
Measuring Inconsistency in
Declarative Process Specifications⋆

Carl Corea1, John Grant2, and Matthias Thimm3

1 Institute for IS Research, University of Koblenz-Landau, Koblenz, Germany
ccorea@uni-koblenz.de

2 University of Maryland, College Park, USA
grant@cs.umd.edu

3 Artificial Intelligence Group, University of Hagen, Hagen, Germany
matthias.thimm@fernuni-hagen.de

Abstract. We address the problem of measuring inconsistency in declar-
ative process specifications, with an emphasis on linear temporal logic
on fixed traces (LTLff). As we will show, existing inconsistency measures
for classical logic cannot provide a meaningful assessment of inconsis-
tency in LTL in general, as they cannot adequately handle the temporal
operators. We therefore propose a novel paraconsistent semantics as a
framework for inconsistency measurement. We then present two new in-
consistency measures based on these semantics and show that they sat-
isfy important desirable properties. We show how these measures can be
applied to declarative process models and investigate the computational
complexity of the introduced approach.

Keywords: Inconsistency Measurement · LTL · Declare.

1 Introduction

Linear temporal logic (LTL) is an important logic for specifying the (temporal)
behavior of business processes in the form of declarative process specifications
[1, 18]. The underlying idea is that time is represented as a linear sequence of
states T = (t0, ..., tm), where t0 is the designated starting point. At every state,
some statements may be true. Temporal operators specify properties that must
hold over the sequence of states. For example, the operator X (next) means that
a certain formula holds at the next state. Likewise, the operator G (globally)
means that a certain formula will hold for all following states. Note that we
assume the sequence to be finite, i.e., we consider a linear temporal logic over
finite traces (LTLf) [5, 18].

Traditionally, model checking has been used to verify that a particular model—
that is, the assignment of truth values for statements over the time sequence—
satisfies the requirements. However, a problem in this use case arises if the set

⋆ This work has been partially supported by the Deutsche Forschungsgemeinschaft
(Grant DE 1983/9-1).

2 C. Corea et al.

of formulas is inconsistent, i. e., contains contradictory specifications. In such a
case, the set of specifications cannot be applied for its intended purpose of pro-
cess verification. For example, consider the two sets of formulas K1 and K2 (we
will formalize syntax and semantics later):

K1 = {Xa,X¬a} K2 = {Ga,G¬a}

Both K1 and K2 are inconsistent, as they demand that both a and ¬a hold in
(some) following state, which is unsatisfiable. This calls for the analysis of such
inconsistencies, to provide insights for inconsistency resolution.

In classical logic, all inconsistent sets are equally bad [12]. However, consid-
ering again the two sets, intuitively, K2 is “more” inconsistent than K1: The
inconsistency in K1 only affects the next state, while the inconsistency in K2 af-
fects all following states. This is an important insight that could prove useful for
debugging or re-modelling LTLf specifications or LTLf-based constraint sets in
general such as Declare. While there have been some recent works that can iden-
tify inconsistent sets in declarative process specifications [2, 3, 20], those works
cannot look “into” those sets or compare them. In this work, we therefore show
how to distinguish the severity of inconsistencies in LTLf, specifically, LTLff.

A scientific field geared towards the quantitative assessment of inconsistency
in knowledge representation formalisms is inconsistency measurement [8,22], and
therefore represents a good candidate for this endeavour. Inconsistency measure-
ment studies measures that aim to assess a degree of inconsistency with a numer-
ical value. The intuition here is that a higher value represents a higher degree
of inconsistency. Such measures can provide valuable insights for debugging in-
consistent specifications, e. g., to determine whether certain sets of formulas are
more inconsistent than others. As we will show, existing measures are currently
not geared towards LTLf and temporal operators, and therefore cannot provide
a meaningful analysis. Therefore, the main goal of this paper is to develop a new
approach for measuring inconsistency in linear temporal logic. To frame this
problem, we introduce a variant of LTLf, which we coin linear temporal logic on
fixed traces LTLff (cf. Section 2.2).

Our contributions are as follows. We formalise the problem of measuring in-
consistency in LTLff and propose a rationality postulate that should be met by
quantitative measures applied to this setting (Section 2). We show that existing
inconsistency measures do not satisfy this property, and propose an approach
for measuring inconsistency based on a novel paraconsistent semantics for LTLff

(Section 3). We then show how our approach can be applied for measuring incon-
sistency in declarative process models (Section 4). For evaluation, we investigate
the computational complexity of central aspects regarding inconsistency mea-
surement in LTLff (Section 5). A conclusion is provided in Section 6. Proofs for
technical results can be found in a supplementary document provided online.

2 Preliminaries

The traditional setting for inconsistency measurement is that of propositional
logic. For that, let At be some fixed propositional signature, i. e., a (possibly

https://arxiv.org/pdf/2206.07080.pdf

Measuring Inconsistency in Declarative Process Specifications 3

infinite) set of propositions, and let L(At) be the corresponding propositional
language constructed using the usual connectives ∧ (conjunction), ∨ (disjunc-
tion), and ¬ (negation). A literal is a proposition p or negated proposition ¬p.

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let K
be the set of all knowledge bases.

For a set of formulas X we denote the set of propositions in X by At(X).
Semantics for a propositional language is given by interpretations where an

interpretation ω on At is a function ω : At → {0, 1} (where 0 stands for false
and 1 stands for true). Let Ω(At) denote the set of all interpretations for At. An
interpretation ω satisfies (or is a model of) an atom a ∈ At, denoted by ω |= a,
if and only if ω(a) = 1. The satisfaction relation |= is extended to formulas in
the usual way. For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= ϕ for
every ϕ ∈ Φ. Furthermore, for every set of formulas X, the set of models is
Mod(X) = {ω ∈ Ω(At) | ω |= X}. Define X |= Y for (sets of) formulas X and
Y if ω |= X implies ω |= Y for all ω.

Let ⊤ denote any tautology and ⊥ any contradiction. If Mod(X) = ∅ we
write X |=⊥ and say that X is inconsistent.

2.1 Inconsistency Measurement

Inconsistency as defined above is a binary concept. To provide more fine-grained
insights on inconsistency beyond such a binary classification, the field of incon-
sistency measurement [22] has evolved. The main objects of study in this field are
inconsistency measures, which are quantitative measures that assess the degree
of inconsistency for a knowledge base K with a non-negative numerical value.
Intuitively, a higher value reflects a higher degree, or severity, of inconsistency.
This can be useful for determining if one set of formulas is “more” inconsistent
than another. Let R∞

≥0 be the set of non-negative real values including ∞. Then,
an inconsistency measure is defined as follows.

Definition 2. An inconsistency measure I is any function I : K → R∞
≥0.

To constrain the desired behavior of concrete inconsistency measures, several
properties, called rationality postulates, have been proposed. A well-agreed upon
property is that of consistency, which states that an inconsistency measure
should return a value of 0 iff there is no inconsistency.

Consistency (CO) I(K) = 0 if and only if K is consistent.

Further important postulates introduced in [10] are monotony, dominance and
free-formula independence, which we will define below. For that, we need some
further notation.

First, a set M ⊆ K is called a minimal inconsistent subset (MIS) of K if
M |=⊥ and there is no M ′ ⊂ M with M ′ |=⊥. Let MI(K) be the set of all MISs
of K. Second, a formula α ∈ K is called a free formula if α /∈

⋃
MI(K). Let

Free(K) be the set of all free formulas of K.
For the remainder of this section, let I be an inconsistency measure, K,K′ ∈

K, and α, β ∈ L(At). Then, the basic postulates from [10] are defined as follows.

4 C. Corea et al.

Monotony (MO) If K ⊆ K′ then I(K) ≤ I(K′).
Free-formula independence (IN) If α ∈ Free(K) then

I(K) = I(K \ {α}).
Dominance (DO) If α ̸|=⊥ and α |= β then I(K ∪ {α}) ≥ I(K ∪ {β}).

MO states that adding formulas to the knowledge base cannot decrease the in-
consistency value. IN means that removing free formulas from the knowledge
base does not change the inconsistency value. DO consists of several cases, de-
pending on the presence or absence of α or β in K: the idea is that substituting
a consistent formula α by a weaker formula β cannot increase the inconsistency.

Numerous inconsistency measures have been proposed (see [23] for a survey),
many of which differ in regard to their compliance w.r.t. the introduced postu-
lates. In this work, we will consider six measures as defined below. In order to
define the contension measure Ic [7] we need some additional background on
Priest’s three-valued semantics [19]. A three-valued interpretation is a function
ν : At → {0, 1,B}, which assigns to every atom either 0, 1 or B, where 0 and
1 correspond to false and true, respectively, and B (standing for both) denotes
a conflict. Assuming the truth order ≺T with 0 ≺T B ≺T 1, the function ν
can be extended to arbitrary formulas as follows: ν(α∧β) = min≺T

(ν(α), ν(β)),
ν(α ∨ β) = max≺T

(ν(α), ν(β)), ν(¬α) = 1 if ν(α) = 0, ν(¬α) = 0 if ν(α) = 1,
and ν(¬α) = B if ν(α) = B. We say that an interpretation ν satisfies a formula
α, denoted by ν |=3 α, iff ν(α) = 1 or ν(α) = B.

We will now define the measures used in this work.

Definition 3. Let the measures Id, IMI, Ip, Ir, Ic, and Iat be defined as follows:

Id(K) =

{
1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

Ip(K) = |
⋃

M∈MI(K)

M |

Ir(K) = min{|X| | X ⊆ K and K \X ̸|=⊥}

Ic(K) = min{|ν−1(B) ∩ At| | ν |=3 K}

Iat(K) = |
⋃

M∈MI(K)

At(M)|

A baseline approach is the drastic inconsistency measure Id [11], which
only differentiates between inconsistent and consistent knowledge bases. The
MI-inconsistency measure IMI [11] counts the number of minimal inconsistent
subsets. A similar version is the problematic inconsistency measure Ip [7], which
counts the number of distinct formulas appearing in any inconsistent subset. The
repair measure Ir counts the smallest number of formulas that must be removed
in order to restore consistency. The contension measure Ic [7] quantifies incon-
sistency by seeking a three-valued interpretation that assigns B to a minimal

Measuring Inconsistency in Declarative Process Specifications 5

number of propositions. Finally, the Iat measure counts the number of atoms in
the non-free formulas.

We conclude this section with a small example illustrating the behavior of
the considered inconsistency measures.

Example 1. Consider K3, defined via

K3 = {a,¬a, b,¬b ∧ c ∧ d,¬a ∨ ¬b}

Then we have that

MI(K3) = {{a,¬a}, {b,¬b ∧ c ∧ d}, {a,¬a ∨ ¬b, b}}

Thus

Id(K3) = 1 IMI(K3) = 3 Ip(K3) = 5

Ir(K3) = 2 Ic(K3) = 2 Iat(K3) = 4

The main focus of study in inconsistency measurement, and the introduced
measures, has been on propositional logic. In this work, our aim is to apply
inconsistency measures for linear time logic, which we introduce now.

2.2 Linear Temporal Logic on Fixed Traces

In this work, we consider a specific variant of LTLf that we coin linear temporal
logic on fixed traces (LTLff). We consider a linear sequence of states t0, . . . , tm,
where every ti is the state at instant i. We assume that m > 1 to avoid the trivial
case. Note that the difference with LTLf—where interpretations can vary in their
length as long as they are finite—is that we keep the length of this sequence finite
and fixed across all interpretations. This variant of LTLf is introduced mainly to
discuss matters of inconsistency measurement, as here, the inconsistency value is
computed in regard to a comparable length for all formulas. However, the ideas
presented in the next sections can be extended to LTLf [4] in a straightforward
manner: In the unbounded case we can use a parameter N and then proceed as
in the bounded case. This also means that m must not necessarily be known or
provided a priori, as a parameter N can be selected.

The syntax of LTLff is the same as the syntax of LTL and LTLf [5]. Formulas
are built from a set of propositional symbols At and are closed under the Boolean
connectives, the unary operator X (next), and the binary operator U (until).
Formally, any formula φ of LTLff is built using the grammar rule

φ ::= a|(¬φ)|(φ1 ∧ φ2)|(φ1 ∨ φ2)|(Xφ)|(φ1Uφ2).

with a ∈ At. Intuitively, Xφ denotes that φ will hold at the next state and
(φ1Uφ2) denotes that φ1 will hold until the state when φ2 holds. Let d(φ) ∈ N
denote the maximal number of nested temporal operators in φ.1

1 d(φ) is inductively defined via d(a) = 0 for a ∈ At, d(¬ϕ) = d(ϕ), d(ϕ1∧ϕ2) = d(ϕ1∨
ϕ2) = max{d(ϕ1), d(ϕ2)}, d(Xϕ) = 1+d(ϕ), and d(ϕ1Uϕ2) = 1+max{d(ϕ1), d(ϕ2)}.

6 C. Corea et al.

From the basic operators, some useful abbreviations can be derived, including
Fφ (defined as ⊤Uφ), which denotes that φ will hold (eventually) in the future
and Gφ (defined as ¬F¬φ), which denotes that φ will hold for all following
states. Again, let ⊤ be any tautology and ⊥ any contradiction.

An LTLff-interpretation ω̂ w.r.t. At is a function mapping each state and
proposition to 0 or 1, meaning that ω̂(t, a) = 1 if proposition a is assigned 1
(true) in state t.2 Then the satisfaction of a formula ϕ by an interpretation ω̂,
denoted by ω̂ |= ϕ, is defined via

ω̂ |= ϕ ⇔ ω̂, t0 |= ϕ

where ω̂, ti |= ϕ for any interpretation ω̂ as above and for every ti ∈ {t0, . . . , tm}
is inductively defined as follows:

ω̂, ti |= a iff ω̂(ti, a) = 1 for a ∈ At

ω̂, ti |= ¬φ iff ω̂, ti ̸|= φ

ω̂, ti |= φ1 ∧ φ2 iff ω̂, ti |= φ1 and ω̂, ti |= φ2

ω̂, ti |= φ1 ∨ φ2 iff ω̂, ti |= φ1 or ω̂, ti |= φ2

ω̂, ti |= Xφ iff i < m and ω̂, ti+1 |= φ

ω̂, ti |= φ1Uφ2 iff ω̂, tj |= φ2 for some j ∈ {i+ 1, . . . ,m}
and ω̂, tk |= φ1 for all k ∈ {i, . . . , j − 1}

An interpretation ω̂ satisfies a set of formulas K iff ω̂ |= ϕ for all ϕ ∈ K. A set
K is consistent iff there exists ω̂ such that ω̂ |= K. Define X |= Y for (sets of)
formulas X and Y if ω̂ |= X implies ω̂ |= Y for all ω̂.

2.3 Related Work and Contributions

This work is related to consistency- and model checking in declarative pro-
cess specifications, see e.g. [9, 17, 21]. In particular, our approach extends re-
cent works [2, 3, 17, 20] on the identification of inconsistent sets in declarative
process specifications by allowing to look “into” those sets and leverage incon-
sistency resolution with quantitative insights. For example, existing resolution
approaches mainly try to minimize the number of deleted formulas [2,3,14]. This
however completely leaves aside the semantics of those formulas or their impact
on any corresponding process. Given this motivation, it is useful to consider also
the degree to which certain formulas affect the following behavior, which is why
we propose time sensitive inconsistency measures.

This paper is related to [6] which presents several, what we call time sensitive,
inconsistency measures for branching time logics (BTL). However, in this work
we are able to avoid the complicated overload of branching time as the process
specifications are provided in linear time logic. Using branching time logic adds a

2 Recall that we assume time of a fixed length t0, . . . , tm and interpretations only vary
in what is true at each state.

Measuring Inconsistency in Declarative Process Specifications 7

layer of complexity that is unnecessary when dealing with a linear time situation.
Just to take one example, consider the set {Xa,X¬a}. In linear time logic this
gives one inconsistency at the next state. But in the case of branching time logic
what does X mean? There may be many “next” states. If X means “some next
state” then the set is consistent because a and ¬a may hold in different next
states. If X means “all next states” then it is inconsistent but how inconsistent
depends on the number of next states. We avoid such issues by dealing only
with linear temporal logic. Note also that BTL takes a different view on time
than LTLf as studied in this paper and is therefore expressively incomparable
(cf. [24]).

3 Inconsistency Measurement in LTLff

In this section, we address the issue of measuring inconsistency in LTLff. As we
will show, existing inconsistency measures cannot provide meaningful insights
when dealing with temporal logic. Therefore, we develop a novel paraconsistent
semantics as a framework for handling inconsistency and propose two concrete
inconsistency measures for LTLff.

3.1 Motivation for Inconsistency Measures for LTLff

We recall the sets of LTLff formulas K1 and K2:

K1 = {Xa,X¬a} K2 = {Ga,G¬a}

The knowledge base K1 states that a is both true and false in the next state
while K2 states that a is both true and false in all future states. Obviously, both
knowledge bases are inconsistent. Yet, the inconsistencies are different in regard
to the number of states they affect. For K1 the number is 1 and for K2 the
number is m > 1. It would therefore be desirable for an inconsistency measure
to take this information into account and assign K2 a larger inconsistency value.

In order to capture LTLff by the inconsistency measurement framework of
Section 2.1, from now on a knowledge base K (Definition 1) will be a finite set
of LTLff formulas and K is the set of all LTLff knowledge bases. So we can apply
the inconsistency measures for K1 and K2 in a straightforward manner.

Example 2. Consider K1 and K2. Then we have that

Id(K1) = 1 Id(K2) = 1

IMI(K1) = 1 IMI(K2) = 1

Ip(K1) = 2 Ip(K2) = 2

Ir(K1) = 1 Ir(K2) = 1

Ic(K1) = 1 Ic(K2) = 1

Iat(K1) = 1 Iat(K2) = 1

8 C. Corea et al.

Note that all six inconsistency measures give identical values for K1 and K2,
because they, or for that matter, any other propositional logic inconsistency
measure, cannot distinguish between X and G. But intuitively K2 is more in-
consistent than K1 because the inconsistency persists through all future states in
K2 as opposed to the single state in K1. Thus, we believe that a proper inconsis-
tency measure for LTLff should distinguish between these operators. Therefore,
we propose a new rationality postulate.

Time Sensitivity (TS) For all formulas φ of propositional logic,
I({Gφ,G¬φ}) > I({Xφ,X¬φ}).

In other words, the number of affected states should be reflected in the incon-
sistency value, i.e., inconsistency measures for LTLff should be time sensitive.

Proposition 1. Id, IMI, Ip, Ir, Ic, Iat violate TS.

Following Proposition 1, the existing measures that we have from propositional
logic cannot capture the desired behavior. Therefore, we introduce a novel ap-
proach to measure inconsistency in LTLff.

3.2 A Paraconsistent Semantics for LTLff

Our first contribution towards measuring inconsistency in LTLff is to define an
LTLff-variant of the three-valued semantics of [19]. By doing so, we not only
develop a means to neatly express inconsistency measures for LTLff, but also
define a general applicable paraconsistent semantics for LTLff.

A three-valued interpretation ν̂ for LTLff is a function mapping each state
and proposition to 0, 1 or B, that is, ν̂ : {t0, t1, . . . tm}×At → {0, 1,B} where as
before 0 and 1 correspond to the classic logical false and true, respectively, and
B (standing for both) denotes a conflict. We then assign

ν̂(ϕ) = ν̂(t0, ϕ)

where ν̂(ti, ϕ), for any interpretation ν̂ as above and state ti ∈ {t0, . . . , tm}, is
inductively defined as follows:

ν̂(ti, a) = ν̂(ti, a) for a ∈ At

ν̂(ti,¬ϕ) =

1 if ν̂(ti, ϕ) = 0
0 if ν̂(ti, ϕ) = 1
B if ν̂(ti, ϕ) = B

ν̂(ti, φ1 ∧ φ2) =

1 if ν̂(ti, φ1) = ν̂(ti, φ2) = 1
0 if ν̂(ti, φ1) = 0 or ν̂(ti, φ2) = 0
B otherwise

ν̂(ti, φ1 ∨ φ2) =

1 if ν̂(ti, φ1) = 1 or ν̂(ti, φ2) = 1
0 if ν̂(ti, φ1) = ν̂(ti, φ2) = 0
B otherwise

Measuring Inconsistency in Declarative Process Specifications 9

ν̂(ti,Xφ) =

{
ν̂(ti+1, φ) if i < m
0 otherwise

ν̂(ti, φ1Uφ2) =

1 if there is j ∈ {i+ 1, . . . ,m} with
ν̂(tj , φ2) = ν̂(ti, φ1) = . . .
= ν̂(tj−1, φ1) = 1

B if there is j ∈ {i+ 1, . . . ,m} with
{ν̂(tj , φ2), ν̂(ti, φ1), . . . ,
ν̂(tj−1, φ1)} = {1,B}

0 otherwise

Some comments on the above definition are in order. First, note that the evalu-
ation of the classical Boolean connectives is the same as for propositional three-
valued semantics (see Section 2.1). Furthermore, the evaluation of Xϕ is simply
the truth value of ϕ at the next state, or, if there is no next state, 0 (as for the
classical semantics of LTLff). The main new feature, however, is the three-valued
evaluation of a formula of the form φ1Uφ2. This formula evaluates to 1 as in the
classical case, i. e., if ϕ2 evaluates to 1 in some future state and ϕ1 evaluates to
1 in between. We evaluate φ1Uφ2 to B if ϕ2 evaluates to 1 or B in some future
state and ϕ1 evaluates to 1 or B in between (and at least one of these evaluations
must be to B). Finally, φ1Uφ2 evaluates to 0 otherwise, i.e., if either ϕ2 always
evaluates to 0 in the future or in-between φ1 evaluates at least once to 0.

A three-valued LTLff interpretation ν̂ satisfies a formula ϕ, denoted by ν̂ |=3

ϕ, iff ν̂(ϕ, t0) ∈ {1,B}. A three-valued interpretation ν̂ satisfies a set of formulas
K iff ν̂ |=3 ϕ for all ϕ ∈ K.

Example 3. Let At = {a, b} and assume m = 2. Consider the knowledge base K
defined via

K = {X¬a, aUb}

and the three-valued interpretation ν̂ defined via

ν̂(t0, a) = 1 ν̂(t0, b) = 0

ν̂(t1, a) = B ν̂(t1, b) = 0

ν̂(t2, a) = 0 ν̂(t2, b) = 1

Then we have ν̂(t0, aUb) = B as b evaluates to 1 in t2 and a evaluates to B in
t1. Moreover, we have ν̂(t0,X¬a) = B and therefore ν̂ |=3 K.

Define X |=3 Y for formulas X and Y if ν̂ |= X implies ν̂ |= Y for all ν̂.
In the propositional logic case, |=3 is a faithful extension of |=, meaning that

ω |= ϕ if and only if ω |=3 ϕ for every two-valued interpretation ω and every
ϕ. Our LTLff extension of the three-valued semantics enjoys the same property
(note that every two-valued interpretation is a also a three-valued interpretation
that does not use the value B).

Proposition 2. For every (two-valued) LTLff interpretation ω̂ and LTLff for-
mula ϕ, ω̂ |= ϕ if and only if ω̂ |=3 ϕ.

10 C. Corea et al.

The three-valued semantics of [19] has another nice property in propositional
logic, namely the non-existence of inconsistency: every propositional formula is
trivially satisfiable by the interpretation that assigns B to all propositions. In
general, an LTLff formula may become unsatisfiable w.r.t. to the three-valued
semantics if it affects a state ”beyond“ tm. However, for other formulas we obtain
the following result regarding universal satisfiability.

Proposition 3. For any LTLff formula ϕ with d(ϕ) ≤ m there is ν̂ with ν̂ |=3 ϕ.

The semantics presented in this section allows for inconsistency-tolerant reason-
ing in LTLff (and it can straightforwardly be adapted for LTLf and LTL). This
provides a useful tool for the usual application scenarios of temporal logics, such
as model checking and verification. While it may be worthwhile to investigate
this aspect in more depth, in the remainder of this work we will focus on the
application of this semantics for inconsistency measurement and postpone that
endeavour to future work.

3.3 Time Sensitive Inconsistency Measures for LTLff

We will now exploit our three-valued semantics for LTLff to define some new in-
consistency measures. We do this similarly as for propositional logic by assessing
the amount of usage of the paraconsistent truth value B in models of an LTLff

knowledge base K but refine it by two different levels of granularity. This yields
two new inconsistency measures.

Our first approach measures the number of states affected by inconsistency.
For any three-valued interpretation ν̂, define

AffectedStates(ν̂) = {t | ∃a : ν̂(t, a) = B}

In other words, AffectedStates(ν̂) is the set of states where ν̂ assigns B to at least
one proposition. We can define an inconsistency measure by considering those
3-valued models of the knowledge base that affect the minimal number of states.

Definition 4 (LTL time measure). Let K be a set of formulas. Then, the
LTL time measure is defined via

ILTL
d (K) = min

ν̂|=3K
|AffectedStates(ν̂)|

if there is ν̂ with ν̂ |=3 K and ILTL
d (K) = ∞ otherwise.

This measure counts the number of states for which the knowledge base is in-
consistent. It is, in fact, the extension of the drastic measure, Id, in that for each
state it adds 1 if there is an inconsistency and 0 otherwise. This measure can be
used to distinguish the knowledge bases K1 and K2, i.e., it is time sensitive.

Example 4. We recall the knowledge basesK1 = {Xa,X¬a} andK2 = {Ga,G¬a}.
Then we have

ILTL
d (K1) = 1 ILTL

d (K2) = m

Measuring Inconsistency in Declarative Process Specifications 11

As an example where there is no ν̂ s.t. ν̂ |=3 K, consider the formula XXXa.
This formula cannot be satisfied for m = 2, so ILTL

d would return ∞ here.
Example 4 shows that the proposed measure ILTL

d can already provide
meaningful insights for measuring inconsistency in LTL. But a potential lim-
itation is that it can only distinguish inconsistency in individual states in a
binary manner. For example, ILTL

d cannot distinguish the knowledge base K4 =
{Xa,X¬a,Xb,X¬b} from K1 because all inconsistencies occur at one state,
namely t1. For this reason we believe it is useful to be able to look inside states
for inconsistency. In order to do so, given a three-valued interpretation ν̂, define

Conflictbase(ν̂) = {(t, a) | ν̂(t, a) = B}

Then, define the LTL contension measure as follows.

Definition 5 (LTL contension measure). Let K be a set of formulas and

ILTL
c (K) = min

ν̂|=3K
|Conflictbase(ν̂)|

if there is ν̂ with ν̂ |=3 K and ILTL
c (K) = ∞ otherwise.

ILTL
c seeks an interpretation that assigns B to a minimal number of proposi-

tions individually over all the states and uses this number for the inconsistency
measure. This is an extension of ILTL

d , and for that matter, of Ic as it calculates
ILTL
c for each state and sums the numbers obtained this way.

Example 5. We recall the knowledge bases K1 = {Xa,X¬a}, K4 = {Xa,X¬a,
Xb,X¬b}, and consider K5 = {Ga,G¬a,Gb,G¬b}. If m = 3, then we have

ILTL
d (K1) = 1 ILTL

d (K4) = 1 ILTL
d (K5) = 3

ILTL
c (K1) = 1 ILTL

c (K4) = 2 ILTL
c (K5) = 6

As can be seen in Example 5, the two inconsistency measures proposed in
this work can, contrary to previously existing measures, be used to provide
meaningful insights into inconsistency in linear temporal logic, i.e., they are in
fact time sensitive. As the two measures have a different granularity in regard
to time, selecting which of the two to use depends on the intended use case.

Intuitively, it would be possible to devise further time-sensitive inconsistency
measures for LTLff. We will however leave this discussion for future work. Impor-
tantly, the aim of this paper is to show that traditional inconsistency measures
cannot be plausibly applied to temporal logics, and to present means for time
sensitive inconsistency measurement. In this regard, the measures proposed in
this work can be used as a baseline for measuring inconsistency in LTL. Also,
they (broadly) satisfy other desirable properties and can therefore be seen as
strictly better (w.r.t. the considered postulates) than their propositional logic
“counterpart”, i.e., Id for ILTL

d , respectively Ic for ILTL
c . The results of this

section are summarized in Table 1. Proofs can be found online.
Note that only the measures we introduced satisfy TS. Note also that ILTL

c

does not satisfy IN due to the problem of iceberg inconsistencies, cf. the provided
proofs.

https://arxiv.org/pdf/2206.07080.pdf

12 C. Corea et al.

I CO MO IN DO TS

Id ✓ ✓ ✓ ✓ ✗

IMI ✓ ✓ ✓ ✗ ✗

Ip ✓ ✓ ✓ ✗ ✗

Ir ✓ ✓ ✓ ✗ ✗

Ic ✓ ✓ ✗ ✓ ✗

Iat ✓ ✗ ✗ ✗ ✗

ILTL
d ✓ ✓ ✓ ✓ ✓

ILTL
c ✓ ✓ ✗ ✓ ✓

Table 1: Compliance of inconsistency measures with rationality postulates.

4 Application to Declarative Process Models

A common application scenario for LTLf is that of declarative process models
[16], which are sets of (LTLf-based) constraints. For such declarative process
models, the issue of inconsistency is equally as problematic, as any inconsistencies
between the constraints make the declarative process model unsatisfiable.

There have been a number of works addressing the issue of inconsistency in
declarative process models [2,3,14]. However, those works mainly look at whether
a process model is inconsistent at all (in a binary manner), or try to identify
sets of inconsistent constraints. Those works can however not look “into” those
sets or assess their severity. For this use case, our proposed approach can be
extended to declarative process models as follows.

4.1 Inconsistency Measurement in Declarative Process Models

A declarative process model consists of a set of constraints. Typically, these
constraints are constructed using predefined templates, i. e., predicates, that are
specified relative to a set of propositions (e. g., company activities).

Definition 6 (Declarative Process Model). A declarative process model is
a tuple M = (A,T,C), where A is a set of propositions, T is a set of constraint
types, and C is the set of constraints, which instantiate the template elements
in T with activities in A.3

In this work, we consider the declarative modelling language Declare [16],
which offers a set of “standard” templates. We will use a selection of templates
shown in Table 2. We refer the reader to [3] for an overview of other Declare
template types and corresponding semantics.

3 For readability, we will denote declarative process models as a set of constraints (C)

Measuring Inconsistency in Declarative Process Specifications 13

Template LTLff Semantics

Init(a) a
End(a) G(a ∨ Fa)
Response(a,b) G(a → Fb)
NotResponse(a,b) G(a → ¬Fb)
ChainResponse(a,b) G(a → Xb)
NotChainResponse(a,b) G(a → ¬Xb)
AtLeast(a,n) F(a ∧X(atLeast(a,n-1))), atLeast(a, 1) = a ∨ F(a)
AtMost(a,n) G(¬a ∨X(atMost(a,n − 1))), atMost(a, 0) = G(¬a)

Table 2: LTLff Semantics for a selection of Declare templates.

By rewriting the constraints of a declarative process model into LTLff formu-
las, our approach for measuring inconsistency in LTLff can be applied to Declare
in a straightforward manner.

Example 6. Consider the sets of constraints Ca and Cb, defined via

Ca = {Init(a),Response(a, b),NotResponse(a, b)}
(⇔ {a,G(a → Fb),G(a → ¬Fb)})

Cb = {Init(a),Response(a, b),NotResponse(a, b),

Response(a, c),NotResponse(a, c)}
(⇔ {a,G(a → Fb),G(a → ¬Fb),G(a → Fc),G(a → ¬Fc)})

then we have that ILTL
c (Ca) = 1 and ILTL

c (Cb) = 2.

Due to the recursive definition of some “existence” constraints (cf. Table 2), note
that also inconsistencies concerned with cardinalities can be assessed correctly.

Example 7. Consider Cc = {AtMost(a, 1), AtLeast(a, 2)} and
Cd = {AtMost(a, 1), AtLeast(a, 100)}, then ILTL

d (Cc) < ILTL
d (Cd).

As a border case, note that any inconsistency referring to a point in time beyond
the assumed sequence of states will return a value of ∞ per definition, as we
cannot assess any error that leaves the boundaries of our logical framework.

Example 8. Let Ce = {End(a),ChainResponse(a, b)}, then ILTL
d (Ce) = ∞.

These examples show that our approach can provide detailed insights on the
severity of inconsistency in declarative process models. Such insights can prove
useful for prioritizing or re-modelling different issues of the process specification.
In this context, it seems intuitive that conflicts affecting only the next state (X)
should be considered as less severe than conflicts affecting multiple following
states (G), i. e., for any LTLff formula φ, I({Gφ,G¬φ}) > I({Xφ,X¬φ}). In
this regard, there are still open questions on how to distinguish the operators
X and F, in particular: for an LTLff formula φ, what is the relation between
I({Xφ,¬Xφ}) and I({Fφ,¬Fφ})? We address this question in the following.

14 C. Corea et al.

4.2 On Potentially Inconsistent States

Consider the following sets of constraints Cm and Cn, defined via

Cm = Cn =

{Init(a) ⇔ a, {Init(a),
Response(a, b) ⇔ G(a → Fb), ChainResponse(a, b) ⇔ G(a → Xb),

NotResponse(a, b) ⇔ G(a → ¬Fb)} NotChainResponse(a, b) ⇔ G(a → ¬Xb)}

Both sets are inconsistent, as they demand that b should and should not follow.
However, the point in time at which the actual inconsistency can occur is differ-
ent. Naturally, one question arises: which inconsistency is more severe? Or are
they equally severe? We encourage the reader to come up with an own answer
to this question at this point before we continue with our view on this matter.

Using the measures introduced in this work, the absolute number of affected
states is 1 in both cases. So regarding the minimal number of affected states, the
inconsistencies are equally severe. However, the certainty of where the inconsis-
tency can occur at is clearly different, as visualized in Figure 1.

a ? ... ?

(a) Potentially inconsistent states for Cm

a � ...

(b) Certainty of inconsistency for Cn

Fig. 1: Visualization of the (un)certainty of where the inconsistency may occur
for Cm and Cn.

In Cm, there are m different possible states to which a minimal interpretation
could assign the truth value B to the proposition b, whereas the inconsistency
can only occur in exactly 1 state for Cn. This could entail different severities for
the inconsistencies, depending on the viewpoint:

Consider a running process which is in state t0. For Cm, it is unclear when
the inconsistency will occur. For Cn, it is directly known that the next state
is inconsistent. Recovery mechanisms for such cases are well known [13], e. g.,
it would be possible to just skip the next state and continue with a consistent
process. This is not possible for Cm without skipping all following states until
the end of the process. So one might argue that the inconsistency in Cm is more
severe. However, for Cn, this also means there is in fact no possible continuation
as the process is in a dead-end state, thus, Cn needs to be attended to more
urgently (So one might as well argue that the inconsistency in Cn is more severe).

In the field of inconsistency measurement, the dominance property states
that substituting a consistent formula by a weaker formula cannot increase the
inconsistency value [10]. However, when moving from Cm to Cn or vice-versa,
we both replace one constraint with a stronger one and the other with a weaker
one (every ChainResponse is also a Response but every NotResponse is a
NotChainResponse). So the dominance property is not applicable here and
the question remains which inconsistency is more severe. In this work, we will not

Measuring Inconsistency in Declarative Process Specifications 15

give a definitive answer to this question and leave this discussion for future work.
However, based on the two possible views given above, we will argue that they
are, in fact, different. It would therefore be desirable to be able to distinguish
the inconsistency in Cm and Cn. Here, the introduced contension concept can
be adapted to quantify the certainty of when the inconsistency will occur.

The introduced measures quantify inconsistency by seeking an interpretation
that assigns B to a minimal number of states. We denote the set of all such
interpretations that assign B to a minimal number of states (at least to one) as

V̂ B>0
min (K) = {ν̂ |=3 K : |AffectedStates(ν̂)| > 0 ∧ |AffectedStates(ν̂)| = ILTL

d (K)}

Every such (minimal) interpretation also encodes which exact states are affected
by the inconsistency. For Cn, only one state is necessarily affected (cf. Fig 1 (b)),
thus, there exists only one minimal interpretation. For Cm, there are m different
interpretations that are all equally minimal in terms of how many states are
affected. So the number of minimal interpretations relates to the number of
distinct (sets of) states that can potentially be affected.

Definition 7 (Number of Minimal Interpretations). Let K be a set of
formulas. Then, define the number of minimal interpretations via

#minInterpretations(K) = |V̂ B>0
min (K)|

Example 9. We recall Cm and Cn. Then we have that#minInterpretations(Cm) =
m and #minInterpretations(Cn) = 1 as expected (cf. the above discussion)

Importantly, the function #minInterpretations is not an inconsistency mea-
sure, i. e., a higher value does not indicate a higher degree of inconsistency. It
therefore also does not matter where the inconsistency in Cm eventually triggers.
The value merely expresses the “certainty” of knowing where the conflict can
occur at. The semantics of which is worse depends on the use case.

5 Computational Complexity

We conclude with an investigation of computational complexity in measuring
inconsistency in LTLff. We assume familiarity with computational complexity,
see [15] for an introduction. Proofs can be found online.

Note that deciding satisfiability is PSPACE-complete for LTLf [5] and also
intractable for many variants of LTLf [4]. For our variant LTLff, as m is fixed, we
get NP-completeness (think for example of a non-deterministic algorithm that
guesses ω̂ and verifies (in polynomial time) that ω̂ |= ϕ).

Theorem 1. Deciding whether a formula ϕ is satisfiable in LTLff is NP-complete.

If the parameter m is given in unary, the complexity result holds as it is.
However, if m is given in binary then the complexity will likely increase (in the
membership proof, we need to guess an interpretation and if m is given in binary,
that interpretation may be exponential in the size of the input).

https://arxiv.org/pdf/2206.07080.pdf

16 C. Corea et al.

We continue with an investigation of the computational complexity of mea-
suring inconsistency in LTLff. For this, let L denote the set of all LTLff knowledge
bases. Following [23], we consider the following computational problems:

ExactI Input: K ∈ L, x ∈ R∞
≥0

Output: true iff I(K) = x

UpperI Input: K ∈ L, x ∈ R∞
≥0

Output: true iff I(K) ≤ x

LowerI Input: K ∈ L, x ∈ R∞
≥0 \ {0}

Output: true iff I(K) ≥ x

ValueI Input: K ∈ L
Output: The value of I(K)

For UpperI , the same general non-deterministic algorithm can be applied.

Theorem 2. UpperILTL
d

and UpperILTL
c

are NP-complete.

Using the results in [23] we also get the following results for the other problems.

Corollary 1. LowerILTL
d

and LowerILTL
c

are coNP-complete. ExactILTL
d

and ExactILTL
c

are in DP. ValueILTL
d

and ValueILTL
c

are in FPNP[logn].

In regard to the algorithmic implementation of our approach, a general ap-
proach of SAT encodings can be used. Corollary 1 gives a straightforward im-
plementation for an algorithm to compute the measures by combining binary
search with iterative calls to a SAT solver using an encoding of the problem Up-
per (see proof of Corollary 1). This encoding would be based on a SAT encoding
for LTLff satisfiability, which is straightforward.

6 Conclusion

In this work, we have presented an approach for measuring the severity of in-
consistencies in declarative process specifications, in particular those based on
linear temporal logic. In this regard, we introduced a paraconsistent semantics
for LTLff and developed two inconsistency measures. This provides useful in-
sights for debugging or re-modelling declarative specifications, e. g., by allowing
to compare or prioritize different inconsistencies. Here, our approach extends re-
cent works [2,3,20] on the identification of inconsistent sets in declarative process
specifications by allowing a look “into” those sets.

In future work, we aim to investigate the application of our approach to
other languages such as GSM or DCR. Note that this is however not trivial, as
the process models there might not be represented as orthogonal formulas. As a
further limitation of our work, the current approach treats time as discrete time
steps where any number of activities (within the bounds of the constraints) are
allowed to occur at the same time. Real processes may however contain activities
that take real time and may not be parallelizable because of resource constraints.
As a result, a logically equivalent inconsistency may weigh more than another.
In future work, we aim to address this issue with data-aware versions of LTLff.

Measuring Inconsistency in Declarative Process Specifications 17

References

1. Cecconi, A., De Giacomo, G., Di Ciccio, C., Maggi, F.M., Mendling, J.: A temporal
logic-based measurement framework for process mining. In: Proceedings of the 2nd
ICPM. pp. 113–120. IEEE (2020)

2. Corea, C., Nagel, S., Mendling, J., Delfmann, P.: Interactive and minimal repair
of declarative process models. In: BPM Forum, Rome. pp. 3–19. Springer (2021)

3. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies
and redundancies in declarative process models. Inf. Systems 64, 425–446 (2017)

4. Fionda, V., Greco, G.: The compl. of LTL on finite traces: Hard and easy fragments.
In: Proc. of the 30th AAAI Conference on AI, Phoenix. pp. 971–977. AAAI (2016)

5. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the 23rd IJCAI, Beijing. pp. 854–860. AAAI (2013)

6. Grant, J.: Measuring inconsistency in some branching time logics. Journal of Ap-
plied Non-Classical Logics 31, 85–107 (2021)

7. Grant, J., Hunter, A.: Measuring consistency gain and inf. loss in stepwise inc.
resolution. In: Proc. of the 11th ECSQARU, Belfast. pp. 362–373. Springer (2011)

8. Grant, J., Martinez, M.V.: Measuring Inc. in Information. College Pub. (2018)
9. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-

organizational workflows as timed dynamic condition response graphs. The Journal
of Logic and Algebraic Programming 82(5-7), 164–185 (2013)

10. Hunter, A., Konieczny, S., et al.: Shapley inc. values. KR 6, 249–259 (2006)
11. Hunter, A., Konieczny, S., et al.: Measuring inconsistency through minimal incon-

sistent sets. KR 8, 358–366 (2008)
12. Knight, K.: Measuring inconsistency. Journal of Phil. Logic 31(1), 77–98 (2002)
13. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.: A

framework for the systematic comparison and evaluation of compliance monitoring
approaches. In: 17th IEEE EDOC, Vancouver. pp. 7–16. IEEE (2013)

14. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.: Runtime verifi-
cation of ltl-based declarative process models. In: Proceedings of the 2nd RV, San
Francisco. pp. 131–146. Springer (2011)

15. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
16. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: Full support for loosely-

structured processes. In: 11th IEEE EDOC, Annapolis. pp. 287–287. IEEE (2007)
17. Pill, I., Quaritsch, T.: Behavioral diagnosis of ltl specifications at operator level.

In: 23rd International Joint Conference on Artificial Intelligence. Citeseer (2013)
18. Pnueli, A.: The temporal logic of programs. In: 18th Symposium on Foundations

of Computer Science, Rhode Island. pp. 46–57. IEEE Computer Society (1977)
19. Priest, G.: Logic of Paradox. Journal of Phil. Logic 8, 219–241 (1979)
20. Roveri, M., Di Ciccio, C., Di Francescomarino, C., Ghidini, C.: Computing unsat-

isfiable cores for LTLf specifications (Preprint). arXiv (2022)
21. Solomakhin, D., Montali, M., Tessaris, S., Masellis, R.D.: Verification of artifact-

centric systems. In: Proceedings of the 11th ICSOC. pp. 252–266. Springer (2013)
22. Thimm, M.: Inconsistency measurement. In: Proceedings of the 13th International

Conference on Scalable Uncertainty Management, Compiègne. Springer (2019)
23. Thimm, M., Wallner, J.P.: On the complexity of inc. meas. AI 275, 411–456 (2019)
24. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Proceedings of the

7th TACAS, Italy. pp. 1–22. Springer (2001)

	Measuring Inconsistency inDeclarative Process Specifications

