
Algorithmic Approaches to Computational
Models of Argumentation

Matthias Thimm

Institute for Web Science and Technologies (WeST),
University of Koblenz-Landau, Germany

1 Introduction

Computational models of argumentation [1] are approaches for non-monotonic
reasoning that focus on the interplay between arguments and counterarguments
in order to reach conclusions. These approaches can be divided into either ab-
stract or structured approaches. The former encompass the classical abstract
argumentation frameworks following Dung [8] that model argumentation sce-
narios by directed graphs, where vertices represent arguments and directed links
represent attacks between arguments. In these graphs one is usually interested
in identifying extensions, i. e., sets of arguments that are mutually acceptable
and thus provide a coherent perspective on the outcome of the argumentation.
On the other hand, structured argumentation approaches consider arguments
to be collections of formulas and/or rules which entail some conclusion. The
most prominent structured approaches are ASPIC+ [16], ABA [22], DeLP [13],
and deductive argumentation [2]. These approaches consider a knowledge base
of formulas and/or rules as a starting point.

2 Algorithms for Abstract Argumentation

According to [6], algorithms for solving reasoning problems in abstract argumen-
tation can generally be categorised into two classes: reduction-based approaches
and direct approaches.

Reduction-based approaches such as ASPARTIX-D [10,12] and ArgSemSAT
[5] translate the given problem for abstract argumentation—such as determin-
ing a single stable extension—into another formalism and use dedicated (and
mature) systems for that formalism to solve the original problem. For exam-
ple, ASPARTIX encodes the problem of finding a stable extension in abstract
argumentation into the question of finding an answer set of an answer set pro-
gram [14]. Due to the direct relationship of answer sets and stable models the
answer set program only needs to model the semantics of the abstract argu-
mentation framework in a faithful manner and represent the actual framework.
ASPARTIX-D then makes use of the Potassco ASP solvers1 to solve the re-
duced problem and translate their output back to the original question. Similarly,
ArgSemSAT decodes the problem as a SAT instance and uses the Glucose2 SAT

1 http://potassco.sourceforge.net
2 http://www.labri.fr/perso/lsimon/glucose/



solver to solve the latter. Internally, solvers such as the Potassco ASP solvers and
SAT solvers make use of sophisticated search strategies such as conflict-driven
nogood learning or conflict-driven clause learning, see [14,3] for details.

Direct approaches to solve reasoning problems in abstract argumentation are
inspired by similar search strategies but directly realise these algorithms for ab-
stract argumentation. For example, solvers such as ArgTools [17] and heureka
[15] are based on the DPLL (Davis-Putnam-Logemann-Loveland) backtracking
algorithm from SAT solving [3, Chapter 3]. Basically, they exhaustively explore
the search space of all possible sets of arguments to determine, e. g., a sta-
ble extension but include various optimisations and specific search strategies to
prune the search space as much as possible to keep runtime low. Another direct
solver, EqArgSolver [18], uses a different approach though, and is inspired by an
iteration scheme originally designed to solve problems for probabilistic argumen-
tation [11]. For a more detailed discussion of the different approaches to solving
problems in abstract argumentation see [4].

Recently, approximate methods for reasoning problems in abstract argu-
mentation have been introduced as well [20]. The algorithms of [20] follow the
paradigm of stochastic local search, i. e., incomplete optimisation algorithms that
aim at reaching an optimal value of a target function by small random changes
of the parameters, see e. g. [3, Chapter 6] for a deeper discussion in the context
of solving the satisfiability problem (SAT). The core idea of these algorithms
is as follows. Considering the labelling approach to the semantics of abstract
argumentation frameworks, they start from a labelling that randomly assigns
the acceptability status in and out to all arguments of the input argumentation
framework. As long as this labelling is not stable—i. e. as long as the argu-
ments labelled in do not form a stable extension—one mislabelled argument is
selected and its acceptability status is flipped. Albeit being a simple idea it can
outperform traditional algorithms, in particular on random instances with little
structure.

3 Algorithms for Structured Argumentation

Queries are answered in structured argumentation approaches, e. g. in the case
of ASPIC+ [16], by determining all arguments constructible from the knowl-
edge base, identifying attacks between these arguments using e. g. contradictions
between conclusions of different arguments, and resolving the conflicts by rep-
resenting the constructed arguments and attacks as an abstract argumentation
framework and relying on reasoning methods for this abstract case. Computa-
tionally, reasoning with structured argumentation approaches can be quite de-
manding as both checking whether a set of formulas and/or rules is an argument
can be challenging and the number of arguments in a knowledge base may be
super-polynomial (and even infinite in some approaches). Some formal analyses
on this, in particular regarding the approach of ABA, can be found in [7,9]. Exist-
ing solvers for ASPIC+ that implement complete reasoning procedures are, e. g.,



TOAST [19] and EPR3. See [4] for a survey on sound and complete algorithms
and implementations for structured argumentation approaches.

A recent approach [21] to approximate reasoning with structured argumen-
tation is based on sampling of arguments, instead of constructing all possible
arguments. There, two parametrised algorithms are developed that solve the
general problem of checking whether a certain proposition is acceptable wrt.
a given knowledge base. Both algorithms rely on sampling arguments in order
to avoid enumerating all arguments of a knowledge base. The first algorithm
randI samples arguments independently by 1) selecting some rule from the
knowledge base to be the top rule of the argument, and 2) recursively selecting
rules where their conclusion appears in the body of a previously selected rule,
until a valid argument is found. This process is repeated for a fixed number of
arguments, yielding a set of arguments that is a subset of all possible arguments.
The second algorithm randD samples arguments directionally by 1) sampling
some argument that has the query as conclusion, and 2) recursively sampling
counterarguments of previously sampled arguments.

References

1. Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., Simari,
G.R., Thimm, M., Villata, S.: Toward artificial argumentation. AI Magazine 38(3),
25–36 (October 2017)

2. Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments:
a tutorial. Argument & Computation 5(1), 5–30 (2014)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementa-
tions for formal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M., van der
Torre, L. (eds.) Handbook of Formal Argumentation, chap. 15. College Publications
(February 2018), also appears in IfCoLog Journal of Logics and their Applications
4(8):2623–2706, October 2017

5. Cerutti, F., Giacomin, M., Vallati, M.: Argsemsat: Solving argumentation problems
using SAT. In: Computational Models of Argument - Proceedings of COMMA
2014, Atholl Palace Hotel, Scottish Highlands, UK, September 9-12, 2014. pp.
455–456 (2014)

6. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
solving reasoning problems in abstract argumentation - A survey. Artificial Intel-
ligence 220, 28–63 (2015)

7. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of
assumption-based argumentation for default reasoning. Artificial Intelligence
141(1), 57 – 78 (2002)

8. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial In-
telligence 77(2), 321–358 (1995)

9. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation and
their complexity. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.)

3 http://www.wietskevisser.nl/research/epr/



Handbook of Formal Argumentation, chap. 14. College Publications (February
2018)

10. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Technical Report DBAI-TR-2008-62, Technische Univer-
sität Wien (2008)

11. Gabbay, D., Rodrigues, O.: A self-correcting iteration schema for argumentation
networks. In: Proceedings of the Fifth International Conference on Computational
Models of Argumentation (COMMA’14) (2014)

12. Gaggl, S.A., Manthey, N.: Aspartix-d: Asp argumentation reasoning tool - dresden.
In: System Descriptions of the First International Competition on Computational
Models of Argumentation (ICCMA’15). ArXiv (2015)

13. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: Delp-servers, contex-
tual queries, and explanations for answers. Argument & Computation 5(1), 63–88
(2014)

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2012)

15. Geilen, N., Thimm, M.: Heureka - a general heuristic backtracking solver for ab-
stract argumentation. In: Proceedings of the 2017 International Workshop on The-
ory and Applications of Formal Argument (TAFA’17) (August 2017)

16. Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation:
A tutorial. Argument & Computation 5, 31–62 (2014)

17. Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms
for abstract argumentation. International Journal of Approximate Reasoning 78,
265–282 (2016)

18. Rodrigues, O.: A forward propagation algorithm for the computation of the seman-
tics of argumentation frameworks. In: Theory and Applications of Formal Argu-
mentation - 4th International Workshop, TAFA 2017, Melbourne, VIC, Australia,
August 19-20, 2017, Revised Selected Papers. pp. 120–136 (2017)

19. Snaith, M., Reed, C.: TOAST: online aspic+ implementation. In: Proceedings
of the Fourth International Conference on Computational Models of Argument
(COMMA 2012). pp. 509–510. IOS Press (2012)

20. Thimm, M.: Stochastic local search algorithms for abstract argumentation under
stable semantics. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Proceedings of
the Seventh International Conference on Computational Models of Argumentation
(COMMA’18). Frontiers in Artificial Intelligence and Applications, vol. 305, pp.
169–180. Warsaw, Poland (September 2018)

21. Thimm, M., Rienstra, T.: Approximate reasoning with aspic+ by argument sam-
pling (2019), under review

22. Toni, F.: A tutorial on assumption-based argumentation. Argument & Computa-
tion 5(1), 89–117 (2014)


