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Abstract

We propose a general scheme for adding probabilistic reason-
ing capabilities to any knowledge representation formalism
and we study its properties. Syntactically, we consider adding
probabilities to the formulas of a given base logic. Semanti-
cally, we define a probability distribution over the subsets of
a knowledge base by taking the probabilities of the formu-
las into account accordingly. This gives rise to a probabilis-
tic entailment relation that can be used for uncertain reason-
ing. Our approach is a generalisation of many concrete proba-
bilistic enrichments of existing approaches, such as ProbLog
(Probabilistic Prolog) and the constellation approach to ab-
stract argumentation. We analyse general properties of our
approach and provide some insights into novel instantiations
that have not been investigated yet.

1 Introduction
The ability to reason under uncertainty is a core requirement
for most intelligent systems and many approaches for un-
certain reasoning have been proposed in the area of knowl-
edge representation and reasoning (KR) and artificial intel-
ligence (AI) in general, see e. g. (Pearl 1988; Paris 1994;
Brachman and Levesque 2004) for some textbooks on that
topic. In general, we can distinguish between qualitative un-
certain reasoning and quantitative uncertain reasoning. The
former encompasses approaches such as default logic (Re-
iter 1980), answer set programming (Gelfond and Lifschitz
1991; Gebser et al. 2012), or abstract argumentation (Dung
1995). The latter makes use of formalisms such as prob-
ability theory (Pearl 1988; Paris 1994), fuzzy logic (Hájek
1998), or Dempster-Shafer theory (Shafer 1976). A com-
mon approach to define a new quantitative model for uncer-
tain reasoning is to take some non-quantitative approach—
which may either be a qualitative model as mentioned be-
fore or something completely different such as propositional
logic—add quantities to the syntax and define a new quan-
titative semantics on top of that. This approach is followed
by e. g. probabilistic logics (Nilsson 1986; Halpern 1990);
distribution semantics for logic programming (Sato 1995),
then implemented notably in ProbLog (Raedt et al. 2007);
P-log (Baral et al. 2004); probabilistic approaches to for-
mal argumentation (Li et al. 2011; Hunter 2012; 2014;
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Rienstra 2012; Polberg and Doder 2014), any many more.
In this paper we aim at unifying many of the aforemen-

tioned approaches and defining a general methodology for
reasoning with quantitative uncertainty. This allows for a
general study of its properties while abstracting away from
any specific instantiation. We focus on probability theory
as a means for quantitative uncertain reasoning but a sim-
ilar methodology can be defined by building on other for-
malisms such as fuzzy logic or Dempster-Shafer theory. We
start by considering an arbitrary base logic and define its
probabilistic augmentation by extending the syntax to allow
for annotated probabilities on each formula. Therefore, a
knowledge base of probabilistic augmentation consists of a
set of formulas, each annotated with a probability. We de-
fine a general probabilistic semantics on top of the built-in
semantics of the base logic by (1) considering each subset
of the knowledge base, (2) performing ordinary inference
within the subset, and (3) accumulating the inferences by
taking the probabilities into account. This gives us a gen-
eral methodology for defining probabilistic versions of ex-
isting knowledge representation formalisms, and is inspired
by many concrete realisations such as the distribution se-
mantics for logic programming (Sato 1995) and probabilis-
tic data bases (Suciu et al. 2011), cf. Section 6.

In order to illustrate our general methodology we provide
instantiations of it using propositional logic, logic program-
ming, and abstract argumentation. For those formalisms
we provide the necessary preliminaries in Section 2. Af-
terwards, we present the contributions of this paper, namely:

1. We define the syntax and semantics of the probabilistic
augmentation of a general knowledge representation for-
malism as a probabilistic version of it, and show how our
general approach subsumes existing approaches to proba-
bilistic reasoning (Section 3).

2. We provide an extensive analysis of our approach in terms
of robustness of reasoning results (Section 4).

3. We discuss novel instantiations of our approach that have
not been investigated yet (Section 5).

Section 6 reviews related works and Section 7 concludes this
paper with a summary. A short version of this paper has been
published elsewhere (Cerutti and Thimm 2018).



2 Knowledge representation formalisms
We consider a very general definition for a logic. For a set
S let 2S denote its power set.
Definition 1. A logic L is a tuple L = (W,V, |=) where
W is the set of well-formed formulas, V is the set of “in-
ferrable” formulas, and |=⊆ 2W × V is an inference rela-
tion.

As we aim to model a wide range of logics we explicitly
distinguish between well-formed formulasW and formulas
that can be inferred in the formalism V . For example, note
that most approaches to logic programming (see Section 2.2)
have rules as well-formed formulas, but inference is usually
defined for ground atoms.

We write K |= φ (“K entails φ”) instead of (K, φ) ∈ |=
for K ⊆ W , φ ∈ V . K ⊆ W is |=-inconsistent if K |= φ for
all φ ∈ V; otherwise K is |=-consistent.

Let us give instantiations of propositional logic, logic pro-
gramming (Prolog and Answer Set Programming), and ab-
stract argumentation in this simple framework.

2.1 Propositional logic
For a set of propositional atoms At we define the proposi-
tional logic

LP (At) = (WP (At),VP (At), |=P )

as follows. LetWP (At) be the propositional language gen-
erated using At and the usual connectives ∧, ∨, ⇒, and ¬.
An interpretation ω is a function ω : At → {true, false}.
With slight abuse of notation we abbreviate (let φ, ψ ∈ WP

and Ψ ⊆ WP )

ω(ψ ∧ φ) = true iff ω(ψ) = true and ω(φ) = true
ω(ψ ∨ φ) = true iff ω(ψ) = true or ω(φ) = true
ω(ψ ⇒ φ) = true iff ω(ψ) = false or ω(φ) = true

ω(¬φ) = true iff ω(φ) = false
ω(Ψ) = true iff for all ψ ∈ Ψ, ω(ψ) = true

We define VP (At) = WP (At) and classical entailment |=P

via K |=P φ iff for all interpretations ω with ω(K) = true,
ω(φ) = true as well. With this notion, observe that K ⊆
WP (At) is |=P -inconsistent iff it is classically inconsistent.
Example 1. Let us consider the following example inspired
by (Potyka and Thimm 2014) representing a simple e-mail
spam filter. Let K be the knowledge base consisting of the
following formulas:

sc⇒ sp
ss⇒ sp
us⇒ sp ∨ jo
sc
ss

where sc means “suspicious content”, ss means “suspi-
cious subject”, sp means “spam”, us means “unknown
sender”, and jo means “job offer”. For example, the third
formula can then be read as “a mail from an unknown
sender is either spam or a job offer”. From K we can in-
fer sp (K |=P sp) and ss (K |=P ss).

2.2 Logic programming
We now consider logic programming (Kowalski 1988;
Bratko 2001; Gelfond and Lifschitz 1991; Gelfond and
Leone 2002; Gebser et al. 2012). Let Pred be a set of pred-
icate symbols, U a set of constant symbols, and V a set of
variables. For every predicate symbol p ∈ Pred we denote
by arity(p) its arity. An atom p(t1, . . . , tn) is a predicate
symbol p ∈ Pred with arity(p) = n and t1, . . . , tn ∈ U∪V .
A literal is either an atom p(t1, . . . , tn) or its classical nega-
tion ¬p(t1, . . . , tn). A rule r has the form

r : H ← A1, . . . , An,not Bn+1, . . . ,not Bm

with literals H,A1, . . . , An, Bn+1, . . . , Bm. The literal
H = head(r) is called head of the rule and body(r) =
{A1, . . . , An,not Bn+1, . . . ,not Bm} is called body
of the rule. We also differentiate between the positive
body body+(r) = {A1, . . . , An} and the negative body
body−(r) = {not Bn+1, . . . ,not Bm}.

A rule is safe if every variable appearing in it, also appears
in body+(r). A rule is normal if it does not contain classical
negation ¬. If m = n = 0 we write H instead of H ← and
call this rule a fact. A rule is ground if it does not contain
any variables. For a set P of rules we denote by ground(P )
its grounding, i. e., the set of all rules that can be obtained
by some rule in P by substituting all variables uniformly by
constants.

We consider two concrete logics as instances of logic
programming. First, we define1 Prolog (Kowalski 1988;
Bratko 2001) as the general logic

LProlog(Pred, U, V ) =

(WProlog(Pred, U, V ),VProlog(Pred, U, V ), |=Prolog)

where

• WProlog(Pred, U, V ) is the set of all safe and normal rules
as defined above and

• VProlog(Pred, U, V ) is the set of all ground atoms.

For a set P ⊆ WProlog(Pred, U, V ) (also called Prolog pro-
gram) the relation |=Prolog is inductively defined via:2

1. for all r ∈ P with body(r) = ∅, P |=Prolog head(r).

2. P |=Prolog H for H ←
A1, . . . , An,not Bn+1, . . . ,not Bm ∈ ground(P ),
if P |=Prolog A1, . . . , P |=Prolog An, P 6|=Prolog Bn+1,. . . ,
P 6|=Prolog Bm.

If there is an H for which P |=Prolog H cannot be decided
“with a finite derivation” (such as in P = {H ← not H.},
we define P |=Prolog φ for all φ ∈ WProlog(Pred, U, V ) (P
is |=Prolog-inconsistent).

Example 2 (Evolved from (Raedt et al. 2007, Example 1)).
Let us consider the following knowledge base represented as
a Prolog program P ⊆ WProlog(Pred, U, V ):

1We simplify the syntax for matters of presentation.
2Note that we define the operational semantics of Prolog in

an informal manner sufficient for this paper, for details please see
(Bratko 2001).



likes(X,Y )← friendof(X,Y )

likes(X,Y )← friendof(X,Z), likes(Z, Y )

friendof(john,mary)

friendof(mary, pedro)

Consistently with Prolog semantics, P |=Prolog
likes(john,mary), P |=Prolog likes(mary, pedro),
P |=Prolog likes(john, pedro).

Secondly, we consider answer set programming (Gelfond
and Lifschitz 1991; Gelfond and Leone 2002; Gebser et al.
2012) and define

LASP(Pred, U, V ) =

(WASP(Pred, U, V ),VASP(Pred, U, V ), |=ASP)

where
• WASP(Pred, U, V ) is the set of all safe rules and
• VASP(Pred, U, V ) is the set of all ground literals.
For a set P ⊆ WASP(Pred, U, V ) (also called answer set
program) and a set M of ground literals, the reduct PM is
defined via

PM = {head(r)← body+(r) | r ∈ ground(P ),

M ∩ body−(r) = ∅}
A set M of ground literals is called answer set if it is the
minimal (wrt. set inclusion) model of PM . Then P |=ASP H
for a ground literal H iff H ∈ M for all answer sets M .3 If
there are no answer sets in P , we define P |=ASP φ for all
φ ∈ VASP(Pred, U, V ) (P is |=ASP-inconsistent).
Example 3. Let us consider the following answer set pro-
gram K:

drill← alarm,not real
real← alarm,not drill
alarm

Remembering that the definition of |=ASP as a skeptical re-
lation, K |=ASP alarm only as there are the following two
answer sets: {alarm, real} and {alarm,drill}.

2.3 Abstract argumentation
We represent abstract argumentation frameworks (Dung
1995) as a logic as follows. Let A be a set of arguments
(abstract atomic entities) and define the language

WAAF(A) = A ∪ (A×A)

In other words,WAAF(A) is the set of all arguments and all
pairs of arguments. Each K ⊆ WAAF(A) defines a directed
graph GK = (VK, EK) via

VK = K ∩A
EK = K ∩ (VK × VK)

3Observe that we define |=ASP to be a skeptical inference rela-
tion, but using a credulous approach can be defined analogously by
requiring that H is contained in some answer set.

a b c

Figure 1: An argumentation framework

A set M ⊆ VK (also called extension) is conflict-free if
for all a,b ∈ M , (a,b) /∈ EK. An argument a ∈ A is
acceptable wrt. M ⊆ VK if for all (b, a) ∈ EK there is
c ∈ M with (c,b) ∈ EK. The extension M is admissible
if every a ∈ M is acceptable wrt. M . The four major se-
mantics of abstract argumentation frameworks are the com-
plete, grounded, preferred, and stable semantics defined as
follows. For M ⊆ VK we say that

1. M is a complete extension if it is admissible and and every
a ∈ A that is acceptable wrt. M belongs to M ;

2. M is the grounded (GR) extension if it is complete and
minimal wrt. set inclusion;

3. M is a preferred (PR) extension if it is complete and max-
imal wrt. set inclusion;

4. M is a stable (ST) extension if it is conflict-free and for
all a ∈ VK \M , there is b ∈M with (b, a) ∈ EK.

Note that the grounded extension M is uniquely determined
(Dung 1995). The set VAAF(A) is simply A.

Let σ ∈ {GR,PR,ST} be any of the above semantical no-
tions. We define the inference relation |=σ

AAF via K |=σ
AAF a

if for all σ-extensions M of GK, a ∈ M . Note that with
this definition, an abstract argumentation framework K is
|=σ

AAF-inconsistent iff there is no σ-extension (this can ac-
tually only happen for stable semantics). The above defini-
tions give us for any semantics σ a logic

LσAAF(A) = (WAAF(A),VAAF(A), |=σ
AAF).

Example 4. Consider the argumentation framework in Fig-
ure 1 formed of three arguments: a stating that tomorrow
will not rain; b stating that tomorrow will rain; and c stat-
ing that tomorrow we should have a barbecue. a and b are
mutually exclusive4, and b provides enough reasons for not
having a barbecue tomorrow.

This setting can be represented in LσAAF({a, b, c}) as the
knowledge base K via

K = {a, b, c,
(a, b), (b, a), (b, c)}

The grounded extension here is empty, and the following are
both preferred and stable extensions: {a, c}, and {b}. It is
therefore immediate to see that for any σ ∈ {GR,PR,ST},
the set of inferences using |=σ

AAF is empty.

3 A general probabilistic approach
Let L = (W,V, |=) be some logic, which will also be re-
ferred to as base logic in the following. We define its prob-
abilistic augmentation Z(L) = (Ŵ, V̂, |̂=) as follows.

4We consider the entire day as a single atomic unit of time.



The languages Ŵ and V̂ consist of the quantification of
formulas of L with probabilities:

Ŵ = {φ : p | φ ∈ W, p ∈ [0, 1]}
V̂ = {φ : p | φ ∈ V, p ∈ [0, 1]}

The semantics of Z(L) are defined in terms of probabilities
of subsets of a knowledge base K ⊆ Ŵ . For every K ⊆ Ŵ
define

K ↓ = {φ | φ : p ∈ K} ⊆ W

In other words, K ↓ is the flattened—i.e. without
probabilities—version of the knowledge base K. We define
now the general probability PK of subsets of a probabilistic
knowledge base K ⊆ Ŵ via

PK(K′) =
∏

φ : p∈K′

p
∏

φ : p∈K\K′

(1− p)

for all K′ ⊆ K. Observe that PK is indeed a probability
distribution over subsets of K.
Theorem 1. For every K ⊆ Ŵ ,

∑
K′⊆K PK(K′) = 1.

Proof. We prove the statement through induction by |K| =
n.

• n = 1. Assume K = {φ : p} and consider

∑
K′⊆K

PK(K′) =
∑
K′⊆K

 ∏
φ : p∈K′

p
∏

φ : p∈K\K′

(1− p)


=

 ∏
φ : p∈∅

p
∏

φ : p∈K

(1− p)


+

 ∏
φ : p∈K

p
∏

φ : p∈∅

(1− p)


= (1− p) + p = 1

• n → n + 1. Assume K = K̃ ∪ {ψ} with ψ = φ : p,
|K̃| = n and consider∑
K′⊆K

PK(K′) =
∑

K′⊆K,ψ∈K′

PK(K′) +
∑

K′⊆K,ψ/∈K′

PK(K′)

=
∑
K′⊆K̃

pPK̃(K′) +
∑
K′⊆K̃

(1− p)PK̃(K′)

= p
∑
K′⊆K̃

PK̃(K′)

︸ ︷︷ ︸
=1

+(1− p)
∑
K′⊆K̃

PK̃(K′)

︸ ︷︷ ︸
=1

= p+ (1− p) = 1

Based on the general probability PK we can define the
degree of belief of any formula φ ∈ V wrt. K via

ΠK(φ) =
∑

K′⊆K,K′↓|=φ

PK(K′)

In other words, a probabilistic knowledge base K ⊆ Ŵ de-
fines a probability distribution over all subsets of K. For
each subset K′ ⊆ K, we consider its flattened version K′ ↓
and decide using the base logic L, whether K′ ↓ infers φ.
We sum up the probabilities of all subsets where this is the
case in order to obtain the degree of belief of φwrt. the prob-
abilistic knowledge base K.

Based on ΠK we define probabilistic inference |̂= via

K |̂= φ : p if ΠK(φ) = p

for all K ⊆ Ŵ .
Before we continue with some concrete examples of prob-

abilistic augmentations, we make some first general analy-
sis. Note that we defined ΠK as a degree of belief and not
as a probability. This is sensible as we did not require our
base logic to possess some form of negation. However, for
any reasonable definition of probability, we need some form
of complement operator.

Definition 2. Let L = (W,V, |=) be a logic.

1. We say that L has a weak negation operator− if, for every
|=-consistent K ⊆ W and φ ∈ V such that −φ ∈ V as
well, it is not the case that both K |= φ and K |= −φ.

2. We say that L has a strict negation operator− if, for every
|=-consistent K ⊆ W and φ ∈ V such that −φ ∈ V as
well, either K |= φ or K |= −φ (but not both).

3. We say that L has a universal negation− if, for all φ ∈ V ,
−φ ∈ V .

Every strict negation is also weak and a logic may possess
multiple types of negations.

Example 5. We revisit our example logics from Section 2.

1. A propositional logic LP (At) = (WP (At),VP (At), |=P )
(under classical semantics) has a weak negation ¬ as it
can be the case that K 6|=P φ and K 6|=P ¬φ for some
formula φ. Furthermore, ¬ is a universal negation.

2. Prolog’s negation not is trivially strict (and weak) as for
every φ ∈ VProlog(Pred, U, V ) it is not the case that
not φ ∈ VProlog(Pred, U, V ) (negation-as-failure is only
used in rule bodies). It is obviously not universal.

3. Answer set programming has two negations ¬ and not.
The former is weak and universal, the latter is (trivially)
strict and not universal.

4. Abstract argumentation has no negation operator.

Having a certain type of negation constrains the degrees
of belief in complementary statements as follows.

Theorem 2. Let L be a logic with a negation operator −.

1. If − is strict then ΠK(φ) + ΠK(−φ) = 1 for every |=-
consistent K ⊆ Ŵ and φ ∈ V such that −φ ∈ V as well.

2. If − is weak then ΠK(φ) + ΠK(−φ) ≤ 1 for every |=-
consistent K ⊆ Ŵ and φ ∈ V such that −φ ∈ V as well.



Proof. Let us consider 1.

ΠK(φ) + ΠK(−φ) =

=
∑

K′⊆K,K′↓|=φ

PK(K′) +
∑

K′⊆K,K′↓|=−φ

PK(K′) =

(since − is strict)

=
∑
K′⊆K

PK(K′) = 1 (from Thm. 1)

Let us consider 2.

1 =

=
∑
K′⊆K

PK(K′) (from Thm. 1)

=
∑

K′⊆K,K′↓|=φ

PK(K′) +
∑

K′⊆K,K′↓|=−φ

PK(K′)+

+
∑

K′⊆K,K′↓6|=φ∨−φ

PK(K′) =

=ΠK(φ) + ΠK(−φ) +
∑

K′⊆K,K′↓6|=φ∨−φ

PK(K′)

hence ΠK(φ) + ΠK(−φ) ≤ 1.

Among others, our approach generalises ProbLog and the
constellation approach to abstract argumentation.

3.1 ProbLog
ProbLog (Raedt et al. 2007) (Probabilistic Prolog) is a
probabilistic logic programming language building on Pro-
log and Sato’s distribution semantics (Sato 1995), in which
facts can be annotated with the probability that they hold.
Although ProbLog is not the only implementation of distri-
bution semantics, e. g. (Fuhr 2000; Dalvi and Suciu 2007),
for the purpose of this paper we will focus on it as an exam-
ple.

In our general framework it can be easily defined as fol-
lows.

Definition 3. Let Pred be a set of predicate symbols, U a
set of constant symbols, and V a set of variables. The logic
Z(LProlog(Pred, U, V )) is called ProbLog.5

Let us redefine the Prolog program introduced in Example
2 as a knowledge base and its probabilistic augmentation.

5As discussed in https://dtai.cs.kuleuven.be/
problog/tutorial/advanced/04_prolog.html (on
7 May 2018), in the ProbLog implementation available at
https://dtai.cs.kuleuven.be/problog/index.
html#download (on 7 May 2018)—and differently from other
Prolog implementations—each grounding of a query will occur
only once as a result, even if their are multiple proofs. Moreover,
the Prolog engine of ProbLog supports cyclic programs. We will
not discuss further those aspects as they are just implementation
details.

Example 6 (Evolved from (Raedt et al. 2007, Ex-
ample 1)). Let us extend Example 2 with proba-
bilities, and let K ⊆ Z(LProlog(Pred, U, V )) =
Z((WProlog(Pred, U, V ),VProlog(Pred, U, V ), |=Prolog)) be
the knowledge base consisting of the following formulas:

likes(X,Y )← friendof(X,Y ) : 1.0

likes(X,Y )← friendof(X,Z), likes(Z, Y ) : 0.8

friendof(john,mary) : 0.5

friendof(mary, pedro) : 0.5

Consistently with ProbLog semantics,6

K ̂|=Prolog likes(john, pedro) : 0.2. Indeed, the two
K′ ⊆ K such that K′ ↓ |=Prolog likes(john, pedro) are
(we abbreviate all predicate and atoms by their first letter):

K′1 =


l(j, p)← f(j,m), l(m, p) : 0.8

f(j,m) : 0.5
l(m, p)← f(m, p) : 1.0

f(m, p) : 0.5


and K′2 = K′1 ∪ {l(j,m)← f(j,m) : 1.0}.

3.2 The constellation approach to abstract
argumentation

The constellation approach to abstract argumentation (Li et
al. 2011; Hunter 2012; 2014) is an extension of abstract
argumentation that adds probabilities to arguments and at-
tacks. In our general framework it can be defined as follows.
Definition 4. Let σ be some semantics for abstract argu-
mentation. The logic Z(LσAAF) is called the logic of proba-
bilistic argumentation frameworks.

Note that the above definition captures the original defi-
nition of (Li et al. 2011) where probabilities of arguments
are independent of each other and the probabilities of attacks
are independent given that both arguments of an attack are
present.
Example 7. Consider the probabilistic argumentation
framework in Figure 2 that extends Example 4. Informally,
this representation means that argument a is “present” with
probability 0.9, argument b is “present” with probability 0.6
and the attack (a, b) is “present” with conditional probabil-
ity 0.3, given that both a and b are present. This setting can
be represented in Z(LσAAF)({a, b, c}) as the knowledge base
K consisting of the formulas

a : 0.9

b : 0.6

c : 0.8

(a, b) : 0.3

(b, a) : 0.6

(b, c) : 0.7

The way we defined the induced graph GK (see Section 2.3)
6https://dtai.cs.kuleuven.be/

problog/editor.html#task=prob&hash=
1cee65d0c7262ad6ba48092942c46088 (on 7 May
2018)



a

0.9

b

0.6

c

0.80.3

0.6

0.7

Figure 2: A probabilistic argumentation framework

ensures that probabilities of attacks are indeed interpreted
as conditional probabilities (note that an attack is only
present in the induced graph if both incident arguments are
present).

4 Analysis
In the following, we analyse our general approach to prob-
abilistic reasoning and investigate its properties. Note that
for this investigation we assume any arbitrary base logic
L = (W,V, |=), so our results are valid for a wide range
of concrete knowledge representation formalisms.

Our first observation is that a probabilistic augmentation
trivialises to the base logic if only certain probability values
are used. More formally, we define the trivial lifting of K ⊆
W to Z(L) = (Ŵ, V̂, |̂=) as the knowledge base Kt = {φ :
1 | φ ∈ K}.
Theorem 3 (Trivialisation). Let L = (W,V, |=) be some
logic and K ⊆ W . Then K |= φ iff Kt |̂=φ : 1.

Proof. Kt is the only subset of Kt that has positive proba-
bility wrt. PKt and in fact PKt(Kt) = 1. As Kt ↓ = K the
claim follows by definition.

The above result shows that a probabilistic augmentation
faithfully extends its base logic.

Our next result pertains to robustness of inference wrt.
changes of probabilities. For example, if φ : 0.7 is an infer-
ence from a knowledge base K ∪ {ψ : 0.4} then we expect
that K ∪ {ψ : 0.4001}|̂=φ : x with x being “close” to 0.7.
In fact, probabilistic reasoning is continuous in this aspect.

Theorem 4 (Continuity). Let Z(L) = (Ŵ, V̂, |̂=) be some
probabilistic augmentation and let K ⊆ Ŵ be some knowl-
edge base, φ, ψ ∈ V some formulas. Let p1, p2, . . . be a se-
quence with pi ∈ [0, 1] for all i ∈ N such that limi→∞ pi =
p. Then

lim
i→∞

(
ΠK∪{φ:pi}(ψ)

)
= ΠK∪{φ:p}(ψ)

Proof. We have

lim
i→∞

(
ΠK∪{φ:pi}(ψ)

)
= lim

i→∞

(
piΠK∪{φ:1}(ψ) + (1− pi)ΠK(ψ)

)
=
(

lim
i→∞

piΠK∪{φ:1}(ψ) + lim
i→∞

(1− pi)ΠK(ψ)
)

=
(
pΠK∪{φ:1}(ψ) + (1− p)ΠK(ψ)

)
= ΠK∪{φ:p}(ψ)

We continue with another notion of robustness pertaining
to addition of irrelevant knowledge. For that we need some
further notation.
Definition 5. The signature Σ(L) of a logic L = (W,V, |=)
is the set of all vocabulary elements appearing in formulas
ofW .

The above definition is a bit informal, but here are con-
crete examples for the logics under consideration:
• The signature of a propositional logic LP (At) =

(WP (At),VP (At), |=P ) is the set of atoms:
Σ(LP (At)) = At.

• The signature of Prolog LProlog(Pred, U, V ) =
(WProlog(Pred, U, V ),VProlog(Pred, U, V ), |=Prolog)
is the union of predicates and variables:
Σ(LProlog(Pred, U, V )) = Pred ∪ U (similar for
LASP).

• The signature of abstract argumentationWAAF(A) = A∪
(A×A) is the set of arguments: Σ(WAAF(A)) = A.

The signature Σ(K) of a knowledge baseK ⊆ W of an arbi-
trary logic L = (W,V, |=) is the set of vocabulary elements
appearing in the knowledge base only.

The next result shows that adding independent informa-
tion to a knowledge base does not change previous infer-
ences.
Theorem 5 (Independence). Let Z(L) = (Ŵ, V̂, |̂=) be
some probabilistic augmentation and let K1,K2 ⊆ Ŵ be
knowledge bases with

1. Σ(K1) ∩ Σ(K2) = ∅ and
2. for every K′ ⊆ K2, K′ ↓ is |=-consistent.
Then for all formulas φ : p such that Σ({φ}) ∩ Σ(K2) = ∅,
K1 |̂=φ : p iff K1 ∪ K2 |̂=φ : p.

Proof (Sketch). LetK1 |̂=φ : p and note that for every subset
K′ ⊆ K2, K′ ↓ 6|= φ as K′ is |=-consistent and has a disjoint
signature from φ. The claim follows by induction on the
number of elements in K2. Consider any ψ : q ∈ K2 and

ΠK1∪{ψ:q}(φ) = qΠK1∪{ψ:1}(φ) + (1− q)ΠK1(φ)

Now ΠK1∪{ψ:1}(φ) = ΠK1(φ) as {ψ : 1} is consistent and
has a disjoint signature from K1. It follows

ΠK1∪{ψ:q}(φ) = qΠK1(φ) + (1− q)ΠK1(φ) = ΠK1(φ)

and inductively the claim.

Observe that it is not sufficient to only require that K2

is |=-consistent in item 2.) above: |= may be a non-
monotonic inference relation. Then it may be the case that
K2 is |=-consistent while there is a subset of K2 that is |=-
inconsistent. For example, under the answer set semantics
the logic program P = {a, a ← not a} is |=ASP-consistent
while its subset P ′ = {a← not a} is |=ASP-inconsistent

For our next results, we consider a certain (reasonable)
class of base logics, i. e., those where the inference relation
is reflexive. More formally, an inference relation |= is reflex-
ive if K |= φ for all φ ∈ K ∩ V . Reflexivity of the inference
relation of a base logic provides certain guarantees on the
degrees of belief of its probabilistic augmentation.



Theorem 6 (Reflexivity). Let Z(L) = (Ŵ,V, |̂=) be some
probabilistic augmentation and let K ⊆ Ŵ be some knowl-
edge base. If |= is reflexive then for every φ : p ∈ K with
φ ∈ V , ΠK(φ) ≥ p.

Proof. Observe that if K′ = K ∪ {φ : p} then ΠK′(φ) =
pΠK∪{φ:1}(φ) + (1 − p)ΠK(φ). As ΠK∪{φ:1}(φ) = 1 due
to the reflexivity of |=, we have ΠK′(φ) ≥ p.

Theorem 7 (Strengthening). Let Z(L) = (Ŵ,V, |̂=) be
some probabilistic augmentation and let K ⊆ Ŵ be some
knowledge base and φ ∈ V . If |= is reflexive then ΠK(φ) ≤
ΠK∪{φ:p}(φ) for every p > 0. If, in addition ΠK(φ) < 1
then ΠK(φ) < ΠK∪{φ:p}(φ).

Proof. For the first claim, observe

ΠK∪{φ:p}(φ) = pΠK∪{φ:1}(φ) + (1− p)ΠK(φ)

= pΠK∪{φ:1}(φ) + ΠK(φ)− pΠK(φ)

and ΠK∪{φ:1}(φ) = 1 as |= is reflexive. We get

ΠK∪{φ:p}(φ) = p+ ΠK(φ)− pΠK(φ)

= ΠK(φ) + p(1−ΠK(φ))︸ ︷︷ ︸
≥0

showing ΠK(φ) ≤ ΠK∪{φ:p}(φ) for every p > 0 and
ΠK(φ) < ΠK∪{φ:p}(φ) for ΠK(φ) < 1.

Let us close our analysis with some brief comments re-
garding to computational complexity and algorithms. In its
generality, computing the exact value p ∈ [0, 1] s. t.K|̂=φ : p
for some probabilistically augmented knowledge baseK and
formula φ is an intractable problem. A naı̈ve algorithm for
computing p would consider all subsets ofK, check whether
K ↓ entails φ w. r. t. the underlying entailment relation |=,
and then accumulate the probabilities of all these subsets.
Even if the problem K ↓ |= φ is decidable in polynomial
time, by considering all subsets of K, we need exponential
total time. However, there are ways to avoid this complexity.
For one, we can resort to approximating p instead of comput-
ing p exactly. In fact, the Monte-Carlo method has already
been shown to be successful for the special cases of ProbLog
(Raedt et al. 2009) and the constellation approach to abstract
argumentation (Li et al. 2011). Algorithm 1 shows a gen-
eral Monte-Carlo approach to approximate p in K|̂=φ : p.
Given some integer N ∈ N it samples N subsets of K w. r. t.
to their probability (lines 3–7) and checks whether φ is en-
tailed in that subset (line 8). It then accumulates positive
cases and returns the average value (lines 9–10). Assuming
that the random number generator in line 5 is truly random
(uniform distribution), then by the law of large numbers we
get the following general result.

Theorem 8. For K|̂=φ : p, limN→∞MC(K, φ,N) = p.
The main complexity of Algorithm 1 comes from the en-

tailment test in line 8, which has to be executed N times.
For some cases, approximation may not be necessary and

an efficient exact algorithm for computing p inK|̂=φ : p can

Algorithm 1 MC(K, φ,N): Approximating p in K|̂=φ : p
using the Monte-Carlo method
Input: knowledge base K, formula φ, N ∈ N
Output: p

1: psum = 0
2: for i = 1, . . . , N do
3: K′ ← ∅
4: for ψ : d ∈ K do
5: q ←random number in [0, 1)
6: if d > q then
7: K′ ← K′ ∪ {ψ}
8: if K′ |= φ then
9: psum← psum+ 1

10: return psum/N

be devised after all. For example, in (Fazzinga et al. 2013) it
is shown that computing p in K|̂=ST

AAFa : p—i. e., computing
the probability p of an argument a in the constellation ap-
proach to abstract argumentation w. r. t. stable semantics—
can be done in polynomial time. Investigating such cases in
our general setting is left for future work.

5 Novel probabilistic augmentations
In the following, we discuss two novel instantiations of our
framework.

5.1 The probabilistic augmentation of classical
propositional logic

Extending classical logic with probabilistic reasoning capa-
bilities has a long tradition in KR (Nilsson 1986; Halpern
1990). While, syntactically, the probabilistic augmentation
of propositional logicZ(LP (At)) is a classical Nilsson-style
probabilistic logic (Nilsson 1986), our semantics seems not
to have been investigated in this context as classical Nilsson-
style probabilistic logics usually define its probabilistic se-
mantics by considering probability functions on interpreta-
tions.

Let us consider an example that illustrates the probabilis-
tic augmentation of propositional logic.
Example 8. Let us extend Example 1 by considering now
the following knowledge base K:

sc⇒ sp : 0.6

ss⇒ sp : 0.6

us⇒ sp ∨ jo : 0.9

sc : 0.7

ss : 0.6

where sc means “suspicious content”, ss means “suspi-
cious subject”, sp means “spam”, us means “unknown
sender”, and jo means “job offer”. For example, now the
third formula can then be read as “a mail from an unknown
sender is either spam or a job offer with probability 0.9”.
Consider the subset K′ ⊆ K with

K′ = {sc⇒ sp : 0.6, sc : 0.7}



and verify PK(K′) = 0.00672 and K′ ↓ |=P sp. In fact, we
obtain

K|̂=P sp : 0.6288

We leave a deeper investigation of Z(LP (At)) for future
work.

5.2 The probabilistic augmentation of answer set
programming

To our knowledge, the only attempt to extend answer set
programming with probabilities is P-log (Baral et al. 2004),
a declarative language capable of reasoning which combines
both logical and probabilistic arguments. Instead, in this
section let us consider the probabilistic augmentation of an
answer set program Z(LASP(Pred, U, V ))—syntactically
analogous to ProbLog programs—and let us illustrate its se-
mantics by the means of an example.7

Example 9. Let us augment with probabilities the answer
set program introduced in Example 3:

drill← alarm,not real : 0.2

real← alarm,not drill : 0.9

alarm : 1

Hence, K |̂=ASP real : 0.72 as the only subset
K′ |=ASP real is K′ = {r← a,not d; a}.

We leave a deeper investigation of Z(LASP(Pred, U, V ))
for future work.

6 Related work
Our approach addresses a very general topic—namely the
combination of logic and probability—that has been ad-
dressed before in one way or the other by many researchers.
Halpern and colleagues (Halpern 1990; Fagin and Halpern
1994; Bacchus et al. 1996) combine classical first-order
logic with different probabilistic interpretations. Their fo-
cus is similar in spirit to classical Nilsson-style probabilistic
logic (Nilsson 1986) and they discuss probability distribu-
tions over the interpretations of the language, not over sub-
sets of knowledge bases as we do. In particular, they ad-
dress the challenge of considering first-order logic instead of
propositional logic and the computational issues raised by,
e. g., considerations of infinity. Furthermore, Wilson (1992)
pointed out the possibility to augment a logic with probabil-
ities in a general way. However, he discusses this idea in a
very abstract way without technical details.

Modern approaches for combining logic and probabil-
ity can be found within the field of statistical relational
AI (Raedt et al. 2016), which are general approaches
to deal with relational information (i. e., limited first-order
logic expressions) and probabilistic reasoning. For example,
Markov logic (Richardson and Domingos 2006) is an exten-
sion of first-order logic with weights on formulas. These

7Although no formal definitions or analysis are provided, at first
sight it appears that part of the approach discussed in (Dragiev et
al. 2016) is close in spirit to the probabilistic augmentation of an
answer set program we propose in this paper.

weights are used to obtain probabilities on formulas using a
log-linear probabilistic model over the interpretations. This
gives a robust knowledge representation formalism which is
apt to be used as the output for a variety of machine learning
tasks, see e. g. (Domingos and Lowd 2009).

All the approaches mentioned so far consider a differ-
ent, somewhat Bayesian point of view in the combination of
logic and probability than we do here. The above approaches
use probabilities over interpretations to obtain degrees of be-
lief in inferred information. In our work, we take a frequen-
tist approach and interpret probabilities over formulas s. t.
the probability of a formula corresponds to the frequency of
it actually occurring in the knowledge base. Both points of
view provide important insights into the general challenge
of combining logic and probability.

Specific instances of our general framework have been
developed and investigated before, some of them have al-
ready been discussed in Sections 3.1 and 3.2. One of those
first approaches is the distribution semantics for logic pro-
grams (Sato 1995), which is also the foundation for ProbLog
as discussed in Section 3.1. However, in the original pro-
posal (Sato 1995) only facts of logic programs were an-
notated with probabilities. Still, the general idea of con-
sidering all possible subsets of the set of facts and weigh-
ing the inferences by the probabilities of these subsets, can
be found there as well. The independent choice logic and
its predecessor probabilistic Horn abduction (Poole 1991;
1993; 2008) feature a similar setting where facts of logic
programs are treated as probabilistic hypotheses. Kohlas and
colleagues (Kohlas and Monney 1995; Kohlas et al. 1998;
Kohlas 2003) also consider combinations of logics with
probabilities using the subset-based interpretation. Their fo-
cus is on classical logics, though, and algorithmic issues for
reasoning. They do not consider conceptual questions and
general logic instantiations. Probabilistic data bases (Suciu
et al. 2011) are another instance of our general framework.
There, tuples of a relational data base instance can be anno-
tated with probabilities, which model the likelihood that the
tuple is actually present. Conceptually, this is a probabilistic
augmentation on a restricted first-order logic where proba-
bilities smaller than 1 are assigned to ground atoms. One
of the driving research challenges is probabilistic data bases
is, however, algorithmic reasoning mechanisms (Dalvi and
Suciu 2007).

The aim of this paper is to provide a general umbrella
that unifies these works from different areas. To the best of
our knowledge, no other work has considered the issue of
probabilistic augmentation in the generality proposed in this
paper.

7 Discussion and summary
In this paper we developed a general scheme for adding
probabilistic reasoning capabilities to any knowledge rep-
resentation formalism. Pivotal in our proposal is the notion
of probabilistic augmentation of a knowledge representation
formalism, which extends it by enabling probabilities to be
expressed on the logical formulas of the chosen formalism.
In addition to showing that it subsumes existing approaches,
we provided an extensive analysis which includes proofs of



desirable behaviours, such as trivialisation, continuity, inde-
pendence, reflexively, and strengthening. We also showed
how novel instantiations of our approach can be derived us-
ing propositional logic and answer set programming as ex-
amples.

Our logical setting is general enough to use a wide va-
riety of logics as a base logic. In addition to our examples,
the use of e. g. modal logics, default logics, epistemic logics,
temporal logics, paraconsistent logics, and others is straight-
forward as long as they can be cast into our general form
L = (W,V, |=). Furthermore, as a probabilistic augmenta-
tionZ(L) of a logic L is a logic itself it can probabilistically
augmented as well, yielding a doubly-probabilistically aug-
mented logic Z(Z(L)). While the practical use of the latter
may be disputable, it shows that we have a rich framework
with high expressivity.

As part of future work we plan to enhance the discussion
with respect to existing approaches. In particular, by ex-
tending the original logical formulation of abstract argumen-
tation frameworks LσAAF, we can also easily capture the set-
ting of (Hunter 2014) where probabilities may be dependent.
More precisely, we can define W∗AAF(A) to be the closure
of WAAF(A) under the binary connective ∧ and the unary
connective ¬. Then the probabilistic augmentation of the
corresponding logic contains formulas such as a ∧ b : 0.7
(meaning “both arguments a and b are collectively present
with probability 0.7”), which allows to specify probabilistic
dependencies as in (Hunter 2014).

The proposal by (Hung 2017) of considering the constel-
lation approach to argumentation to the case of extended ar-
gumentation frameworks—i.e. argumentation frameworks
that allow attacks to be the target of attacks themselves—
can be encompassed as another special case of our approach.
In addition, extending it to the case of other extended argu-
mentation frameworks will be the subject of future investi-
gation. Also the logics of (Polberg and Doder 2014) and
(Rienstra 2012) can be represented as probabilistic augmen-
tations of the their corresponding base logics Abstract Di-
alectical Frameworks (Brewka et al. 2013) and ASPIC+

(Modgil and Prakken 2014).
This paper lays the foundation for a general approach to

probabilistic reasoning that has the potential to create syn-
ergies between different fields interested in incorporating
probability into a specific framework. For example, fields
such as probabilistic data bases (see previous section) have
developed highly efficient procedures for reasoning prob-
lems and our framework allows for applying them to other
formalisms, such as the constellation approach to abstract
argumentation. The exploitation of our framework in these
matters is part of ongoing work.
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