
Noname manuscript No.
(will be inserted by the editor)

Towards Understanding and Arguing with Classifiers: Recent Progress∗

Xiaoting Shao · Tjitze Rienstra · Matthias Thimm · Kristian Kersting

Received: date / Accepted: date

Abstract Machine learning and argumentation can poten-
tially greatly benefit from each other. Combining deep clas-
sifiers with knowledge expressed in the form of rules and
constraints allows one to leverage different forms of abstrac-
tions within argumentation mining. Argumentation for ma-
chine learning can yield argumentation-based learning meth-
ods where the machine and the user argue about the learned
model with the common goal of providing results of max-
imum utility to the user. Unfortunately, both directions are
currently rather challenging. For instance, combining deep
neural models with logic typically only yields determinis-
tic results, while combining probabilistic models with logic
often results in intractable inference. Therefore, we review
a novel deep but tractable model for conditional probabil-
ity distributions that can harness the expressive power of
universal function approximators such as neural networks
while still maintaining a wide range of tractable inference
routines. While this new model has shown appealing perfor-
mance in classification tasks, humans cannot easily under-
stand the reasons for its decision. Therefore, we also review
our recent efforts on how to “argue” with deep models. On
synthetic and real data we illustrate how “arguing” with a
deep model about its explanations can actually help to re-
vise the model, if it is right for the wrong reasons.

∗We only sketch and review our recent efforts. More details can be
found in the corresponding publications [37,33,9,31] and current sub-
missions to conferences and journals.

Xiaoting Shao
E-mail: xiaoting.shao@cs.tu-darmstadt.de

Tjitze Rienstra
E-mail: rienstra@uni-koblenz.de

Matthias Thimm
E-mail: thimm@uni-koblenz.de

Kristian Kersting
E-mail: kersting@cs.tu-darmstadt.de

Keywords Argumentation-based ML · Explainable AI ·
Interactive ML · Influence function · Deep Density
Estimation · Probabilistic Circuits

1 Introduction

Classification is the problem of categorizing new observa-
tions by using a classifier learnt from already categorized ex-
amples. In general, the area of machine learning has brought
forth a series of different approaches to deal with this prob-
lem, from decision trees over support vector machines to
deep neural networks. Recently, approaches to statistical re-
lational learning [6] even take the perspective of knowledge
representation and reasoning into account by developing mod-
els on more formal logical and statistical grounds. One can
even combine the latter with deep learning into a single sys-
tem. The resulting neural-symbolic systems such as Deep-
ProbLog [20] are capable of modeling knowledge and con-
straints with a logic formalism, while maintaining the com-
putational power of deep neural. One can even integrate prob-
abilistic circuits such as sum-product network [35], featur-
ing deep hierarchical models with tractable inference.

These developments impact both computational mod-
els of argumentation [3] and argumentation mining [19].
In computational argumentation, structured arguments have
been studied and formalized for decades using models that
can be expressed in a logic framework. At the same time, ar-
gumentation mining has rapidly evolved by exploiting state-
of-the-art neural architectures coming from deep learning.
However, these two worlds have progressed largely inde-
pendently of each other. Only recently, a few works have
taken some steps towards the integration of such methods,
by applying techniques combining sub-symbolic classifiers
with knowledge expressed in the form of rules and con-
straints to argumentation mining, see e.g. [10]. Moreover,

2 Xiaoting Shao et al.

argumentation-based machine learning employs computa-
tional models of argumentation for reasoning within ma-
chine learning itself [23,39,28]. For instance, Thimm and
Kersting [39] proposed a two-step classification approach.
In the first step, rule learning algorithms are used to extract
frequent patterns and rules from a given data set. The out-
put of this step comprises a huge number of rules (given
fairly low confidence and support parameters) and these can-
not directly be used for the purpose of classification as they
are usually inconsistent with one another. Therefore, in the
second step, they interpret these rules as the input for ap-
proaches to structured argumentation. This allows one to
obtain classifiers, which are by design able to explain their
decisions, and therefore address the recent need for Explain-
able AI: classifications are accompanied by a dialectical anal-
ysis showing why arguments for the conclusion are preferred
to counterarguments. Argumentation techniques in machine
learning also allows the easy integration of additional expert
knowledge in form of arguments.

While these results on combining machine learning and
argumentation are encouraging, there are still many chal-
lenges. Consider e.g. neural-symbolic systems. While deep
neural networks are highly expressive, they typically yield
only deterministic results. In contrast, (deep) density es-
timators can model uncertainty, but (marginal) inference
is in general intractable. Indeed, probabilistic circuits such
as sum-product networks (SPNs) [26] provide tractable in-
ference, but unfortunately, they are generally not univer-
sal function approximators [4]. Therefore, we recently pro-
posed conditional sum-product networks (CSPNs) [33] that
can harness the expressive power of universal function ap-
proximators such as neural networks, while still maintain-
ing a wide range of probabilistic inference routines. Empir-
ically, CSPNs achieve appealing performance in classifica-
tion tasks.

Moreover, the high predictive performance of highly ex-
pressive deep classifiers raises the question whether we can
actually trust them by only looking at the accuracy. Just be-
cause a machine learning model is highly accurate does not
mean it represents the right mapping. Consider the recent
study due to Lapuschkin et al. on what machine learning
models really learn [16]. This study observed that a deep
neural network trained on the PASCAL VOC 2007 data set
[8] focuses actually on source tags, which incidentally corre-
late with the labels, for prediction. This ”Clever Hans”-like
moments [32] happens when the model has learnt spurious
artifacts, also known as confounding factors. Especially in
real-world domains that are typically high dimensional, col-
lecting ”enough“ data is often very expensive or even im-
possible. In this case the data is prone to spurious artifacts,
which could be accidentally learnt by the models [2]. When
the model’s underlying behavior is systematically wrong, it
may not generalize well to unseen data. Systematic wrong

behavior can be hard to spot and do real harm. For instance,
Obermeyer et al. [25] revealed that a widely-used commer-
cial model for predicting medical needs exhibits significant
racial bias where black patients are considerably sicker than
white patients, at a given risk score. This is attributed to the
fact that the model uses medical expenses to predict medi-
cal needs, however, black people have less access to med-
ical care, which means fewer medical expenses are given
to them compared to white people. This racial bias in the
model could pose a real danger to black patients. While us-
ing Explainable AI or making even deep learning explain-
able by design, for instance using argumentation-based ma-
chine learning, may help to discover the bias, the true goal
is to eliminate bias. To this end, we add the expert into the
training loop such that she starts to argue with the model by
providing feedback on its arguments for classification, i.e.,
explanations.

In the following we will briefly inform about our
work conducted towards understanding and “arguing” with
classifiers within the ”Argumentative Machine Learning”
(CAML) project as part of the SPP “RATIO”. Generally,
CAML aims for a general argumentation framework. To-
wards this end, we extend e.g. rule mining algorithms to
extract rules from statistical models, and we consider in-
teractive explanations in machine learning as a new form
of argumentation. We proceed as follows. First, we review
the definition and learning algorithm for conditional sum-
product networks in Section 2 along with some empirical
evaluations. Then we review our work on interactively cor-
recting differentiable classification models in Section 3, and
we show the effectiveness of our method empirically.

2 A novel tractable deep probabilistic classifier

Argumentation Mining aims at identifying and interpreting
argument components out of input text [19]. For example,
if we take a basic claim-premise argument model, possi-
ble tasks could be claim detection [1,18], evidence detec-
tion [27], and the prediction of links between claim and ev-
idence [24,11]. One way to exploit domain knowledge in
argumentation mining is to apply a set of hand-engineered
rules on the output of some first stage classifier (such as a
neural network). NeSy or SRL approaches can impose those
rules as constraints during training to ensure that solutions
are consistent with those rules. Therefore, if a neural net-
work is trained to classify argument components, and an-
other one is trained to detect links between them, additional
global constraints can be enforced to adjust the weights of
the networks toward admissible solutions. We refer to [10]
for implementation examples with DeepProbLog and with
GS-MLNs. Sum-Product Logic [35] even features deep hi-
erarchical models with tractable inference within neural-
symbolic AI.

Towards Understanding and Arguing with Classifiers: Recent Progress∗ 3

+|��1

×

+

SPN

�1

|��3

�4

|��2

�3�2

×

××

|��2

�5

|��3

�6

|��2

�7

|��3

�8

� �

NN

�

|��1

Fig. 1 Overview of the architecture (left) and a concrete CSPN exam-
ple encoding P (Y |X) (right). X is the set of conditional variables
and Y consists of three RVs Y1, Y2 and Y3. Each color of the arrow
represents one data flow. Here, the gating weights, possibly also leaf
nodes, are parameterized by the output of neural networks given X.
Taken from [33].

However, as argued above, we may want to put some
(conditional) structure into neural-symbolic approaches,
which may also be improved iteratively as we show later.
To this end, we develop conditional sum-product networks
(CSPNs), which is a conditional variant of sum-product
networks (SPNs). We formally defined CSPNs, provided a
learning framework for them, and provided arguments for
why CSPNs are more compact than SPNs.

Definition of Conditional SPNs (CSPNs). Specifically,
a CSPN as a rooted DAG containing three types of nodes,
namely leaf, gating, and product nodes, encoding a condi-
tional probability distribution P (Y |X). See Fig. 1 for an
illustrative example of a CSPN. Each leaf encodes a normal-
ized univariate conditional distribution P (Y |X) over a tar-
get random variable (RV) Y ∈ Y, where Y is denoted as the
leaf’s conditional scope. One can also realize neural CSPNs,
which rely on random SPN structures parameterized by the
output of deep neural networks. While this approach does
not have the benefit of carefully learned structures, it gains
expressiveness through increased model size. See Fig. 1 for
this architecture illustration.

(Structure) Learning CSPNs. To learn CSPNs, we pro-
posed a LearnCSPN routine that builds a CSPN top-down
by introducing nodes while partitioning a data matrix whose
rows represent samples and columns RVs in a recursive and
greedy manner. LearnCSPN creates one of the three node
types at each step: (1) a leaf, (2) a product, or (3) a gating
node. If only one target RV Y is present, one conditional
probability distribution can be fit as a leaf. To generate prod-
uct nodes, conditional independencies are found by means
of a statistical test to partition the set of target RVs Y. If no
such partitioning is found, then training samples are parti-
tioned into clusters (conditioning) to induce a gating node.

Specifically, we use Generalized Linear Models (GLMs)
[21] in the leaves to model univariate distribution but
note that any univariate tractable conditional model can
be plugged into a CSPN effortlessly in order to model
P (Y |X). That is, we compute P (y |� = (X)) by regress-
ing univariate parameters � from features X, for a given set
of distributions in the exponential family. For product nodes,
we are interested in decomposing the labels Y into subsets
that are independent given X. Since we aim to accommodate
arbitrary leaf conditional distributions in CSPNs, regardless
of their parametric likelihood models or data types (i.e. dis-
crete or continuous), we adopt a non-parametric pairwise
conditional independence (CI) test procedure to decompose
labels Y. Specifically, we employ randomized conditional
correlation test (RCoT). We refer to [36] for further details.
After we get the pairwise conditional independence on Y,
we create a graph where the nodes are RVs in Y and put
an edge between two nodes Yi; Yj if we cannot reject the
null hypothesis that Yi ⊥⊥ Yj |X for a given threshold �.
The conditional scopes of product children are then given
by connected components of this graph, akin to [12]. Fi-
nally, gating nodes represent a mixture of Y conditioned
on X weighted by a gating function gk(X). Ideally, we se-
lect a differentiable parametric function, such as logistic re-
gression or a neural network, as the gating function. This
function is restricted to allow for a proper mixture of distri-
butions, i.e.,

P
k gk(X) = 1 and ∀Xgk(X) ≥ 0. To learn

the components of the mixture, we perform clustering over
features X, and denote the corresponding member assign-
ment as a one-hot coded vector Z. We then proceed to fit the
gating function to predict Zk = gk(X).

Having a structure, one can estimate the parameters of
the CSPNs, i.e., the weights for the gating nodes and the
distributional parameters for the leaf nodes. During struc-
ture learning, we learn the parameters automatically with
the structure. However, those parameters are only locally
optimized and usually not optimal for the global distribu-
tion. Since CSPNs are differentiable, we can maximize the
overall conditional likelihood in an end-to-end fashion using
gradient-based optimization techniques after structure learn-
ing. An alternative for learning CSPNs is to start with a ran-
dom structure, and initialize all the parameters randomly as
well, then directly conduct parameter optimization end-to-
end.

Autoregressive SPN. CSPNs can be naturally combined
with other CSPNs and SPNs to impose a rich structure on
high-dimensional joint distributions. We illustrate this by
introducing ABCSPNs, i. e. autoregressive SPNs for con-
ditional image generation. That is, we model images block
by block and decompose the joint image distribution into a
product of (C)SPNs, cf. Fig. 2 (left). We investigated ABC-
SPNs on a subset (20000 random samples) of MNIST and
Olivetti faces by splitting each image into 16 resp. 64 blocks

