
Characterising Serialisation Equivalence for Abstract
Argumentation

Lars Bengel, Julian Sander and Matthias Thimm

Artificial Intelligence Group, University of Hagen, Germany

Abstract. We introduce the notion of serialisation equivalence,
which provides a notion of equivalence that takes the underlying
dialectical structure of extensions in an argumentation framework
into account. Under this notion, two argumentation frameworks are
considered equivalent if they possess not only the same extensions
wrt. some semantics but also the same serialisation sequences. A se-
rialisation sequence is a decomposition of an extension into a series
of minimal acceptable sets and essentially offers insight into the or-
der in which arguments need to brought forward to resolve the con-
flicts and to justify a particular position in the argumentation frame-
work. We analyse serialisation equivalence in detail and show that it
is generally more strict than standard equivalence and less strict than
strong equivalence. Furthermore, we provide a full analysis of the
computational complexity of deciding serialisation equivalence.

1 Introduction
The (abstract) argumentation frameworks as introduced by
Dung [11] have emerged as an important formalism for knowl-
edge representation and reasoning. Due to their argumentative na-
ture, they are well suited to provide human-understandable explana-
tions [1, 15]. Many recent works on the topic of explainable AI are
concerned with argumentation-based approaches, see e. g. [10, 20]
for an overview. An argumentation framework (AF) consists of a set
of arguments and an attack relation between these arguments and we
can simply represent it as a directed graph. Reasoning in abstract
argumentation is done via argumentation semantics [2], which deter-
mine sets of arguments (called extensions) that are considered jointly
acceptable wrt. different criteria. For instance, the basic property of
admissibility requires a set to be conflict-free and to defend all of
its arguments. Maximal admissible sets are then called preferred ex-
tensions. As a form of defeasible reasoning, formal argumentation is
inherently linked to dialectics [13, 9]. A major aspect of dialectics
is its procedural nature, where arguments are followed by counter-
arguments (and so on) [13, 18]. Although an AF models this well
syntactically, the procedural aspect is somewhat lost in the semanti-
cal extensions [21]. In order to adhere to the dialectics that are mod-
elled in formal argumentation, a notion of equivalence between AFs
should take into account the order in which the arguments of an ex-
tension need to be presented for it to be admissible.

Recently, the notion of serialisability for admissibility-based se-
mantics has been introduced [19], which provides a decomposition
scheme for extensions into a series of non-empty minimal admissi-
ble sets, called serialisation sequences. These serialisation sequences
provide a deeper insight into the acceptability than the extension it-
self. In particular, they provide a view of the order in which the ar-

guments of the extension need to be accepted, highlighting which
conflicts in the argumentation framework need to be resolved be-
fore others can be addressed. From a dialectical perspective, it seems
only natural to take this additional information into account when
deciding the equivalence of two AFs. For instance, the AFs in Fig-
ure 1 are considered equivalent wrt. preferred semantics under the
standard equivalence notion since they both only have the preferred
extension {a, c}. However, from a dialectical point of view, it would
be sensible to consider them not equivalent, since the reason for the
acceptance of this extension clearly differs for both AFs. In F1 the
argument a defends c, while it is the other way around in G1.

F1 : a b c G1 : a b c

Figure 1. The AFs F1 and G1 which are equivalent wrt. preferred
semantics.

A stricter equivalence notion is needed to distinguish the AFs F1

and G1 from above. One prominent approach to distinguish these
kinds of AFs is strong equivalence [16], where two AFs F and G
are only considered equivalent if they possess the same extensions
after being conjoined with some arbitrary AF H (see Section 3). For
that reason, the AFs in Figure 1 are not strongly equivalent wrt. pre-
ferred semantics. However, the strictness of this equivalence notion
means that, for example, the AFs F2 and G2 from Figure 2 are not
strongly equivalent wrt. preferred semantics, even though they can
reasonably be considered equivalent. Both frameworks have a de-
fending d against b and c, with the only difference being the two
attacks between the always rejected arguments b and c. From a di-
alectical point of view, these attacks are insignificant as they do not
influence the acceptable sets of argument, and so we might want to
consider these AFs to be equivalent. In particular, one might argue
that the underlying reasoning behind the only preferred conclusion
{a, d} is the same in both F2 and G2: a refutes both b and c and thus
makes d acceptable.

F2 :

a b

c d

F2 :

a b

c d

Figure 2. The AFs F2 and G2 which are not strongly equivalent
wrt. preferred semantics.

In this work, we introduce the notion of serialisation equivalence,
which provides a stronger notion of equivalence than the standard
equivalence notion by incorporating the additional implicit informa-



tion about the order of argument acceptance and the order of con-
flict resolution within an extension. Specifically, serialisation equiv-
alence provides a notion to compare AFs based on the actual underly-
ing reasoning that they represent and not only whether they come to
the same semantical conclusions. We investigate the relationship be-
tween serialisation equivalence wrt. different semantics and to strong
and standard equivalence. In particular, our results show that serial-
isation equivalence is generally at least as strict as standard equiva-
lence and less strict than strong equivalence. Interestingly, we have
that standard and serialisation equivalence coincide for admissibility,
along with serialisation equivalence wrt. preferred semantics. Fur-
thermore, we analyse serialisation equivalence in terms of complex-
ity, which turns out to be as hard as deciding the complement prob-
lem of credulous acceptance.

To summarise, the main contributions of this work are as follows:

1. We characterise serialisation equivalence and investigate the re-
lations between the equivalence wrt. different semantics (Sec-
tion 4.1).

2. We examine its relation to standard and strong equivalence for a
wide series of semantics (Section 4.2).

3. We provide a full analysis of the computational complexity of de-
ciding serialisation equivalence (Section 5).

In Section 2 we recall the necessary background on argumentation
frameworks and serialisability and in Section 3 we discuss relevant
equivalence notions from the literature. Section 6 concludes the pa-
per.

The proofs of all technical results can be found in the supplemen-
tary material1.

2 Preliminaries
An (abstract) argumentation framework (AF) is a tuple F = (A,R)
where A is a finite set of arguments and R is a relation R ⊆ A ×
A [11]. For two arguments a, b ∈ A, the relation aRb means that a
attacks b. For a set S ⊆ A, we denote by F |S = (S,R ∩ (S × S))
the projection of F on S. For a set S ⊆ A we define S+

F = {a ∈
A | ∃b ∈ S : bRa} and S−F = {a ∈ A | ∃b ∈ S : aRb}. For a
singleton set S, we omit brackets for readability, i. e., we write a−F
(a+

F ). For two sets S and S′ we write SRS′ iff S′∩S+
F ̸= ∅. We say

that a set S ⊆ A is conflict-free iff for all a, b ∈ S it is not the case
that aRb. A set S defends an argument b ∈ A iff for all a with aRb
there is c ∈ S with cRa. Furthermore, a set S is called admissible
(ad) iff it is conflict-free and S defends all a ∈ S.

We define different semantics by imposing constraints on admis-
sible sets [2]. In particular, an admissible set E is

• complete (co) iff for all a ∈ A, if E defends a then a ∈ E,
• grounded (gr) iff E is complete and minimal,
• preferred (pr) iff E is maximal,
• stable (st) iff E ∪ E+

F = A,
• a strongly admissible (sa) iff E = ∅ or each a ∈ E is defended

by some strongly admissible E′ ⊆ E \ {a}.

All statements on minimality/maximality are meant to be wrt. set in-
clusion. For the context of this work we consider ad to be a semantics
itself. For any semantics σ let σ(F ) denote the set of σ-extensions
of F .

Non-empty minimal admissible sets have been coined initial sets
by Xu and Cayrol [22].

1 https://mthimm.de/misc/lbjsmt_ecai24_appendix.pdf

Definition 1. For F = (A,R), a set S ⊆ A with S ̸= ∅ is called an
initial set if S is admissible and there is no admissible S′ ⊊ S with
S′ ̸= ∅.

With IS(F ) we denote the set of initial sets of F . We differentiate
between three types of initial sets [19].

Definition 2. For F = (A,R) and S ∈ IS(F ), we say that

1. S is unattacked iff S− = ∅,
2. S is unchallenged iff S− ̸= ∅ and ∄S′ ∈ IS(F ) with S′RS,
3. S is challenged iff ∃S′ ∈ IS(F ) with S′RS.

In the following, we denote with IS̸←(F ), IS̸↔(F ), and IS↔(F )
the set of unattacked, unchallenged, and challenged initial sets, re-
spectively. Furthermore, we recall the definition of the reduct [6].

Definition 3. For F = (A,R) and S ⊆ A, the S-reduct FS is
defined via FS = F |A\(S∪S+).

Example 1. Consider the AF F3 in Figure 3. The minimal ad-
missible sets of F3 are {a}, {d} and {f}. We have that {a} and
{d} attack each other, meaning both are challenged initial sets.
On the other hand, {f} is attacked by c, but since c is not in
any admissible set itself it follows that {f} is an unchallenged
initial set of F3. Consider, for instance, the {d}-reduct F

{d}
3 =

({b, c, f}, {(b, c), (c, c), (c, f), (f, c)}). In this AF, {f} is still an
unchallenged initial set, but in addition to that {b} is now an
unattacked initial set of F {d}3 , since its only attacker e is no longer
part of the AF.

F3 :

a b c

d e f

Figure 3. The AF F3 with the initial sets {a}, {d} and {f}.

We recall serialisability [19, 8], which is a property of a semantics
that allows us to characterise extensions in a constructive manner. For
that we define the serialisation sequence S which is a decomposition
of an extension into a series of initial sets.

Definition 4. A serialisation sequence for F = (A,R) is a sequence
S = (S1, . . . Sn) with S1 ∈ IS(F ) and for each 2 ≤ i ≤ n we have
that Si ∈ IS(FS1∪···∪Si−1).

As shown in [8], a serialisation sequence (S1, . . . Sn) induces an
admissible set E = S1 ∪ · · · ∪ Sn and for every admissible set there
is at least one such sequence. Recalling the distinction between ini-
tial sets from Definition 2, one can further restrict the serialisation
sequences to characterise a wide variety of admissibility-based se-
mantics [19].

Theorem 1. Let F = (A,R) be an argumentation framework and
E ⊆ A. We have that:

• E ∈ ad(F ) if and only if there is a serialisation sequence
(S1, . . . , Sn) with E = S1 ∪ · · · ∪ Sn.

• E ∈ co(F ) if and only if there is a serialisation sequence
(S1, . . . , Sn) with E = S1 ∪ · · · ∪ Sn and it holds that
IS̸←(FS1∪···∪Sn) = ∅.



• E ∈ gr(F ) if and only if there is a serialisation sequence
(S1, . . . , Sn) with E = S1 ∪ · · · ∪ Sn and for all Si, i =
1, . . . , n, it holds that Si ∈ IS̸←(FS1∪···∪Si−1) and it holds that
IS̸←(FS1∪···∪Sn) = ∅.

• E ∈ pr(F ) if and only if there is a serialisation sequence
(S1, . . . , Sn) with E = S1 ∪ · · · ∪ Sn and it holds that
IS(FS1∪···∪Sn) = ∅.

• E ∈ st(F ) if and only if there is a serialisation sequence
(S1, . . . , Sn) with E = S1 ∪ · · · ∪ Sn and it holds that
FS1∪···∪Sn = (∅, ∅).

• E ∈ sa(F ) if and only if there is a serialisation sequence
(S1, . . . , Sn) with E = S1∪· · ·∪Sn and for all Si, i = 1, . . . , n,
it holds that Si ∈ IS̸←(FS1∪···∪Si−1).

Furthermore, we also consider the unchallenged semantics [19, 7],
which is directly defined in terms of serialisation sequences.

Definition 5. Let F = (A,R) be an AF. Then uc(F ) is the set that
contains exactly those sets E ⊆ A for which there is a serialisation
sequence (S1, . . . , Sn) with E = S1 ∪ · · · ∪ Sn and for all Si it
holds that Si ∈ IS̸←(FS1∪···∪Si−1) ∪ IS̸↔(FS1∪···∪Si−1) and it
holds that IS̸←(FS1∪···∪Sn) ∪ IS̸↔(FS1∪···∪Sn) = ∅.

We denote with Σ = {ad, co, gr, st, pr, sa, uc} the set of serialis-
able semantics. For an argumentation framework F , we denote with
Sσ(F ) the set of all serialisation sequences of F wrt. the semantics
σ.

Example 2. Consider the AF F3 in Figure 3. We have that {b, d, f}
is a preferred extension of F3. Corresponding to that, we have the
preferred serialisation sequence S1 = ({d}, {b}, {f}). As explained
in Example 1, {d} is an initial set of F3 and {b} is an initial set
of F {d}3 . Clearly, {f} is an initial set of F {b,d}3 = ({f}, ∅) and
IS(F {b,d,f}3 ) = ∅. Note that S2 = ({f}, {d}, {b}) is the only other
preferred serialisation sequence for the extension {b, d, f}.

3 Equivalence in Abstract Argumentation
We now introduce some equivalence notions for argumentation
frameworks from the literature. First, we consider standard equiv-
alence wrt. some semantics σ, which is simply defined via the equiv-
alence of the set of σ-extensions.

Definition 6. Let F and G be argumentation frameworks. We say
that F and G are equivalent to each other wrt. a semantics σ, written
as F ≡σ G, if and only if we have that σ(F ) = σ(G).

Example 3. Consider the AFs F1 and G1 in Figure 1. We have that
F1 ≡pr G1, since pr(F1) = pr(G1) = {{a, c}}. On the other hand,
we have F1 ̸≡ad G1 since {a} ∈ ad(F1) and {a} /∈ ad(G1).

A more restrictive approach to equivalence is provided by the
notion of strong equivalence wrt. some semantics σ. It was origi-
nally introduced with the intention of providing a notion of equiva-
lence in a dynamic argumentation scenario [16]. Intuitively, strong
equivalence requires that both frameworks are still equivalent af-
ter being conjoined with another framework H . For two argumen-
tation frameworks F = (A,R) and F ′ = (A′,R′) we define
F ∪ F ′ = (A ∪A′,R∪R′).

Definition 7. Let F and G be argumentation frameworks. We say
that F and G are strongly equivalent to each other wrt. a seman-
tics σ, written as F ≡s

σ G, if and only if for each argumentation
framework H , we have that σ(F ∪H) = σ(G ∪H).

To facilitate deciding strong equivalence wrt. a semantics σ,
so called kernels have been introduced that remove semantically
redundant attacks from an AF [16]. The different kernels k ∈
{sk, ak, gk, ck} of an AF F = (A,R) are defined as F k =
(A,Rk), with

Rsk = R \ {(a, b) | a ̸= b, (a, a) ∈ R} (1)

Rak = R \ (2)

{(a, b) | a ̸= b, (a, a) ∈ R, {(b, a), (b, b)} ∩ R ̸= ∅}

Rgk = R \ (3)

{(a, b) | a ̸= b, (b, b) ∈ R, {(a, a), (b, a)} ∩ R ̸= ∅}

Rck = R \ {(a, b) | a ̸= b, (a, a) ∈ R, (b, b) ∈ R} (4)

As the following theorem from [16] shows, strong equivalence can
be characterised by kernel identity.

Theorem 2. Let F and G be argumentation frameworks. It holds
that

1. F sk = Gsk if and only if F ≡s
st G,

2. F ak = Gak if and only if F ≡s
ad G,

3. F ak = Gak if and only if F ≡s
pr G,

4. F gk = Ggk if and only if F ≡s
gr G,

5. F ck = Gck if and only if F ≡s
co G.

While the strongly admissible semantics has not been considered
in [16], the following result follows easily.

Proposition 1. Let F and G be argumentation frameworks. It holds
that F gk = Ggk if and only if F ≡s

sa G.

As a side product of the above, we have that the σ-extensions of
an AF and its respective kernel framework are the same.

Corollary 1. Let F be an AF. Then it holds that

1. st(F ) = st(F sk),
2. σ(F ) = σ(F ak), for σ ∈ {ad, pr},
3. σ(F ) = σ(F gk), for σ ∈ {gr, sa},
4. co(F ) = co(F ck).

Example 4. Consider the AFs F4 and G4 in Figure 4. For the
admissible semantics, the kernel F ak

4 of F4 removes only the at-
tack (b, c), as depicted in Figure 4. For the ad-kernel Gak

4 of G4,
we remove the attack (b, a) from G4, thus we have that F ak

4 =
Gak

4 and it follows that F4 ≡s
ad G4. The same holds true for

the stable semantics, i. e., F4 ≡s
st G4. Conversely, we have that

F4 ̸≡s
gr G4, since F gk

4 = ({a, b, c}, {(a, b), (b, b), (b, c)}) and
Ggk

4 = ({a, b, c}, {(b, a), (b, b), (c, b)}).

a b

c

F4 :

a b

c

G4 :

a b

c

F ak
4 :

Figure 4. The AFs F4 and G4 and their ad-kernel framework.

4 Serialisation Equivalence
We now introduce a novel notion of equivalence that compares
argumentation frameworks based on their serialisation sequences
(wrt. some σ ∈ Σ).



Definition 8. Let F and G be argumentation frameworks. We say
that F and G are serialisation equivalent to each other wrt. a seman-
tics σ, written as F ≡se

σ G, if and only if we have that Sσ(F ) =
Sσ(G).

Intuitively, under serialisation equivalence we take into account
every possible sequence in which the arguments of each extension E
can be accepted in order to construct the extension. That is, we are
considering more dialectical information, in the form of the order in
which arguments of an extension may be accepted, when comparing
argumentation frameworks.

With this new notion of serialisation equivalence, we can now ap-
propriately handle the argumentation frameworks from Section 1, as
shown by the following example.

Example 5. With this equivalence notion, we can now distinguish
between the AFs F1 and G1 in Figure 1. We have that F1 ̸≡se

σ G1

for any σ ∈ Σ. For instance, the only preferred serialisation se-
quence of F1 is ({a}, {c}), while the only preferred sequence of G1

is ({c}, {a}), highlighting that the extension {a, c} is constructed
differently in both frameworks.

Consider now the AFs F2 and G2 in Figure 2. We have that
F2 ≡se

σ G2 for any semantics σ ∈ Σ, because, for example, the only
preferred serialisation sequence of both F2 and G2 is ({a}, {d}).

Example 6. Consider the AFs F5, G5 and H5 in Figure 5. For the
complete semantics, we have that F5 ≡se

co G5. For both AFs there
exist two serialisation sequences: the empty sequence S0 and S1 =
({d}, {a}). On the other hand we have F5 ̸≡se

co H5, because the
AF H5 has, besides S0 and S1, the complete serialisation sequences
S2 = ({a}, {d}) and S3 = ({a}). Note that we also have F5 ̸≡co

H5, since {a} /∈ co(F5). Clearly, the same holds for G5 and H5.

F5 :

a b

c d

G5 :

a b

c d

H5 :

a b

c d

Figure 5. The AFs F5, G5 and H5 from Example 6.

In the following, we analyse the relationships between serialisa-
tion equivalence wrt. all semantics in Σ. Afterwards, we investi-
gate the relation of serialisation equivalence to existing equivalence
notions, namely standard equivalence and strong equivalence (Sec-
tion 4.2). We then provide a comprehensive overview over the rela-
tionships between the three types of equivalences wrt. all considered
semantics.

4.1 Relation between Serialisation Equivalences
wrt. different Semantics

Table 1 shows the relations between all semantics wrt. serialisa-
tion equivalence. Interestingly, we have that serialisation equivalence
wrt. admissible and preferred semantics coincide. The same holds
true for the strongly admissible and grounded semantics. Analo-
gously to strong equivalence, serialisation equivalence wrt. complete
semantics implies serialisation equivalence wrt. admissible (pre-
ferred) semantics, a relation that does not hold for standard equiv-
alence. Serialisation equivalence wrt. the unchallenged semantics is
implied by admissible (preferred) and thus, by transitivity, also by the
complete semantics. These results are summarised in Theorem 3 (its

Table 1. Relations between serialisation equivalence wrt. different
semantics. For line σ1 and column σ2, the table reads as ’serialisation

equivalence wrt. σ1 implies serialisation equivalence wrt. σ2’. A ✓indicates
that the relation holds for all AFs, while ✗ indicates that it does not hold and

the corresponding superscript refers to the counterexample below.

⇒ ad co gr pr st uc sa
ad ✓ ✗7 ✗7 ✓ ✗7 ✓ ✗7

co ✓ ✓ ✗8 ✓ ✗8 ✓ ✗8

gr ✗9 ✗9 ✓ ✗9 ✗9 ✗10 ✓
pr ✓ ✗7 ✗7 ✓ ✗7 ✓ ✗7

st ✗11 ✗11 ✗11 ✗11 ✓ ✗11 ✗11

uc ✗9 ✗7 ✗7 ✗9 ✗7 ✓ ✗7

sa ✗9 ✗9 ✓ ✗9 ✗9 ✗10 ✓

proof can be found in the supplementary material). All other relations
do not hold in general, as shown by the following series of examples.
Most notably, while standard (strong) equivalence wrt. grounded se-
mantics is implied by equivalence wrt. complete semantics, this rela-
tion does not hold for serialisation equivalence (see Example 8).

Theorem 3. Let F,G be AFs. Then it holds that

1. F ≡se
ad G if and only if F ≡se

pr G,
2. If F ≡se

ad G, then F ≡se
uc G,

3. If F ≡se
pr G, then F ≡se

uc G,
4. If F ≡se

co G, then F ≡se
pr G,

5. If F ≡se
co G, then F ≡se

ad G,
6. If F ≡se

co G, then F ≡se
uc G,

7. F ≡se
sa G if and only if F ≡se

gr G.

Note that, in all of the following examples self-attacks are only
used for the sake of making the examples easier to read. They can be
substituted by any structure that contains only non-acceptable argu-
ments, e. g., odd cycles. This is one of the advantages of serialisation
equivalence when compared to strong equivalence, which relies en-
tirely on the existence of self-attacks.

In general, the non-implications between semantics come down to
how the different types of initial sets are treated by the semantics
(see Theorem 1). In particular, in the Examples 7 and 8 we have an
unattacked initial set in the first AF which is only unchallenged initial
in the second AF. That then leads to different serialisation sequences
for the semantics where initial sets of a different type are actually
treated differently. The grounded and strongly admissible semantics
allow only unattacked initial sets to be selected and a serialisation
sequence is only in Sco iff there are no unattacked initial sets left.

Example 7. Consider the AFs F6 and G6 in Figure 6. We have that
F6 and G6 are serialisation equivalent wrt. σ ∈ {ad, pr, uc}, but not
serialisation equivalent wrt. σ ∈ {co, gr, sa, st}. For instance, the
ad, pr and uc serialisation sequences for F6 and G6 are the empty
sequence and ({a}), while for gr and saF6 has only the serialisation
sequence ({a}) and G6 has only the empty sequence.

F6 :

a b

c

G6 :

a b

c

Figure 6. The AFs F6 and G6 from Example 7.

Example 8. Consider the AFs F7 and G7 in Figure 7. We have that
F7 and G7 are serialisation equivalent wrt. σ ∈ {ad, co, pr, uc},



but not serialisation equivalent wrt. σ ∈ {gr, st, sa}. Both AFs have
two complete sequences: ({c}, {b}) and ({b}, {c}). However, we
have that ({b}) ∈ IS̸↔(G7) and thus ({b}, {c}) is not a grounded
sequence of G7. Note that ({c}, {b}) is still a grounded serialisa-
tion sequence of G7 since in the reduct G{c}7 the set {b} is then
unattacked initial. Highlighting nicely the difference that in a com-
plete extension an argument may defend itself, while for the grounded
(and every strongly admissible) extension arguments must always be
defended by other arguments in the extension. This information is
intrinsically contained in the grounded and strongly admissible seri-
alisation sequences.

F7 :

a b

c

G7 :

a b

c

Figure 7. The AFs F7 and G7 from Example 8.

As the following example shows, for the semantics gr, sa and uc
the fact that they disregard challenged initial sets comes into play and
rules out an implication to equivalence wrt. the other semantics.

Example 9. Consider the AFs F8 and G8 in Figure 8. We have that
F8 and G8 are serialisation equivalent wrt. σ ∈ {gr, uc, sa}, but not
serialisation equivalent wrt. σ ∈ {ad, co, pr, st}. F8 has only two
ad serialisation sequences: the empty sequence and ({a}). Clearly,
for G8 we additionally have multiple sequences containing the chal-
lenged initial sets {b} or {c}, e. g., ({a}, {b}) or ({c}). The same
holds for all semantics that allow challenged initial sets to be in-
cluded.

F8 :

a b

c

G8 :

a b

c

Figure 8. The AFs F8 and G8 from Example 9.

Since the grounded and strongly admissible semantics also disre-
gard unchallenged initial sets, that rules out an implication onto the
unchallenged semantics as shown in the following example.

Example 10. Consider the AFs F9 and G9 in Figure 9. We have
that F9 and G9 are serialisation equivalent wrt. σ ∈ {gr, sa}, but
not serialisation equivalent wrt. σ ∈ {ad, co, pr, st, uc}. Note that
{b} ∈ IS̸←(G9) but {b} /∈ IS(F9). That allows all semantics be-
sides gr and sa to select it as the first set in a serialisation sequence.
So ({c}, {b}) is a sequence for all semantics, while ({b}, {c}) is a
serialisation sequence of G9 but not F9 for ad, co, pr, st and uc.

F9 :

a b

c

G9 :

a b

c

Figure 9. The AFs F9 and G9 from Example 10.

Finally, for the stable semantics the fact that no serialisation se-
quence may exist comes into play which rules out any implication in
both directions, cf. Examples 7 and 11.

Example 11. Consider the AFs F10 and G10 in Figure 10. We have
that F10 and G10 are serialisation equivalent wrt. σ ∈ {st}, but not
serialisation equivalent wrt. σ ∈ {ad, co, gr, pr, uc, sa}. Both AFs
have no stable sequence, while F10 has the sequence ({b}) for all of
the other semantics and G10 only the empty sequence.

F10 : a b G10 : a b

Figure 10. The AFs F10 and G10 from Example 11.

4.2 Relation to Standard and Strong Equivalence

In the following, we show that our notion of serialisation equivalence
constitutes a middle ground between the very loose standard equiva-
lence and the very strict strong equivalence. As shown by Theorem 4,
serialisation equivalence is at least as strict as standard equivalence
for all semantics, i. e., serialisation sequence wrt. some semantics σ
implies standard equivalence wrt. the same semantics.

Theorem 4. Let σ ∈ Σ be a semantics. For any two argumentation
frameworks F and G, if F ≡se

σ G, then it follows that F ≡σ G.

Conversely, the other direction does not hold in general for most
of the serialisable semantics, as shown by the following example.

Example 12. Consider the argumentation frameworks F1 and G1

from Figure 1. We have that pr(F1) = gr(F1) = co(F1) =
st(F1) = uc(F1) = {{a, c}} = pr(G1) = gr(G1) = co(G1) =
st(G1) = uc(G1). Thus F1 and G1 are equivalent wrt. pr, gr, co,
st and uc semantics. However, they are not serialisation equiva-
lent wrt. any of those semantics. For all of the above semantics we
only have one serialisation sequence for the extension {a, c} in F1,
namely ({a}, {c}). On the other hand, for G1 the only serialisation
sequence is ({c}, {a}) for all of the above semantics. Thus, F ≡σ G
does not imply F ≡se

σ G in general for σ ∈ {pr, gr, co, st, uc}.

Notably, only for the (strong) admissible semantics does the re-
verse direction also hold, as stated in Propositions 2 and 3. This
means, standard equivalence and serialisation equivalence wrt. ad-
missible semantics coincide, along with serialisation equivalence
wrt. preferred semantics. The same is true for standard and seriali-
sation equivalence wrt. the strongly admissible semantics and serial-
isation equivalence wrt. grounded semantics.

Proposition 2. Let F,G be argumentation frameworks. It holds that
ad(F ) = ad(G) if and only if Sad(F ) = Sad(G).

Proposition 3. Let F,G be argumentation frameworks. It holds that
sa(F ) = sa(G) if and only if Ssa(F ) = Ssa(G).

So we have that serialisation equivalence is generally stricter than
standard equivalence for all semantics with the exception of admis-
sibility and strong admissibility, where it coincides with standard
equivalence. This ties in nicely with the dialectical aspects mentioned
in the introduction. Essentially, standard equivalence only takes into
account the possible conclusions (i. e., the extensions) of the discus-
sion modelled in the AF. On the other hand, under serialisation equiv-
alence the order in which the conflicts have to be resolved is taken
into consideration. This means serialisation equivalence provides a
notion to determine if two AFs represent not only the same conclu-
sions but also if they are justified in the same way.



Before we turn to the relation of serialisation equivalence and
strong equivalence, we consider first the unchallenged semantics for
which no kernel characterisation has been established yet. As the fol-
lowing result in Proposition 4 shows, strong equivalence wrt. unchal-
lenged semantics coincides with strong equivalence wrt. admissible
(and preferred) semantics. That means strong equivalence wrt. un-
challenged semantics is characterised by the admissible kernel.

Proposition 4. Let F,G be argumentation frameworks. It holds that

F ≡s
ad G iff F ≡s

pr G iff F ≡s
uc G.

We examine now the relationship between serialisation and strong
equivalence (wrt. some semantics σ). As it turns out, we have that
strong equivalence implies serialisation equivalence wrt. the same se-
mantics. Only the stable semantics presents a special case. We show
the implication of strong equivalence onto serialisation equivalence
via the syntactic kernel characterisation of strong equivalence for the
different semantics (see Equations (1)-(4)). In particular, we show
that the set of serialisation sequences Sσ(F ) of an AF is always the
same as the serialisation sequences Sσ(F

k) of its kernel framework
F k wrt. the corresponding strong equivalence kernel.

Lemma 1. Let F = (A,R) be an argumentation framework. Then
the following statements hold

1. Sad(F ) = Sad(F
ak),

2. Spr(F ) = Spr(F
ak),

3. Suc(F ) = Suc(F
ak),

4. Ssa(F ) = Ssa(F
gk),

5. Sgr(F ) = Sgr(F
gk),

6. Sco(F ) = Sco(F
co).

The following theorem summarises the implication between
strong equivalence and serialisation equivalence.

Theorem 5. Let σ ∈ {ad, pr, uc, sa, gr, co} be a semantics. For
any two argumentation frameworks F and G, if F ≡s

σ G then it
follows that F ≡se

σ G.

The reverse direction does not hold for any serialisable seman-
tics in general, i. e., serialisation equivalence does not imply strong
equivalence for any semantics σ ∈ Σ.

Example 13. Consider the AFs F11 and G11 in Figure 11. For any
semantics σ ∈ Σ we have that F11 ≡se

σ G11 and F11 ̸≡s
σ G11. For

all semantics, there exists only one serialisation sequence ({a}) for
the extension {a} for both AFs. While the empty set is also admis-
sible, trivially it also has the same empty serialisation sequence in
both AFs. On the other hand F11 and G11 are not strongly equiv-
alent wrt. any of the above semantics. For any semantics σ, con-
sider the AF H = ({a, c}, {(c, a)}). Then σ(F11 ∪H) = {{c}} ̸=
{{b, c}} = σ(G11 ∪H) and thus F11 ̸≡s

σ G11.

F11 : a b G11 : a b

Figure 11. The AFs F11 and G11 which are serialisation equivalent
wrt. σ ∈ {ad, pr, sa, gr, co, st, uc}, but not strongly equivalent wrt. those

semantics.

As the following example shows, for the case of stable semantics
strong equivalence of two AFs does not necessarily imply serialisa-
tion equivalence wrt. stable semantics.

Example 14. Consider the AFs F12 and G12 in Figure 12. G12 is the
sk-kernel of F12, thus both AFs are strongly equivalent wrt. stable
semantics. However, they are not serialisation equivalent wrt. sta-
ble semantics. The only stable serialisation sequence for F12 is
S1 = ({c}, {a}), while G12 has two stable serialisation sequences
S1 and S2 = ({a}, {c}). In other words, under strong equivalence,
the information that c defends a gets lost in the kernel framework
while serialisation equivalence takes this into account.

F12 : a b c G12 : a b c

Figure 12. The AFs F12 and G12 are strongly equivalent wrt. stable
semantics but not serialisation equivalent.

As follows from Examples 13 and 14, for the stable semantics we
can establish that serialisation equivalence and strong equivalence
are independent of each other.

Proposition 5. Let F an G be argumentation frameworks. Then
F ≡se

st G does not generally imply F ≡s
st G and vice versa.

The above results and the examples highlight an important advan-
tage of serialisation equivalence compared to strong equivalence. Re-
call that strong equivalence can be decided on a syntactical level by
simply comparing the kernels. For every kernel, this comes down to
checking whether some attacks from or to self-attacking arguments
are redundant. That means, in the absence of self-attacks strong
equivalence collapses to exact syntactic equivalence of the graphs.
This is not the case for serialisation equivalence, which yields the
same distinctive equivalence notions for odd-cycle-free argumenta-
tion frameworks (except equivalence wrt. the stable semantics, which
coincides with preferred semantics in such frameworks).

4.3 Summary of Results

Together with the results from Section 4.1, we can now establish a
comprehensive picture of the relationships between standard, seri-
alisation and strong equivalence wrt. to the different semantics, de-
picted in Figure 13. The equivalence notions are ordered by strictness
from left to right. Strong equivalence being the strictest and standard
equivalence being the most relaxed. The semantics are arranged from
top to bottom.

Generally, all three equivalence notions behave quite similarly,
but there are some interesting differences to be observed. For in-
stance, while equivalence wrt. complete semantics implies equiva-
lence wrt. grounded semantics for both strong and standard, this re-
lation does not hold for serialisation equivalence. Similarly, while
equivalence wrt. complete semantics implies equivalence wrt. admis-
sible semantics for strong and serialisation equivalence, this does not
hold anymore for standard equivalence. Notably, while equivalence
wrt. admissible and preferred semantics coincide for strong and seri-
alisation equivalence, this relation gets weakened for standard equiv-
alence to just an implication. We can observe the same behaviour
for the strongly admissible and grounded semantics. Perhaps most
interesting is the fact that standard and serialisation equivalence co-
incide for the admissible semantics, along with serialisation equiva-
lence wrt. preferred semantics. Again, this is mirrored by the strongly
admissible and grounded semantics.

For equivalence wrt. the unchallenged semantics, we have that it is
generally implied by the respective equivalence wrt. admissible se-
mantics. Notably, for strong equivalence we have an even stronger



relation, i. e., strong equivalence wrt. unchallenged semantics coin-
cides with strong equivalence wrt. admissible (and preferred) seman-
tics, as shown in Proposition 4. For strong and serialisation equiva-
lence, it is also implied by complete and preferred semantics, while
this relation disappears for standard equivalence. As established in
Proposition 5, there is no relationship between strong and serial-
isation equivalence wrt. stable semantics, but both imply standard
equivalence wrt. stable semantics.

≡s
co ≡se

co

≡s
gr

≡s
sa

≡s
pr

≡s
ad

≡s
uc

≡s
uc

≡s
st

≡se
pr

≡se
ad

≡ad

≡se
gr

≡se
sa

≡sa

≡co

≡se
uc

≡se
st

≡gr

≡pr

≡uc

≡st

Figure 13. Comprehensive depiction of the relations between all
considered equivalence notions and semantics. The non-existence of an

arrow implies that no relation exists.

5 Computational Complexity
We turn now to the complexity of deciding whether two argumen-
tation frameworks F1, F2 are serialisation equivalent wrt. some se-
mantics σ ∈ Σ. For that, we assume familiarity with the basic con-
cepts of computational complexity, in particular with the basic com-
plexity classes P, NP and coNP [17]. Furthermore, we also con-
sider the classes ΣP

2 and ΠP
2 . The ΣP

2 class denotes decision prob-
lems that are solvable in polynomial time by a non-deterministic al-
gorithm that has access to an NP-oracle, i. e., at each step of the
algorithm it can immediately obtain the answer to a NP-complete
problem. The ΠP

2 class is the complementary class of ΣP
2 , i. e.,

ΠP
2 = coΣP

2 = coNPNP.
We consider the following decision problems:

Eqse
σ Given F1 = (A1,R1) and F2 = (A2,R2),

decide whether F1 ≡se
σ F2,

coCREDσ Given F = (A,R) and a ∈ A,
decide whether there is no set S ∈ σ(F )
with a ∈ S.

The problem coCREDσ , i. e., deciding whether a given argument a
is not part of any σ-extension of F , can be reduced to the problem of
deciding serialisation equivalence wrt. some semantics σ. This puts
the problem Eqse

σ for the grounded and strongly admissible semantics
in P, while it is coNP-complete for admissible, preferred, complete
and stable semantics, cf. [12]. Additionally, in accordance to [7], we
have that Eqse

uc is ΠP
2 -complete.

Theorem 6.

1. Eqse
σ is coNP-complete, for σ ∈ {ad, pr, co, st}.

2. Eqse
σ is in P, for σ ∈ {sa, gr}.

3. Eqse
uc is ΠP

2 -complete.

For comparison, we consider the complexity of deciding strong
and standard equivalence as established in [5]. Deciding strong
equivalence can be done in L for any semantics. Determining stan-
dard equivalence wrt. grounded and strongly admissible semantics is
P-complete, while it is coNP-complete for admissible, complete and
stable semantics. Finally, standard equivalence wrt. preferred seman-
tics is ΠP

2 -complete.
That means, deciding serialisation equivalence is generally as hard

as deciding standard equivalence. Only for the preferred semantics,
we have that deciding serialisation equivalence is actually easier than
deciding standard equivalence. So, while serialisation equivalence is
on the same (or better) level of complexity as standard equivalence
is still provides a more fine-grained equivalence notion that takes the
order of argument acceptance into account.

6 Conclusion
In this work, we introduced the notion of serialisation equivalence
under which two AFs are equivalent if they possess the same set of
serialisation sequences wrt. some semantics σ. That enables it to bet-
ter take into account the dialectical aspect of argumentation by con-
sidering the order in which the conflicts in the AF must be resolved
for an extension to be accepted, thus representing an equivalence no-
tion based on the actual reasoning inside the AF and not just the
conclusions of this reasoning. We examined serialisation equivalence
in detail. In particular, we analysed the relationship between serial-
isation equivalence wrt. different semantics and its relation to other
equivalence notions from the literature, namely standard and strong
equivalence [16]. As it turns out, serialisation equivalence is gener-
ally more strict than standard equivalence and less strict than strong
equivalence. Only for the stable semantics we obtain an equivalence
notion that is independent of the respective strong equivalence no-
tion. Notably, for the admissible semantics semantics we have an ac-
cordance between serialisation and standard equivalence along with
serialisation equivalence wrt. preferred semantics. We can observe
exactly the same behaviour between strong admissibility and the
grounded semantics. Furthermore, even in AFs without self-attacks
serialisation equivalence yields distinct equivalence notions wrt. the
different semantics, which is not the case for strong equivalence. In
terms of complexity, we showed that deciding serialisation equiva-
lence wrt. some semantics σ is as hard as deciding whether some
argument is not credulously accepted wrt. σ.

While we focus our analysis in this work on standard and strong
equivalence, there exist other equivalence notions in the literature [4].
These include the expansion equivalence of [3], which is related to
strong equivalence and deals with equivalence under a restricted con-
joined AF H . For example, only allowing new attacks to be added or
only permitting outgoing attacks from H . Baumann et al. [2019] in-
troduce a general parameterised notion of equivalence that subsumes
standard and strong equivalence, also focusing on a dynamic argu-
mentation scenario. Finally, there is also the notion of defense equiv-
alence based on so-called defense semantics [14]. These semantics
make explicit the (partial) defense of arguments through a meta AF.
Two AFs are then considered equivalent if they possess the same de-
fense structure.

In future work, we intend to investigate the relation of serialisation
equivalence to the above mentioned equivalence notions from the lit-
erature. An especially interesting candidate for that are the notions of
normal and strong expansion equivalence [3], which have also been
shown to be between strong and standard equivalence.



Acknowledgements
The research reported here was partially supported by the Deutsche
Forschungsgemeinschaft (grant 375588274).

References
[1] C. Antaki and I. Leudar. Explaining in conversation: Towards an argu-

ment model. European Journal of Social Psychology, 22(2):181–194,
1992.

[2] P. Baroni, M. Caminada, and M. Giacomin. Abstract argumentation
frameworks and their semantics. In P. Baroni, D. Gabbay, M. Gia-
comin, and L. van der Torre, editors, Handbook of Formal Argumen-
tation, pages 159–236. College Publications, 2018.

[3] R. Baumann. Normal and strong expansion equivalence for argumenta-
tion frameworks. Artificial Intelligence, 193:18–44, 2012.

[4] R. Baumann and G. Brewka. The equivalence zoo for dung-style se-
mantics. Journal of Logic and Computation, 28(3):477–498, 2018.

[5] R. Baumann, W. Dvořák, T. Linsbichler, and S. Woltran. A general
notion of equivalence for abstract argumentation. Artificial Intelligence,
275:379–410, 2019.

[6] R. Baumann, G. Brewka, and M. Ulbricht. Revisiting the foundations
of abstract argumentation–semantics based on weak admissibility and
weak defense. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 2742–2749, 2020.

[7] L. Bengel and M. Thimm. Serialisable semantics for abstract argumen-
tation. In Computational Models of Argument: Proceedings of COMMA
2022, pages 80–91. IOS Press, 2022.

[8] L. Blümel and M. Thimm. A ranking semantics for abstract argumenta-
tion based on serialisability. Computational Models of Argument: Pro-
ceedings of COMMA 2022, 353:104, 2022.

[9] M. Caminada. Argumentation semantics as formal discussion. In P. Ba-
roni, D. Gabbay, M. Giacomin, and L. van der Torre, editors, Handbook
of Formal Argumentation, pages 487–518. College Publications, 2018.

[10] K. Čyras, A. Rago, E. Albini, P. Baroni, and F. Toni. Argumentative
xai: a survey. arXiv preprint arXiv:2105.11266, 2021.

[11] P. M. Dung. On the Acceptability of Arguments and its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games. Artificial Intelligence, 77(2):321–358, 1995.

[12] P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite ar-
gument systems. Artificial Intelligence, 141(1/2):187–203, 2002.
doi: 10.1016/S0004-3702(02)00261-8. URL https://doi.org/10.1016/
S0004-3702(02)00261-8.

[13] J. Hage. Dialectical models in artificial intelligence and law. Artificial
Intelligence and Law, 8(2-3):137–172, 2000.

[14] B. Liao and L. van der Torre. Defense semantics of argumen-
tation: encoding reasons for accepting arguments. arXiv preprint
arXiv:1705.00303, 2017.

[15] B. Moulin, H. Irandoust, M. Bélanger, and G. Desbordes. Explanation
and argumentation capabilities: Towards the creation of more persuasive
agents. Artificial Intelligence Review, 17(3):169–222, 2002.

[16] E. Oikarinen and S. Woltran. Characterizing strong equivalence for
argumentation frameworks. Artificial intelligence, 175(14-15):1985–
2009, 2011.

[17] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[18] N. Rescher. Dialectics: A controversy-oriented approach to the theory

of knowledge. Suny Press, 1977.
[19] M. Thimm. Revisiting initial sets in abstract argumentation. Argument

& Computation, 13(3):325–360, 2022.
[20] A. Vassiliades, N. Bassiliades, and T. Patkos. Argumentation and ex-

plainable artificial intelligence: a survey. The Knowledge Engineering
Review, 36:e5, 2021.

[21] B. Verheij. Two approaches to dialectical argumentation: admissible
sets and argumentation stages. Proc. NAIC, 96:357–368, 1996.

[22] Y. Xu and C. Cayrol. Initial sets in abstract argumentation frameworks.
In Proceedings of the 1st Chinese Conference on Logic and Argumen-
tation (CLAR’16), volume 1811, pages 72–85, 2016.


