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ABSTRACT
In the last years, scalable RDF stores in the cloud have been de-
veloped, where graph data is distributed over compute and storage
nodes for scaling efforts of query processing and memory needs.
One main challenge in these RDF stores is the data placement strat-
egy that can be formalized in terms of graph covers. These graph
covers determine whether (a) different query results may be com-
puted on several compute nodes in parallel (vertical parallelization)
and (b) individual query results can be produced only from triples
assigned to few — ideally one — storage node (horizontal contain-
ment). We analyse the impact of three most commonly used graph
cover strategies in these terms and found out that balancing query
workload reduces the query execution time more than reducing data
transfer over network. To this end, we present our novel benchmark
and open source evaluation platform.

CCS CONCEPTS
•Information systems → Graph-based database models; Data-
base performance evaluation; Parallel and distributed DBMSs;
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1 INTRODUCTION
In the last years, the requirement for RDF stores that can cope
with trillions of triples has emerged. For instance, the number
of Schema.org-based facts that are extracted out of the Web have
reached the size of three trillions [24]. Another example is the
European Bioinformatics Institute (EMBL-EBI) that would like
to convert its datasets into RDF resulting in a graph consisting of
trillions of triples. To date no such scalable RDF store exists and the
current EBI RDF Platform can handle only 10 billion triples [22].

We pursue the development of a scalable RDF store in the cloud,
where graph data is distributed over compute and storage nodes for
scaling efforts of query processing and memory needs. The main
challenges to be investigated for such development are: (i) strategies
for data placement over compute and storage nodes, (ii) strategies
for distributed query processing, and (iii) strategies for handling
failure of compute and storage nodes. In this paper, we focus on
comparing the performance of data placement strategies.
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Strategies for data placement may be formalized in terms of graph
covers. Each compute and storage node hosts a graph chunk. Each
triple is assigned to (at least) one graph chunk and the union of
all graph chunks define a (possibly redundant) graph cover. When
a query is requested to an RDF store in the cloud, the query is
distributed over the different compute and storage nodes. Each node
applies the query operators assigned to it on its local data. If the
query requires the combination of data from different chunks, the
required information has to be transferred between compute nodes.

One graph cover strategy commonly used is the hash cover that
assigns triples to compute and storage nodes according to the hash
value of, e. g., their subject (e. g., used by Virtuoso Clustered Edition
[7], YARS2 [12, 13], Clustered TDB [25] and Trinity.RDF [30]).
In order to reduce the number of transferred intermediate results,
hierarchical hash has been proposed as an extension of the hash cover
strategy that computes the hash only on IRI prefixes [21]. Another
commonly used graph cover strategy is the minimal edge-cut cover
that assigns vertices to similarly-sized partitions in a way that the
number of edges connecting vertices assigned to different partitions
is minimised (e. g., used by [10, 15, 31]).

It is a commonly held belief that query completion is optimized
by approaches that emphasize local computation such as minimal
edge-cut (see [15, 20, 31]). The first major contribution of this paper
is to challenge this assumption by new experiments. Our results
indicate that contrary to commonly held beliefs, hash covers may
outperform, e.g., minimal edge-cut covers.

We have performed our experiments with the aim to understand
interdependencies of the involved query processing. Thus, we have
devised new measures and do not only compare graph cover strate-
gies in terms of query processing time, but in addition we investigate
the following dimensions:
• Vertical parallelization describes to which extent different

query results may be computed in parallel on different compute
nodes. This is an indicator that query processing can scale with
growing result set sizes by horizontal scaling of the cloud.

• Horizontal containment describes to which extent computa-
tion of individual query results is local to one (or few) graph
chunk(s). This is an indicator that query processing is (to some
extent) robust when the cloud is scaled horizontally.

Using these measurements, we derive the second important con-
tribution of this paper. We understand from the analysis of query
processing using different graph cover strategies that vertical paral-
lelization (i.e. a well distributed workload) may be more important
than horizontal containment (i.e. minimal data transport) for efficient
query processing — even in a commodity network environment (1
GB/s). Furthermore, our analysis revealed that previous experiments
like [15], [20] and [31] suffered from a setting with highly ineffi-
cient methods for data transfer (i.e. based on the Hadoop/HDFS
infrastructure) (see [17]).
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In order to determine to which extent graph cover strategies lead to
efficient query answering, they have to be implemented and evalu-
ated in distributed RDF stores. To avoid the bias of, e. g. inefficient
methods for data transfer, the third important contribution is the
flexible open source platform Koral. It executes queries on arbitrary
graph covers and transfers intermediate results within the network.

The remainder of this work is structured as follows. In Sec. 2
the frequently used graph cover strategies are described. Thereafter,
our novel benchmark methodology is described (see Sec. 3) and in
Sec. 4 our analysis indicating that (i) hash covers may outperform
minimal edge-cut covers and (ii) vertical parallelization may be
more important than horizontal containment is described. Finally,
we describe why previous evaluations concluded that the amount
of data transfer is crucial for the query execution effort (see Sec. 5)
before we conclude in Sec. 6.

2 GRAPH COVER STRATEGIES
To formalize the problem, we define RDF graphs like in [11]. As-
sume a signature σ = (I, B, L), where I , B and L are the pairwise
disjoint infinite sets of IRIs, blank nodes and literals, respectively.
The union of these sets is abbreviated as IBL.

Definition 2.1: The set of all possible RDF triples T for signature
σ is defined by T = (I ∪B) × I × IBL. An RDF graph G or
simply graph is defined as G ⊆ T . The set of vertices contained in
G is defined by VG = {v|∃s, p, o : (v, p, o) ∈ G ∨ (s, p, v) ∈ G}.
(s, p, o) ∈ T is also called a triple with subject s, property p and
object o. In the context of distributed RDF stores, the triples of a
graph have to be assigned to different compute and storage nodes (in
the following, we refer to them more briefly as compute nodes). The
finite set of compute notes is denoted as C in the rest of this paper.

Definition 2.2: Let G denote an RDF graph. Then a graph cover
is a function cover: G→ 2C , that assigns each triple of a graph G
to at least one compute node.

Definition 2.3: The function chunk returns the triples assigned
to a specific compute node by a graph cover (graph chunks). It is
defined as

chunkcover: C → 2G

chunkcover(c):= {t|c ∈ cover(t)} .

Beside the graph cover strategies that are described in the following,
there exist other approaches such as the ones used by Partout [8],
COSI [5], [4], WARP [14], VB-Partitioner [20] and [29]. Since
these graph cover strategies are only used by a single system, we
focussed our evaluation on the graph cover strategies that are used
most frequently.
Hash Cover. A hash cover assigns triples to chunks according to
the hash value computed on their subjects modulo the number of
compute nodes. Thus all triples with the same subject are located in
the same graph chunk. This graph cover strategy is used, for instance,
by Virtuoso Clustered Edition [7], YARS2 [12, 13], Clustered TDB
[25] and Trinity.RDF [30].
Hierarchical Hash Cover. Inspired by the observations that IRIs
have a path hierarchy and IRIs with a common hierarchy prefix
are often queried together, SHAPE [21] uses an improved hash-
ing strategy to reduce the inter-chunk queries. First, it extracts the
path hierarchies of all IRIs. For instance, the extracted path hi-
erarchy of ”http://www.w3.org/1999/02/22-rdf-syntax-ns#type” is

”org/w3/www/1999/02/22-rdf-syntax-ns/type”. Then, for each level
in the path hierarchy (e. g., ”org”, ”org/w3”, ”org/w3/www”, ...) it
computes the percentage of triples sharing a hierarchy prefix. If the
percentage exceeds an empirically defined threshold and the number
of prefixes is equal or greater to the number of compute nodes at any
hierarchy level, then these prefixes are used for the hash cover.
Minimal Edge-Cut Cover. The minimal edge-cut cover is a vertex-
centred partitioning which tries to solve the k-way graph partitioning
problem as described in [19]. It aims at minimizing the number of
edges between vertices of different partitions under the condition that
each partition contains approximately |VG|

k
many vertices. Details

about the computation of k-way graph partitioning and the targeted
approximation can, e.g., be found in [19]. RDF stores like EAGRE
[31], [26] and [15] convert the outcome of the minimal edge-cut
algorithm, i.e., a partitioning of VG, into a graph cover of G by
assigning each triple to the compute node to which its subject has
been assigned.

3 METHODOLOGY FOR BENCHMARKING
GRAPH COVER STRATEGIES

When defining a methodology for investigating the effects of graph
cover strategies on distributed RDF stores, several complexities arise.
Beyond overall performance for the SPARQL query processing [27],
we want to observe indications that contribute to understanding how
graph cover strategies may relate to scalability. Sec. 1 has explained
several high level indicators, which are formally defined in Sec. 3.1.

Ideally, the graph cover strategy would be the only independent
input variable based on which to pursue evaluation and to obtain
values for dependent variables. Performance observations of graph
cover strategies, however, are tightly interwoven with several factors.
The first factor are the specific queries that are processed as part of
the benchmark (see Sec. 3.2). Furthermore, actual query execution
constitutes a highly influential factor, too, for which we need to
specify execution strategies (see Sec. 3.3) as well as execution op-
eration (see Sec. 3.4). For these two factors, our methodology aims
at experimenting with a diverse set of inputs in order to allow for
recognizing the patterns of influence between graph cover strategies
and performance measures.

3.1 Evaluation Measures
In this subsection, we define the measures we have found most useful
to characterize different graph cover strategies.
Overall performance. The query execution time is measured as the
overall performance characteristics of an RDF store. More precisely
it is the time interval between issuing the query q (more precisely
the query execution tree as elaborated on in Sec. 3.3) at time tq0 and
the time when the last result is returned at tqKq with Kq representing
the overall number of query results for query q. We drop q when it
is unambiguous from context as in the following definitions.

Definition 3.1: Overall query performance is evaluated by the
query time to completion: exT ime := tK − t0.

Vertical parallelization. In order to measure workload indepen-
dently of time needed, we observe the number of join comparisons
to be performed. Given a query execution tree the overall workload
will be identical for all graph cover strategies. With vertical paral-
lelization we are interested in how many join comparisons might
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be executed by different compute nodes in parallel to estimate their
load. This number is very difficult to obtain as it would require the
definition and implementation of complex concepts in a distributed
system such as ‘simultaneous’ or ‘nearly simultaneous’. We pursue
a simple, but effective strategy here, by simply measuring how the
workload is distributed over different compute nodes using entropy.

Definition 3.2: For a cover and a query execution tree q, workload
entropy W is:
W := −

∑
c∈C

w(c)
w(C)

log2
w(c)
w(C)

, 0 ≤W ≤ − log2

(
1

|C|

)
,

where the workload of a compute nodew(c) is defined by the number
of join comparisons on c and w(C) :=

∑
c∈C w(c) denotes the

number of join comparisons overall.
In the strict sense, workload entropy does not measure vertical par-
allelization, because an actual query might involve many compute
nodes in a strictly sequential manner. However, each sequential
processing of a query requires data transfer. Thus, in combination
with horizontal containment we arrive at the following interpretation
table that lets us derive at a comprehensive picture when jointly con-
sidering workload entropy and measures for horizontal containment
(see Table 1).

Data transfer low Data transfer high
W low low vertical

parallelization
low vertical parallelization
(unlikely situation)

W high high vertical
parallelization

low to medium vertical
parallelization

Table 1: Measurement of vertical parallelization.

Horizontal containment. Time-based measurements such as the
query execution time exT ime depend on the exact configuration
of the system such as network bandwidth and latency. Workload
and workload entropy are means to capture the computing efforts
at an abstract level of operation. In a distributed system, the second
— and often the most — time-consuming operation is data transfer.
Graph cover strategies that lead to massive data transfer indicate that
computation of individual query results is not contained on one or
few compute nodes, and hence suggests that it will not allow the
cloud to be scaled horizontally. Hence, we measure an abstract level
of data transfer:1

Definition 3.3: For a given cover and a given query execution tree
q, we define overall data transfer T :=

∑
c∈C Tc. Data transfer is

measured at each compute node c as Tc :=
∑

opm
op · |dom(µop

1 )|.
Each join operation op that leads to the sending of variable bindings
to another compute node c′ 6= c contributes with data size mop ·
|dom(µop

1 )| where |dom(µop
1 )| are the number of variables of a

binding and m are the number of bindings m = |{µop
i }|.

The data transfer is sometimes also used as the preferred measure-
ment for overall query efforts in the cloud (see [26]), as in standard
cloud architecture the processor-to-remote-memory gap by far excels
the processor-to-local-memory gap. In newer hardware architectures
that natively support remote direct memory access large differences
between these gaps cannot be taken for granted anymore. Thus, we
prefer to measure the data transfer and the workload balance.

1We follow common notation and use µ to represent a variable binding, i.e. a function
that maps from variables to values, and dom(µ) to refer to the set of variables of this
binding.

3.2 Strategy for Generating Queries
Since the core functionality of SPARQL is provided by matching ba-
sic graph patterns, we follow the strategy of most other benchmarks,
performing evaluations with varied basic graph pattern structures.
In particular, we adopt the strategy of SPLODGE [9], which given
arbitrary real-world datasets varies the query characteristics:
Number of joins: controls the number of triple patterns in the basic

graph pattern.
Selectivity: controls the number of triples involved in answering

the query.
Join pattern: controls the branching factor that shapes the basic

graph pattern to a smaller or larger extent into a path–shaped
query or star–shaped query.

Number of sources controls for the number of data sources that
need to be involved to answer a query (e.g., DBPedia and
GeoNames would be two).

While the first three are common to most benchmarks, the last
one has been specifically added to SPLODGE for benchmarking
federated stores. Varying this parameter between 1 and several units
is important in this context, as several graph cover strategies may
easily collocate data from a single data source on a single compute
node. When testing the limits of graph cover strategies, we must
ensure that we also create ‘hard’ test cases.

3.3 Query Execution Strategies
In order to find out about weaknesses and strengths of graph cover
strategies, we need to determine how far our evaluation measures are
influenced by the graph cover strategies themselves and how far they
are influenced by interfering aspects of the overall RDF store. Query
planning and execution are so intrinsically interwoven that it is rather
impossible to come up with one (or several) query optimizers and
planners that fit all challenges. We remedy this issue in a similar
way as we do for dataset and queries: We systematically explore the
suitability of the different graph cover strategies under variations
of query executions. Thus, we do not measure the performance
of “the best run”, which would be hard to achieve anyway, but
we characterize the robustness and susceptibility of graph cover
strategies vs. execution strategies.

Specifically, we use (i) a bushy query execution tree with minimal
height, (ii) a left-linear query execution tree, in which the triple
patterns are joined in the sequence they are defined and (iii) a right-
linear query execution tree. Thus, we have trees of different heights
and topological sorting. To evaluate the performance of graph cover
strategies under variations of query execution trees, we have devised
an operative environment that can handle different graph cover strate-
gies and such variations of query execution trees. This environment
is described next.

3.4 Distributed RDF Store for Arbitrary Graph
Covers (Koral)

The distributed RDF store for arbitrary graph covers (Koral) [3]
implements a query execution mechanism that receives a data set, a
graph cover, a query and a query execution strategy and computes
the corresponding query result set. Due to the space limitations,
Koral will only be sketched here. Its formal definition and proofs of
soundness and completeness are given in [16].
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Koral is an extension of state-of-the-art asynchronous execution
mechanisms such as realised in TriAD [10]. The extensions render
the query execution mechanism independent from the underlying
graph cover. Koral consists of one master node and |C| slave nodes.
When the master receives a query, a query execution coordinator
is instantiated. The coordinator creates the query execution tree
that specifies the query execution strategy (bushy, left-linear, right-
linear) for the given query and sends the query execution tree to
all slaves. To vertically parallelize workload execution, each slave
executes each query operator. Aiming at horizontal containment,
Koral avoids (some) duplicate joins and corresponding data transfer
by assigning each join uniquely to the slave responsible for the join
of the resource, i.e. µ(v) (where v is the join variable).

4 EVALUATION
The experimental setup we have used for the impact analysis of
different graph cover strategies on the query execution effort is
explained in Sec. 4.1. Our results are described in Sec. 4.2.

4.1 Experimental Setup
The set of configurations in our benchmark results from the multi-
plicative combination of (i) the set of different graph cover strategies,
(ii) the set of different query-dataset combinations, and (iii) the set
of different query execution strategies.
Compared Graph Cover Strategies. During the evaluation, a hash
cover, a hierarchical hash cover and a minimal edge-cut cover are
compared. Both hash covers are reimplemented following the de-
scriptions in [21]. Thereby, the hash is computed only on the subject
of each triple. For the creation of the minimal edge-cut cover we use
METIS [19] as done by other distributed RDF stores like [26], [15],
D-SPARQ [23] and WARP [14].
Dataset and Queries. In order to avoid effects that occur due to
the generation process of a synthetic dataset, we use a subset of the
real-world billion triple challenge dataset from 2014 (BTC2014)
[18]. This dataset has been generated by crawling data from several
data sources of the linked open data cloud. The used subset contains
the first one billion syntactically correct triples.

Following the strategy explained in Sec. 3.2, we generate basic
graph patterns with
Various number of joins: 2 and 8 triple patterns.
Varying selectivity: 0.001% and 0.01% involving between 1 mil-

lion and 10 million triples.
Varying join patterns: path-shaped (subject-object join) and star-

shaped (subject-subject join).
Varying number of data sources: 1 and 3 source data sets.
Evaluation Setup using the Graph Cover Evaluation Platform
(CEP). Using the extensible evaluation platform for graph cover
strategies (CEP) [1], we set up the evaluation as follows. CEP
downloads the BTC2014 dataset, removes all syntactically incorrect
triples and creates the one billion triple dataset. The resulting dataset
is used by SPLODGE [9], configured as described above, to generate
the query set for the benchmark. For each graph cover strategy
Koral is cleared, the dataset is loaded and the list of configured
queries is executed 10 times. Thus, the effect of operating system-
dependent caches storing the results of the previously executed query
is reduced, because no query is immediately reexecuted after it has
finished. In order to prevent the effect of outliers caused by, e.g.

garbage collection, from all 10 executions of a query, the best and
the worst execution time are ignored and the arithmetic mean is used
for exT ime. CEP collects all measurements during query execution
and creates tables and corresponding diagrams.
Computer and Software Environment. The graph cover evalua-
tion platform CEP is executed on a VM with 4 cores and 8 GB RAM.
Koral is executed on 21 VMs. The master has 4 cores and 64 GB
RAM and the 20 slaves have 1 core and 2 GB RAM each. Since the
CEP and the Koral master VM need to store the complete dataset,
they have a 1 TB hard disk. The slaves have 300 GB hard disks.
The physical computers on which the VMs run are connected via a 1
Gigabit Ethernet network.

The operating system of each VM is a 64 bit Ubuntu 14.04.4 with
the Linux kernel 3.13.0-96. The Oracle JDK 1.8.0 101 is used to
execute CEP in version 0.0.1 and Koral in version 0.0.1. In order to
create the minimal edge-cut cover, METIS 5.1.0.dfsg-2 is used.

4.2 Results
As the possible configurations of independent variables (configu-
ration settings) and dependent variables (evaluation measures) is
staggering, we focus analysis results by (i) depicting overall query
performance under a larger variation of independent variables, and
(ii) showing indicators for vertical parallelization and horizontal con-
tainment based on few selected independent variables. An extensive
evaluation and guide through our large set of experiments is to be
found in the long version of this paper [16].

In order to improve the comprehensibility of the diagrams we
name the queries based on their characteristics. For instance, the
query so #tp=8 #ds=3 sel=0.01 describes a query containing
8 subject-object joined triple patterns matching triples from 3 data
sources and the sum of the selectivities of all triple patterns is 0.01.

4.2.1 Measuring Overall Query Performance under Vary-
ing Independent Variables.
When measuring the overall query performance we could observe
similarly to [28] that the bushy query execution strategy requires
less execution time for all graph covers for almost all queries. Due
to the space limitations, we present only results of the bushy query
execution in the following. The more comprehensive analysis of the
different query execution strategies can be found in [16].
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Figure 1: exTime of all queries using bushy query execution
relative to the hash cover.
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Figure 1 shows the execution times exT ime of the queries for all
graph covers. In most cases, the minimal edge-cut cover causes the
longest query execution times. When comparing the hash cover with
the hierarchical hash cover, none of them is faster in general.
Susceptibility to Query Size and Shape. Our measurements indi-
cate that queries with only two triple patterns are executed faster
than queries with 8 triple patterns in most cases. This effect affects
the hash-based graph covers more than the minimal edge-cut cover.
When focussing on the query shape, star-shaped queries tend to
be faster than path-shaped queries. This can be explained by the
unnecessity of data transfer as described in the following section.
In two cases the minimal edge-cut cover is significantly slower for
star-shaped queries. In both cases the low workload entropy W
(see Fig. 3) indicates an unbalanced distribution of the workload as
possible cause. When we examined the execution behaviour of this
query in more detail, we observed that a few graph chunks of the
minimal edge-cut cover contains most triples required to produce
query results whereas the other graph chunks produce only very few
results. This leads to the longer execution time.
Susceptibility to Number of Sources. Based on our evaluation
the number of data sources does not seem to have an effect on the
execution time. The only observation that can be made is that the
hierarchical hash cover is faster than the hash cover for most queries
using data from several data sources. See [16] for more details.

4.2.2 Measuring Dependent Variables.

Horizontal Containment. All examined graph cover strategies
assign triples with the same subject to the same chunk. Therefore,
all triples required to produce one result of a star-shaped query are
located in the same graph chunk. Since our query execution strategy
performs the required joins on the slave storing the original triples,
no data transfer could be observed. Thus, all graph cover strategies
result in a perfect horizontal containment for star-shaped queries.

In our evaluation, the data transfer T increases for all graph cover
strategies, if the number of triple patterns included in the path-shaped
query increases. Thus, the likelihood to leave a graph chunk during
query processing increases for all graph cover strategies, when the
length of the queried path increases. Nevertheless, the minimal
edge-cut cover produces the least data transfer for all path-shaped
queries. Except for query so #tp=2 #ds=1 sel=0.001, the data
transfer could be reduced by 18%-38% (see Fig. 2). Thus, it has the
best horizontal containment. The data transfer of the hash and the
hierarchical hash cover is nearly the same for all queries.
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Figure 2: Data transfer T of the bushy query execution relative
to the hash cover.
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Figure 3: Workload entropy W of the bushy query execution.
Vertical Parallelization. When analysing the workload entropy
W in Fig. 3, the minimal edge-cut cover has the most unbalanced
workload of all graph covers. This is caused by four small graph
chunks that have a much smaller workload than the other graph
chunks. Whereas, one huge graph chunk with 130k triples does not
produce a higher workload than the other graph chunks.
W of query ss #tp=8 #ds=3 sel=0.001 is for all graph cov-

ers low, since the query uses some triple patterns for which only a
few matching triples exist in the dataset. Thus only the slaves which
store these triples produce join comparisons. Especially in the case
of the hierarchical hash cover, joins were only computed on three
slaves whereas the minimal edge-cut cover spreads these instances
across 18 Koral slaves.

Combining the low workload entropy W with the low data trans-
fer T , we can observe that the minimal edge-cut graph cover only
allows a low vertical parallelization for all types of queries. The
vertical parallelization of both hash-based covers depends on the
type of query. Long path-shaped queries that combine triples from
several sources lead to a low vertical parallelization whereas short
path-shaped queries lead to a high vertical parallelization.

4.3 Discussion
In our evaluation we have examined the impact of two hash-based
graph covers, which assign triples to graph chunks based on the
hash of the complete IRI or only an IRI prefix, and the minimal
edge-cut cover, which assigns triples to chunks based on structural
information of the graph. The latter strategy takes more effort to
be prepared but due to the reduced number of cut edges, one might
expect that queries can be processed locally with less data transfer.

Commonly, papers like [21, 26, 29] make the assumption that a
graph cover strategy with minimal data transfer implies low query
execution time. However, our results suggest that while minimal
edge-cut reduces data transfer by 18% to 38% in comparison to hash-
based strategies (see Fig. 2), due to a more unbalanced workload (see
Fig. 3), the query execution time of minimal edge-cut is effectively
slower (see Fig. 1).

Our investigation suggests that in our setting the minimal edge-
cut cover does not perform better over all (see Fig. 1). Nevertheless,
the minimal edge-cut cover might still be a good choice in setting
in which locality is important, e. g. in heterogeneous networks with
unreliable compute nodes. Since both hash-based covers perform
similarly, the simpler hash cover implementation might be preferred,
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if other functionality such as prefix matching does not benefit from
the hierarchical hash cover.

5 RELATED WORK
In the literature, papers like [6], [15], [20] and [31] have compared
the effect of the minimal edge-cut cover strategy with hash-based
cover strategies. They reported that the minimal edge-cut cover
produces the least query execution time since it reduces the amount
of transferred intermediate results. But they have neglected that
using Apache Hadoop [2] or its distributed file system to join partial
results from different compute nodes punishes data transfer by the
potentially huge overhead of possibly several Hadoop jobs (see [17]).
The results of our experiments indicate that in a system without this
overhead, the workload balance may have a higher impact on the
overall query performance than the data transfer.

Also [26] concluded that the minimal edge-cut cover outperforms
hash-based graph covers. Since their query execution mechanism
was not implemented at that time, their study was limited to investi-
gating to which extent certain covers produce complete or interme-
diate query results. These numbers can be seen as an estimation of
the expected data transfer but they do not reflect whether a minimal
edge-cut cover will lead to a better overall query performance.

To the best of our knowledge, the findings in [30] are the closest
to ours. They compare the system presented in [15], which uses
a minimal edge-cut cover strategy, with Microsoft’s Trinity.RDF,
which uses a hash cover strategy. It indicates that local queries can
be executed faster using the minimal edge-cut cover but if interme-
diate results need to be transferred between chunks the hash cover
executes the queries faster. The two compared systems work funda-
mentally differently: [15] uses centralized RDF stores for the local
query processing and Apache Hadoop for the join of partial results
from different graph chunks, whereas Trinity.RDF is realized with
a single distributed in-memory column store. Thus, it is not clear
whether their observations are caused by the different graph cover
strategies. We could confirm that the hash cover leads to a shorter
query execution time, if intermediate results have to be transferred.
But the queries are also executed faster, if only local data is used.

6 CONCLUSION
We have presented a comprehensive methodology and its imple-
mentation for analysing the impact of graph cover strategies on the
performance of distributed RDF stores in the cloud. Our systemati-
cally varied, broad set of experiments has revealed that contrary to
common assumption the minimal edge-cut cover may have a worse
overall query execution performance than hash-based data placement
strategies. With the provided set of varying metrics, we found out
that balancing the query workload across all compute nodes may
be more important for a fast query execution than the amount of
network traffic. These results let us expect that data placement strate-
gies like Partout [8], WARP [14], COSI [5] or [4] that aim to balance
future workload by balancing the workload of historic queries will
produce better query performances than data placement strategies
distributing data based only on the graph structure or hashes. The
evaluation of this conjecture will be done in the future. Part of our
contribution are the tools CEP and Koral which are open source
available on the Web for further investigation of distributed RDF
data management challenges.
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