 ∈ FK(ω3) with φ3 /∈ FK(ω1) and φ3 /∈ FK(ω2), so
P (φ3) = P (ω3). Similarly, it can be assumed that φ2 /∈ FK(ω3)
as well. As P (φ1) = P (ω1), P (φ2) = P (ω2), and P (φ3) = P (ω3)
it follows that P (ω1) = P (ω2) = P (ω3) = 1/3 maximizes each
probability and we have η = 1/3.

So for |{ω | P (ω) > 0}| = 3 we have that η ∈ {1/3, 2/3}. Inductively it
follows that for |{ω | P (ω) > 0}| = h we have η ∈ {1/h, . . . , (h−1)/h}.
As a signature with n propositions has 2n different interpretations, and
together with the cases of a consistent knowledge base (inconsistency
value 0) and one that contains a contradictory formula (inconsistency
value 1) we obtain Cv(Iη, n) ≤ |{k/l | l = 1, . . . , 2n, k = 0, . . . , l}| =
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Φ(2n).
We now show that Cv(Iη, n) ≥ Φ(2n). For that let η = k/l for l ∈
{1, . . . , 2n} and k ∈ {1, . . . , l}. Let X = {ω1, . . . , ωl} ⊆ Ω(At) be any
set of l different interpretations. Define P via P (ω) = 1/l if ω ∈ X and
P (ω) = 0 otherwise. Define K̂ via φ ∈ K̂ if and only if

φ =
∨
ω∈Xk

φω

where Xk is a k-element subset of X and φω is the complete conjunction
that has ω ∈ Ω(At) as its only model (note that K̂ contains

(
l
k

)
formulas,

one for each k-element subset of X). Observe that for all φ ∈ K̂ we
have

P (φ) = P (
∨
ω∈Xk

φω) =
∑
ω∈Xk

P (φω) = k/l

and that this is obviously the maximal possible value for K̂. It follows
that Iη(K̂) = 1− k/l and therefore Cv(Iη, n) ≥ Φ(2n).

14. Cf (Iη, n) ≤ Φ(
(

n
bn/2c

)
)

Analogous to 13. However, note that the maximal number of inter-
pretations that may receive a positive probability is bounded by the
number of different FK(ω) for ω ∈ Ω(At). As the set of FK(ω) with
P (ω) > 0 form a Sperner family (no two elements have a subset rela-
tion) the maximal cardinality of this set is

(
n
bn/2c

)
, cf. (Sperner, 1928).

15. Cl(Iη, n) =∞
Note that n > 1 is assumed as trivially Cl(Iη, 1) = 1. For n = 2 ob-
serve that either Iη(K) = 0 (for consistent K) or Iη(K) = 0.5. For
the latter, note that K can only be inconsistent if and only if there is
at least one (possibly more) a ∈ At such that a,¬a ∈ K (or semanti-
cally equivalent formulas). Then any probability function P with P (φ)
maximal for all φ ∈ K has to satisfy P (a) = P (¬a) = 0.5. Therefore
we have Cl(Iη, 2) = 2. For n = 3 we additionally have the case that
a three-element minimal inconsistent subset {¬a1,¬a2, a1 ∨ a2} may
occur with corresponding inconsistency value 1/3, thus Cl(Iη, n) = 3.
For n > 3 consider the family of knowledge bases K4

i = {¬a1∨a2,¬a2∨
a3, . . . ,¬ai−1 ∨ ai,¬ai ∧ a1}. Note that K4

i is a minimal inconsistent
set. By Theorem 2.12 of (Knight, 2002) Iη(K4

i ) = 1/|K4
i | = 1/i and

therefore Cl(Iη, n) =∞.
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16. Cp(Iη, n) =∞
First, for n = 1 observe that either Iη(K) = 0 (for consistent K),
Iη(K) = 1 (for K containing a contradictory formula), or Iη(K) = 0.5.
For the latter, note that K can only be inconsistent without containing
a contradictory formula if and only if there is at least one (possibly
more) a ∈ At such that a,¬a ∈ K (or semantically equivalent formulas).
Then any probability function P with P (φ) maximal for all φ ∈ K has
to satisfy P (a) = P (¬a) = 0.5. For n > 1 consider the family of
knowledge bases K4

i from 15. Note that K4
i is a minimal inconsistent

set. By Theorem 2.12 of (Knight, 2002) Iη(K4
i ) = 1/|K4

i | = 1/i and
therefore Cp(Iη, n) =∞.

17. Cv(Ic, n) = n+ 1
Consider the propositional signature At = {a1, . . . , an} and for each
i = 0, . . . , n consider the knowledge base K5

i = {a1 ∧¬a1, . . . , ai ∧¬ai}
(with K5

0 = ∅). Then Ic(K5
i ) = i as every a1, . . . , ai has to be set to

B in every model of K5
i . Together with the fact that every model can

assign the value B to at most |At| = n different propositions we have
Cv(Ic, n) = n+ 1.

18. Cf (Ic, n) =∞
Consider the family of knowledge bases K6

i = {a1∧ . . .∧ai∧¬a1∧ . . .∧
¬ai}. Then Ic(K6

i ) = i for i > 0 and limi→∞ Ic(K6
i ) =∞. As each K6

i

has only one formula the statement is true for every n > 0.
19. Cl(Ic, n) =∞

Note that n > 1 is assumed as trivially Cl(Ic, 1) = 1. Consider the
family of knowledge bases K3

i = {a1, . . . , ai,¬a1, . . . ,¬ai} for i ∈ N.
Then Ic(K3

i ) = i and Cl(Ic, n) = ∞ as only formulas of maximum
length two have been used.

20. Cp(Ic, n) =∞
Analogous to 19 (note that every formula in K3

i mentions only one
proposition).

21. Cf (ILPm , n) = Φ(n)
Recall from item that Ic(K) ∈ {0, . . . , n} for K ∈ Kv(n) and note
|At(K)| ∈ {1, . . . , n} and Ic(K) ≤ |At(K)|. Together we obtain ILPm(K) =
Ic(K)/|At(K)| ∈ {k/l | l = 1, . . . , |At(K)|, k = 0, . . . , l} and there-
fore Cf (ILPm , n) ≤ Φ(n) = |{k/l | l = 1, . . . , n, k = 0, . . . , l}|. To
see Cf (ILPm , n) ≥ Φ(n) consider the family of knowledge bases K16

i,j =
{a1, . . . , ai,¬a1, . . . ,¬ai} for i, j ∈ N, i ≤ j and observe that ILPm(K16

i,j) =
i/j.
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22. Cf (ILPm , n) =∞
Consider the family of knowledge bases K15

i = {¬a1∧a1∧a2∧ . . .∧ai}.
Then ILPm(K15

i ) = 1/i for i > 0. As each K15
i has only one formula the

statement is true for every n > 0.

23. Cl(ILPm , n) =∞
Note that n > 1 is assumed as trivially Cl(ILPm , 1) = 1. Consider the
family of knowledge bases K12

i = {¬a1, a1, a2, . . . , ai} for i ∈ N. Then
ILPm(K12

i ) = 1/i and Cl(ILPm , n) = ∞ as only formulas of maximum
length two have been used.

24. Cp(ILPm , n) =∞
Analogous to 23 (note that every formula in K12

i mentions only one
proposition).

25. Cv(Imc, n) =∞
Consider the family of knowledge bases K7

i = {a ∧ ¬a, a ∧ a ∧ ¬a ∧
¬a, . . .

∧i
j=1 a ∧ ¬a} and observe that Imc(K7

i ) = |SC(K7
i )| = i + 1 (all

formulas in K7
i are self-contradicting and only the empty subset is a

maximal consistent subset). It follows that Cv(Imc, n) =∞.

26. Cf (Imc, n) =
(

n
bn/2c

)
Note first, that if K contains only self-contradictory formulas we have
MC(K) = ∅. Otherwise, analogously to 6, observe that for every other
consistent or inconsistent knowledge base K the set MC(K) is a Sperner
family of K, i. e. a set S of subsets from a set T for which X ⊆ Y for no
two X, Y ∈ S. According to Sperner’s theorem the maximal cardinality
(which is also attained) of any Sperner family of a set T with |T | = n
is
(

n
bn/2c

)
(Sperner, 1928). Hence we have 0 ≤ |MC(K)| ≤

(
n
bn/2c

)
. Also

analogously to 6 observe that every value can be attained by some
knowledge base. For that let S be any Sperner family of cardinality
bn/2c of a set T = {α1, . . . , αn}. Let At = {a1, . . . , an} and define a
knowledge base K̂Sn = {φ1, . . . , φn} with

φi =
∨

αi∈M∈S

(
∧
αj∈M

aj ∧
∧
αj 6∈M

¬aj)

for i = 1, . . . , n. Informally, every φi lists all sets M ∈ S that include
αi. Then a set M ⊆ K̂Sn is a maximal consistent subset if and only if
it corresponds to an element of S. As removing any element from a
Sperner family still yields a Sperner family, we have {|MC(K)| | K ∈
Kf (n)} = {i ∈ N | 0 ≤ i ≤

(
n
bn/2c

)
}.
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Note that for |K| = n, 0 ≤ |SC(K)| ≤ n (and every value can be
attained). However, we cannot simply obtain the value Cf (Imc, n)
by adding the upper bounds of |MC(K)| and |SC(K)| as these two
values are dependent. Observe that if K with |K| = n contains a
self-contradictory formula φ then φ cannot be part of any maximal
consistent subset of K, i e., we have MC(K) = MC(K \ {φ}). In
general, we have that if K contains k contradictory formulas then
|MC(K)| ≤

(
(n−k)
b(n−k)/2c

)
. Define cn,kmc =

(
(n−k)
b(n−k)/2c

)
and then we obtain

the following characterization of Cf (Imc, n):

Cf (Imc, n) = max{cn,0mc , cn,1mc + 1, cn,2mc + 2, . . . , cn,nmc + n}

That is, the value Cf (Imc, n) is either cn,0mc (considering no self-contradictory
formulas) or cn,1mc + 1 (considering one self-contradictory formula), etc..
Observe that the first element of the above maximum is dominant for
n > 3. For n = 1 we obtain Cf (Imc, n) = 2 (a knowledge base with
one formula is either consistent, i. e., MC(K) = {K}, SC(K) = ∅, and
thus Imc(K) = 0; or it is inconsistent with MC(K) = {∅}, SC(K) = K,
and thus Imc(K) = 1). Note that either the empty set or the whole
set are the only possible maximal consistent subsets. For n = 2 we
obtain Cf (Imc, n) = 3: either K is consistent (Imc(K) = 0), or it con-
tains one self-contradictory formula (Imc(K) = 1), or it contains two
contradictory formulas (Imc(K) = 2). Note that the maximal number
of consistent subsets of K is 2 (for the case that K is a two-element
minimal inconsistent set), but then there cannot be self-contradictory
formulas and we have Imc(K) = 1. For n = 3 we obtain Cf (Imc, n) = 4
(for a consistent knowledge base and knowledge bases with 1 to 3 self-
contradictory formulas and one maximal consistent subset). Note that
the maximal number of consistent subsets ofK is 3, e. g. all two-element
subsets, but then K cannot contain any self-contradictory formula and
we have Imc(K) = 2 which we can also obtain by having two self-
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contradictory formulas. For n > 3 and k = 1, . . . , n we have

cn,0mc =

(
n

bn/2c

)
=

(
n− 1

bn/2c

)
+

(
n− 1

bn/2c − 1

)
︸ ︷︷ ︸
≥n as n>3

≥
(
n− 1

bn/2c

)
+ n

=

(
n− 1

b(n− 1)/2c

)
+ n

≥
(

n− k
b(n− k)/2c

)
+ n

≥
(

n− k
b(n− k)/2c

)
+ k = cn,kmc + k

Note that
(
n−1
bn/2c

)
=
(

n−1
b(n−1)/2c

)
as for odd n we have

(
n−1
bn/2c

)
=
(

n−1
(n−1)/2

)
=(

n−1
b(n−1)/2c

)
and for even n we have

(
n−1
bn/2c

)
=
(
n−1
n/2

)
which (as n − 1 is

odd) is the same as
(
n−1
n/2−1

)
=
(

n−1
b(n−1)/2c

)
. Hence, for n > 3 we obtain

Cf (Imc, n) =
(

n
bn/2c

)
.

27. Cl(Imc, n) =∞
Note that n > 1 is assumed as trivially Cl(Imc, 1) = 1. Note further-
more that for n = 2 only literals are allowed as formulas in K. Consider
the family of knowledge bases K3

i = {a1,¬a1, . . . , ai,¬ai} and observe
that |K3

i | = 2i and Imc(K3
i ) = 2i (every interpretation ω corresponds

to a maximal consistent subset of K3
i , i. e., the union of all ai with

ω(ai) = true and ¬ai with ω(ai) = false; adding any other formula from
K3
i makes this set inconsistent). As only formulas of maximum length

2 are used in K3
i it follows that Cl(Imc, n) =∞.

28. Cp(Imc, n) =∞
Consider the family knowledge bases K7

i from 25 and observe that every
formula mentions only one proposition. It follows that Cp(Imc, n) =∞.

29. Cv(Ip, n) =∞
Consider the family of knowledge bases K2

i from 5. Then Ip(K2
i ) = i

and limi→∞ Ip(K2
i ) = ∞. As each K2

i only uses one proposition the
statement is true for every n > 0.
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30. Cf (Ip, n) = n+ 1
For k < n let Mk = {a1, . . . , ak−1,¬a1 ∨ . . .¬ak−1}. Note that Mk is a
minimal inconsistent set. Consider Kn,k = Mk ∪ {ak+1, . . . , an}. Then
Kn,k has exactly one minimal inconsistent subset (Mk) and Ip(Kn,k) =
k. Hence, for k = 1, . . . , n every value in {1, . . . , n} is attained for
Ip(Kn,k). Together with Ip(K) = 0 for any consistent K of size n we
have Cf (Ip, n) = n+ 1.

31. Cl(Ip, n) =∞
Analogous to 19.

32. Cp(Ip, n) =∞
Analogous to 20.

33. Cv(Ihs, n) = 2n + 1
Any hitting set can be of maximal size 2n as there are that many inter-
pretations in a language with n propositions, and as a hitting set may
not be defined in case of a contradictory formula we get Cv(Ihs, n) ≤
2n + 1. Let now Ati = {a1, . . . , ai be a propositional signature i propo-
sitions and consider the knowledge base K11

i = {φω | ω ∈ Ω(Ati)}
where φω is any formula with Mod(φω) = {ω}. Then K11

i contains 2i

formulas and each of them is satisfied by only one interpretation. We
get Ihs(K11

i ) = 2i − 1 and removing any formula from K11
i reduces the

value by one, so all values 0, . . . , 2i−1 are attained. Taking the case of
a knowledge base with a contradictory formula into account, we obtain
Cv(Ihs, n) ≥ 2n + 1 and thus Cv(Ihs, n) = 2n + 1.

34. Cf (Ihs, n) = n+ 1
For K with |K| = n any hitting set can be of maximal size n, as
only formulas in K need to be hit. Considering also the case of a
knowledge base with a contradictory formula we obtain Cf (Ihs, n) ≤
n+1. For Cf (Ihs, n) ≥ n+1 consider a knowledge base with n pairwise
inconsistent formulas, such as in 33 (note that the signature can be
arbitrarily large). Therefore we get Cf (Ihs, n) = n+ 1.

35. Cl(Ihs, n) =∞
Note that n > 1 is assumed as trivially Cl(Ihs, 1) = 1. For n = 2
or n = 3 consider the interpretations ω1, ω2 with ω1(a) = true and
ω2(a) = false for all a ∈ At. As formulas of maximal length 2 are
either a, or ¬a, and formulas of length 3 are either a ∧ b or a ∨ b
for a, b ∈ At, either ω1 or ω2 is a model of each formula. Therefore,
Ihs(K) = 1 or Ihs(K) = 0 and Cl(Ihs, 2) = Cl(Ihs, 3) = 2. For n > 3
consider the signature Atm = {a1, . . . , am} and the knowledge base
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K9
m = {a ∧ b,¬a ∧ b, a ∧ ¬b | a, b ∈ Atm, a 6= b}. Observe that for

m→∞ we have Ihs(K9
m)→∞ and therefore Cl(Ihs, n) =∞.

36. Cp(Ihs, n) =∞
First, for n = 1 observe that either Ihs(K) = 0 (for consistent K),
Ihs(K) =∞ (for K containing a contradictory formula), or Ihs(K) = 1.
For the latter, note that given a signature Atm = {a1, . . . , am} the
two interpretations ω1, ω2 with ω1(a) = true and ω2(a) = false, for all
a ∈ Atm, form a hitting set for every knowledge base where the formulas
mention at most one proposition. It follows that Cp(Ihs, 1) = 3. For
n > 1 consider the signature Atm = {a1, . . . , am} and the knowledge
base K9

m = {a ∧ b,¬a ∧ b, a ∧ ¬b,¬a ∧ ¬b | a, b ∈ Atm, a 6= b}. Observe
that for m→∞ we have Ihs(K9

m)→∞ and therefore Cp(Ihs, n) =∞.

37. Cv(IΣ
dalal, n) =∞

Consider the family of knowledge bases

K10
i = {a,¬a, a ∧ a,¬a ∧ ¬a, . . . ,

i∧
j=1

a,
i∧

j=1

¬a}

for i ∈ N. Then IΣ
dalal(K10

i ) = i as there are only two interpretations ω1

and ω2 with ω1(a) = true and ω2(a) = false and for both interpretations
the sets of models of half of the formulas in K10

i have a distance of one to
each of them (note that |K10

i | = 2i). Therefore we have Cv(IΣ
dalal, n) =

∞.

38. Cf (IΣ
dalal, n) =∞

For K with |K| = 1 we have that either IΣ
dalal(K) = 0 or IΣ

dalal(K) =
∞ and therefore Cf (IΣ

dalal, n) = 2. For n > 1 consider the family of
knowledge bases K1

i = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai} for i ∈ N and
observe that IΣ

dalal(K1
i ) = i. Therefore we have Cf (IΣ

dalal, n) =∞.

39. Cl(IΣ
dalal, n) =∞

Note that n > 1 is assumed as trivially Cl(IΣ
dalal, 1) = 1. Then for i ∈ N

consider the family of knowledge bases K3
i = {a1, . . . , ai,¬a1, . . . ,¬ai}

and observe that IΣ
dalal(K3

i ) = i. Hence, we obtain Cl(IΣ
dalal, n) =∞.

40. Cp(IΣ
dalal, n) =∞

Analogous to 37 (note that in every formula of K0
i only one proposition

is used).

41. Cv(Imax
dalal, n) = n+ 2

For every consistent knowledge base K we have Imax
dalal(K) = 0 and for the
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knowledge base K9 = {a ∧ ¬a} we have Imax
dalal(K9) =∞. Furthermore,

for the signature Ati = {a1, . . . , ai} and i = 1, . . . , n consider the family
of knowledge bases K11

i = {φω | ω ∈ Ω(Ati)} where φω is any formula
with Mod(φω) = {ω}. Observe that for every ω ∈ Ω(Ati) there is one
formula φ ∈ K11

i with dd(Mod(φ), ω) = i and therefore Imax
dalal(K11

i ) = i.
Note also that dd(ω, ω′) ≤ i for every pair ω, ω′ ∈ Ω(Ati) as ω and ω′

can differ in at most i propositions. Hence, we have Cv(Imax
dalal, n) = n+2.

42. Cf (Imax
dalal, n) =∞

First, for K with |K| = 1 observe that either Imax
dalal(K) = 0 or Imax

dalal(K) =
∞ (K can only be inconsistent if it contains a contradictory formula
and then the Dalal distance between the set of models of this formula
(which is the empty set) to any interpretation is ∞). Therefore we
have Cf (Imax

dalal, 1) = 2. For n > 1 consider the family of knowledge
bases K1

i = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai} with i ∈ N. Then we have
Imax

dalal(K1
i ) = di/2e and therefore Cf (Imax

dalal, n) =∞.
43. Cl(Imax

dalal, n) = b(n+ 7)/3c
Note that n > 1 is assumed as trivially Cl(Imax

dalal, 1) = 1. For n = 2 ob-
serve that K only contains propositions or negations of propositions and
therefore, the set of models of every formula of K has at most distance 1
to any interpretation. Therefore, Imax

dalal(K) = 0 or Imax
dalal(K) = 1 and we

have Cl(Imax
dalal, 2) = 2. For n = 3 observe that formulas may only have

the form a, ¬a, a∧b, or a∨b for a, b ∈ At. Note that only the models of
a formula a∧b may have distance 2 to some interpretation. However, as
a conjunction cannot contain a negation, the minimal maximal distance
of any formula from K is 1 as the models of e. g. ¬a has only distance
1 to any models of a∧ b. As there can also be no contradictory formula
(for that a length of 4 of a formula is required) we get Cl(Imax

dalal, 3) = 2.
For n = 4 consider the interpretation ω with ω(a) = true for every
a ∈ Ω(At). As every conjunction can contain at most one negation,
the distance of the models of every formula to ω is also maximally 1.
Additionally, we have self-contradictory formulas which yield in total
Cl(Imax

dalal, 4) = 3. Assume n > 4 with n = 2 + 3k with k > 0 and let
φω be the complete conjunction that has ω ∈ Ω(At) as its only model.
Then observe that K11

k+1 = {φω | ω ∈ Ω(Atk+1)} has only formulas of
maximal length n and Imax

dalal(K11
k ) = k (and that smaller inconsistency

values can be attained by removing some formula in K11
i ). Observe

further that for n ∈ {3 + 3k, 4 + 3k} the maximal distance cannot be
larger than for n = 2 + 3k. Together with consistent knowledge bases
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and knowledge bases containing self-contradictory formulas we obtain
Cl(Imax

dalal, n) = b(n− 2)/3c+ 3 = b(n+ 7)/3c for n > 3.

44. Cp(Imax
dalal, n) = n+ 2

Consider the signature Ati = {a1, . . . , ai} for i = 1, . . . , n and the family
of knowledge bases K11

i = {φω | ω ∈ Ω(Ati)}. Note that every φ ∈ K11
i

mentions exactly i propositions and, with the same argumentation as
in 41, we have Imax

dalal(K11
i ) = i. Furthermore, for a consistent knowledge

base K we have Imax
dalal(K) = 0 and for the knowledge base K9 = {a∧¬a}

we have Imax
dalal(K9) =∞ and therefore Cp(Imax

dalal, n) = n+ 2.

45. Cv(Ihit
dalal, n) =∞

For every i ∈ N consider the knowledge base K10
i = {a,¬a, a ∧ a,¬a ∧

¬a, . . . ,
∧i
j=1 a,

∧i
j=1 ¬a}. Then Ihit

dalal(K10
i ) = i (consider e. g. the inter-

pretation ω with ω(a) = true, then the models of half of the formulas of
K10
i have distance one to ω and |K10

i | = 2i). As only one proposition is
necessary to create any inconsistency value we have Cv(Ihit

dalal, n) =∞.

46. Cf (Ihit
dalal, n) = n+ 1

For every consistent knowledge base K we have Ihit
dalal(K) = 0 and for the

family of knowledge base K5
i = {a1∧¬a1, . . . , ai∧¬ai} (for i = 1, . . . , n)

we have Ihit
dalal(K5

i ) = i. Note that n is also the maximal value of Ihit
dalal

as this is the maximal number of formulas in any K. Hence, we have
Cf (Ihit

dalal, n) = n+ 1.

47. Cl(Ihit
dalal, n) =∞

Note that n > 1 is assumed as trivially Cl(Ihit
dalal, 1) = 1. Consider the

family of knowledge basesK3
i = {a1,¬a1, . . . , ai,¬ai}. Then Ihit

dalal(K3
i ) =

i and therefore Cl(Ihit
dalal, n) =∞ as only formula of length 2 are neces-

sary to produce any inconsistency value.

48. Cp(Ihit
dalal, n) =∞

Analogous to 45.

49. Cv(IDf
, n) =∞

Consider for i ∈ N the knowledge bases K2
i = {¬a, a, a ∧ a, a ∧ a ∧

a, . . . ,
∧i
j=1 a}. Then MI(1)(K2

i ) = MI(3)(K2
i ) = MI(4)(K2

i ) = ... =

MI(|K
2
i |)(K2

i ) = ∅ and MI(2)(K2
i ) = {{¬a, a}, {¬a, a ∧ a}, {¬a, a ∧ a ∧

a}, . . . , {¬a,
∧i
j=1 a}}. Therfore |MI(1)(K2

i )| = |MI(3)(K2
i )| = |MI(4)(K2

i )| =
... = |MI(|K

2
i |)(K2

i )| = 0 and |MI(2)(K2
i )| = i. Furthermore, note that

CN(2) is comprised of every two-element subset of K2
i \ {¬a} and there-

fore |CN(2)| =
(
i
2

)
. It follows that R1(K2

i ) = R3(K2
i ) = R4(K2

i ) = ... =

R|K2
i |−1(K2

i ) = 0 and R2(K2
i ) = i/(i +

(
i
2

)
). We obtain IDf

(K2
i ) =
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1−R2(K2
i )/2 = 1− i/(2i+ 2

(
i
2

)
) = 1− i/(2i+ i(i− 1)) = 1− 1/(i+ 1).

As i ∈ N we obtain Cv(IDf
, n) =∞.

50. Cf (IDf
, n) ≤ Ψ(n)

Analogous to 10. Observe that each MI-profile (MI0(K), . . . ,MIn(K))
also uniquely determines the corresponding CN-profile (CN0(K), . . . ,CNn(K)).
That is, there are no two knowledge bases K and K′ that have the
same MI-profile but different CN-profiles. Then there cannot be more
R-profiles (R1(K), . . . , Rn(K)) than there are MI-profiles and, thus, the
number of inequivalent monotone Boolean functions on n variables is
also an upper bound for Cf (IDf

, n).

51. Cl(IDf
, n) =∞

Note that n > 1 is assumed as trivially Cl(IDf
, 1) = 1. Consider then

the family of knowledge bases K3
i from 7. Observe that MI2(K3

i ) = i
and MIj(K3

i ) = 0 for j 6= 2. Furthermore, it is CN2 =
(

2i
2

)
− i and

therefore R2(K3
i ) = i/

(
2i
2

)
.Then

IDf
(K3

i ) = 1− i

2
(

2i
2

)
Hence, we have Cl(IDf

, n) =∞.

52. Cp(IDf
, n) =∞

Analogous to 49.

53. Cv(IPm , n) =∞
Consider the family of knowledge bases K2

i = {¬a, a, a∧ a, . . . ,
∧i
j=1 a}

for i ∈ N. Then K2
i contains one minimal proof for ¬a and i minimal

proofs for a (each formula other than ¬a is a minimal proof for a).
Then we have IDf

(K2
i ) = i and therefore Cv(IDf

, n) =∞.

54. Cf (IPm , n) =∞
Consider the family of knowledge bases K6

i = {a1 ∧ . . . ∧ ai ∧ ¬a1 ∧
. . . ∧ ¬ai} for i ∈ N. Then K6

i contains one minimal proof for each aj
and one minimal proof for each ¬aj for j = 1, . . . , i. Then we have
IDf

(K6
i ) = i and therefore Cf (IDf

, n) =∞.

55. Cl(IPm , n) =∞
Note that n > 1 is assumed as trivially Cl(IDf

, 1) = 1. Consider the
family of knowledge bases K3

i = {a1, . . . , ai,¬a1, . . . ,¬ai} for i ∈ N.
Then K3

i contains one minimal proof for each aj and one minimal proof
for each ¬aj for j = 1, . . . , i. Then we have IDf

(K3
i ) = i and therefore

Cl(IDf
, n) =∞ as only formulas of maximal size 2 have been used.
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56. Cp(IPm , n) =∞
Analogous to 55 (note that K3

i mentions only one proposition in each
formula).

57. Cv(Imv, n) = n+ 1
Consider the propositional signature At = {a1, . . . , an} and for each
i = 0, . . . , n consider the knowledge base K13

i = {a1 ∧ ¬a1, . . . , ai ∧
¬ai, ai+1, . . . , an} (with K13

0 = ∅). Then Imv(K13
i ) = i/n and we obtain

Cv(Imv, n) = n+ 1.

58. Cf (Imv, n) =∞
If |K| = 1 then observe that either Imv(K) = 0 or Imv(K) = 1 (if the
knowledge base is inconsistent then all propositions appearing in K also
appear in the only formula of K and are thus part of a minimal incon-
sistent subset) , so we have Cf (Imv, 1) = 2. For n = |K| > 1 consider
for i ∈ N the family of knowledge bases K14

i = {a1∧ . . .∧ai−1, ai∧¬ai}
and observe that Imv(K14

i ) = 1/i. Hence, we have Cf (Imv, n) = ∞ for
n > 1.

59. Cl(Imv, n) =∞
Note that n > 1 is assumed as trivially Cl(Imv, 1) = 1. For n > 1
consider K12

i = {¬a1, a1, a2, . . . , ai} with i > 1 and note that {¬a1, a1}
is the only minimal inconsistent subset of K12

i . Then Imv(K12
i ) = 1/i

and therefore Cl(Imv, n) =∞.

60. Cp(Imv, n) =∞
Consider the family of knowledge bases K8

i = {a1 ∧ ¬a1, a2, . . . , ai} for
i ∈ N. Then Imv(K8

i ) = 1/i and therefore Cp(Imv, n) =∞.

61. Cv(Inc, n) =∞
Consider the family of knowledge bases K2

i from 5. Then Inc(K2
i ) = i

and limi→∞ Inc(K2
i ) = ∞. As each K2

i only uses one proposition the
statement is true for every n > 0.

62. Cf (Inc, n) = n+ 1
Obviously, Inc(K) ≤ |K| ∈ {0, . . . , n} for every knowledge base. Con-
sider the family of knowledge bases Kn,k from 30. Then Ip(Kn,k) = k−1
for k = 1, . . . , n. Furthermore, a knowledge base K containing at least
one contradictory formula has Inc(K) = |K| = n. Hence, we have
Cf (Inc, n) = n+ 1.

63. Cl(Inc, n) =∞
Note that n > 1 is assumed as trivially Cl(Inc, 1) = 1. For n > 1
consider K12

i = {¬a1, a1, a2, . . . , ai} with i > 1 and note that {¬a1, a1}
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is the only minimal inconsistent subset of K12
i . Then Inc(K12

i ) = |Ki|−
1 = i and therefore Cl(Inc, n) =∞.

64. Cp(Inc, n) =∞
Analogous to 61.

Theorem 3.

1. The measures Id, Ic, and ILPm satisfy ∧-Indifference, ∧-Penalty, and
∧-Mitigation.

2. The measures Iη, Ihs, and Imax
dalal satisfy ∧-Penalty, but not ∧-Mitigation.

3. The measures Ihitdalal and IPm satisfy ∧-Mitigation, but not ∧-Penalty.

4. None of the measures IMI, IMIC, Imc, Ip, IΣ
dalal, IDf

, Imv, Inc satisfies
any of ∧-Indifference, ∧-Penalty, or ∧-Mitigation.

Proof. Let K be some arbitrary knowledge base and α, β ∈ L(At) formulas.

1. Note first that if an inconsistency measure I satisfies ∧-Indifference
it also satisfies ∧-Penalty and ∧-Mitigation. Therefore, we only show
that Id and Ic satisfy ∧-Indifference.
(a) Id: the statement follows directly from that fact that every knowl-

edge base K ∪ {α, β} is inconsistent if and only if K ∪ {α ∧ β} is
inconsistent.

(b) Ic: let υ be a three-valued interpretation υ : At→ {T, F,B} with
υ |=3 K ∪ {α, β}. Then υ(α), υ(β) ∈ {T,B}. From Table 2 it
follows that υ(α∧ β) ∈ {T,B} and therefore υ |=3 K∪{α∧ β} as
well. Note that the converse holds as well. Then we have

Ic(K ∪ {α, β}) = min{|υ−1(B)| | υ |=3 K ∪ {α, β}}
= min{|υ−1(B)| | υ |=3 K ∪ {α ∧ β}}
= Ic(K ∪ {α ∧ β})

(c) ILPm : this follows directly from Ic satisfying ∧-Indifference and
At(K ∪ {α, β}) = At(K ∪ {α ∧ β}).

2. (a) Iη: let P be a probability distribution P : Ω(At) → [0, 1] with

P (φ) ≥ ξ̂ for all φ ∈ K ∪ {α ∧ β} with ξ̂ being maximal. Then
P (α) ≥ ξ̂ and P (β) ≥ ξ̂ as well. It follows that

ξ̂ = max{ξ | ∃P ∈ P(At) : ∀φ ∈ K ∪ {α ∧ β} : P (φ) ≥ ξ}
≤ max{ξ | ∃P ∈ P(At) : ∀φ ∈ K ∪ {α, β} : P (φ) ≥ ξ}
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and therefore Iη(K ∪ {α ∧ β}) ≥ Iη(K ∪ {α, β}). To see that Iη
does not satisfy ∧-Mitigation consider K10 = {¬a∧ b, a∧¬b} and

Iη(K10 ∪ {a ∧ b}) = 2/3

Iη(K10 ∪ {a, b}) = 1/2

(b) Ihs: let H be a hitting set of K ∪ {α ∧ β} and let ω ∈ H be such
that ω |= α∧β. Then ω |= α and ω |= β as well and H is a hitting
set of K∪{α, β}. So we have that every hitting set of K∪{α∧β}
is also a hitting set of K ∪ {α, β} and therefore

{H | H is a hitting set of K ∪ {α ∧ β}}
⊆{H | H is a hitting set of K ∪ {α, β}}

and

Ihs(K ∪ {α ∧ β}) = min{|H| | H is a hitting set of K ∪ {α ∧ β}}
≥ min{|H| | H is a hitting set of K ∪ {α, β}}
= Ihs(K ∪ {α, β})

To see that Ihs does not satisfy ∧-Mitigation consider K10 = {¬a∧
b, a ∧ ¬b} and

Ihs(K10 ∪ {a ∧ b}) = 2

Ihs(K10 ∪ {a, b}) = 1

(c) Imax
dalal: For every ω ∈ Ω(At), as Mod(α∧β) ⊆ Mod(α) and Mod(α∧
β) ⊆ Mod(β) we have

dd(Mod(α ∧ β), ω) ≥ dd(Mod(α), ω)

dd(Mod(α ∧ β), ω) ≥ dd(Mod(β), ω)

It follows that

max
φ∈K∪{α∧β}

dd(Mod(φ), ω) ≥ max
φ∈K∪{α,β}

dd(Mod(φ), ω)

and

Imax
dalal(K ∪ {α ∧ β}) = min{ max

φ∈K∪{α∧β}
dd(Mod(φ), ω) | ω ∈ Ω(At)}

≥ min{ max
φ∈K∪{α,β}

dd(Mod(φ), ω) | ω ∈ Ω(At)}

= Imax
dalal(K ∪ {α, β})
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To see that Imax
dalal does not satisfy ∧-Mitigation consider K11 =

{¬a ∧ b, a ∧ ¬b,¬a ∧ ¬b} and

Imax
dalal(K11 ∪ {a ∧ b}) = 2

Imax
dalal(K11 ∪ {a, b}) = 1

3. (a) Ihit
dalal: Let ω ∈ Ω(At) be arbitrary. Note that ω 6|= α∧β if and only

if either ω 6|= α, ω 6|= β, or both. Therefore, dd(Mod(α∧β), ω) > 0
if and only if either dd(Mod(α), ω) > 0, dd(Mod(β), ω) > 0, or
both. Then

|{φ ∈ K ∪ {α ∧ β} | dd(Mod(φ), ω) > 0}|
≤|{φ ∈ K ∪ {α, β} | dd(Mod(φ), ω) > 0}|

and Ihit
dalal(K∪{α∧β}) ≤ Ihit

dalal(K∪{α, β}). To see that Ihit
dalal does

not satisfy ∧-Penalty consider K12 = {¬a,¬b} and

Ihit
dalal(K12 ∪ {a ∧ b}) = 1

Ihit
dalal(K12 ∪ {a, b}) = 2

(b) IPm : observe that if π is a minimal proof for some γ in K∪{α∧β}
and α ∧ β ∈ π then either

i. π \ {α ∧ β} ∪ {α}, or
ii. π \ {α ∧ β} ∪ {β},
iii. both of the above, or
iv. π \ {α ∧ β} ∪ {α, β}

is a minimal proof (are minimal proofs) for γ in K ∪ {α, β}. In

any case, |PK∪{α∧β}m (γ)| ≤ |PK∪{α,β}m (γ)| for every γ and therefore
IPm(K ∪ {α ∧ β}) ≤ IPm(K ∪ {α, β}). To see that IPm does not
satisfy ∧-Penalty consider K13 = {¬a} and

IPm(K13 ∪ {a ∧ ¬¬a}) = 1

IPm(K13 ∪ {a,¬¬a}) = 2

4. (a) IMI: consider Example 16 with K7 = {a,¬a}. Here we have

IMI(K7 ∪ {a, b}) = 1 < 2 = IMI(K7 ∪ {a ∧ b})

and

IMI(K7 ∪ {a ∧ ¬a,¬¬a}) = 3 > 2 = IMI(K7 ∪ {a ∧ ¬a ∧ ¬¬a})
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(b) IMIC : consider Example 16 with K7 = {a,¬a}. Here we have

IMIC(K7 ∪ {a, b}) = 1/2 < 1 = IMIC(K7 ∪ {a ∧ b})

and

IMIC(K7 ∪ {a ∧ ¬a,¬¬a}) = 2 > 3/2 = IMIC(K7 ∪ {a ∧ ¬a ∧ ¬¬a})

(c) Imc: consider Example 16 with K7 = {a,¬a}. Here we have

Imc(K7 ∪ {a,¬a}) = 1 < 2 = Imc(K7 ∪ {a ∧ ¬a})

and for K9 = {a, b} we have

Imc(K9 ∪ {¬a,¬b}) = 2 > 1 = Imc(K9 ∪ {¬a ∧ ¬b})

(d) Ip: consider K10 = {¬a, a,¬b, b}. Here we have

Ip(K10 ∪ {a, b}) = 4 < 5 = Ip(K10 ∪ {a ∧ b})

and for K5 = {a, b} we have

Ip(K5 ∪ {¬a,¬b}) = 4 > 3 = Ip(K5 ∪ {¬a ∧ ¬b})

(e) IΣ
dalal: consider K5 = {a, b}. Here we have

IΣ
dalal(K5 ∪ {¬a, a}) = 1 <∞ = IΣ

dalal(K5 ∪ {¬a ∧ a})

and for K14 = {a, b, a ∧ b,¬a ∧ ¬b} we have

IΣ
dalal(K14 ∪ {¬a,¬b}) = 4 > 2 = IΣ

dalal(K14 ∪ {¬a ∧ ¬b})

(f) IDf
: consider Example 16 with K7 = {a,¬a}. Here we have

IDf
(K7 ∪ {a, b}) = 1/6 < 1/3 = IDf

(K7 ∪ {a ∧ b})

and for K15 = {a ∧ b, a ∧ c, a ∧ d} we have

IDf
(K15 ∪ {¬a,¬a ∧ e}) = 3/10 > 1/4 = IDf

(K15 ∪ {¬a ∧ ¬a ∧ e})

(g) Imv: consider K8 = {a}. Here we have

IDf
(K8 ∪ {¬a, b}) = 1 < 2 = IDf

(K8 ∪ {¬a ∧ b})

and for K6 = {a ∧ b} we have

IDf
(K6 ∪ {¬a, a}) = 2 > 1 = IDf

(K6 ∪ {¬a ∧ a})
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(h) Inc: consider K8 = {a}. Here we have

Inc(K8 ∪ {¬a, a}) = 1 < 2 = Inc(K8 ∪ {¬a ∧ a})

and for K7 = {a,¬a} from Example 16 we have

Inc(K7 ∪ {b, c}) = 3 > 2 = Inc(K7 ∪ {b ∧ c})

Appendix B. List of Knowledge Bases

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}
K3 = {a,¬a, b, c, d}
K4 = {a, b, c,¬a ∨ ¬b ∨ ¬c,¬(a ∧ b ∧ c)}
K5 = {a, b}
K6 = {a ∧ b}
K7 = {a,¬a}
K8 = {a}
K9 = {a ∧ ¬a}
K10 = {¬a ∧ b, a ∧ ¬b}
K11 = {¬a ∧ b, a ∧ ¬b,¬a ∧ ¬b}
K12 = {¬a,¬b}
K13 = {¬a}
K14 = {a, b, a ∧ b,¬a ∧ ¬b}
K15 = {a ∧ b, a ∧ c, a ∧ d}
K1
i = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai} i ∈ N

K2
i = {¬a, a, a ∧ a, a ∧ a ∧ a, . . . ,

i∧
j=1

a} i ∈ N

K3
i = {a1, . . . , ai,¬a1, . . . ,¬ai} i ∈ N
K4
i = {¬a1 ∨ a2,¬a2 ∨ a3, . . . ,¬ai−1 ∨ ai, ai ∧ ¬a1} i ∈ N
K5
i = {a1 ∧ ¬a1, . . . , ai ∧ ¬ai} i ∈ N
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K6
i = {a1 ∧ . . . ∧ ai ∧ ¬a1 ∧ . . . ∧ ¬ai} i ∈ N

K7
i = {a ∧ ¬a, a ∧ a ∧ ¬a ∧ ¬a, . . .

i∧
j=1

a ∧ ¬a} i ∈ N

K8
i = {a1 ∧ ¬a1, a2, . . . , ai} i ∈ N
K9
i = {a ∧ b,¬a ∧ b, a ∧ ¬b | a, b ∈ Ati, a 6= b} i ∈ N

K10
i = {a,¬a, a ∧ a,¬a ∧ ¬a, . . . ,

i∧
j=1

a,

i∧
j=1

¬a} i ∈ N

K11
i = {φω | ω ∈ Ω(Ati)} i ∈ N
K12
i = {¬a1, a1, a2, . . . , ai} i ∈ N
K13
i = {a1 ∧ ¬a1, . . . , ai ∧ ¬ai, ai+1, . . . , an} i ∈ N
K14
i = {a1 ∧ . . . ∧ ai−1, ai ∧ ¬ai} i ∈ N
K15
i = {¬a1 ∧ a1 ∧ a2 ∧ . . . ∧ ai} i ∈ N
K16
i,j = {a1, . . . , ai,¬a1, . . . ,¬ai} i, j ∈ N
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