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Abstract
(Business) Rule Bases are knowledge representation formalisms with a dis-

tinction between rules and facts. In this work, we address the issue of analyzing
potential issues in rule bases, i. e., sets of rules which cause an inconsistency only
if they are activated together. The problem of dealing with potential issues is
very common in industrial domains of knowledge representation and reasoning,
in particular in business rules management. Here, it is often not clear during
modelling which rules will be activated together. We introduce a formaliza-
tion of the above-mentioned problem and present means for the prioritization
of such issues. Also, we investigate central aspects related to computational
complexity and present an ad-hoc (online) approach for computing the set of
the most severe potential issues. We implement and evaluate our approach with
real-life datasets.

1 Introduction
(Business) rule bases are commonly used knowledge representation formalisms in
industrial domains such as Business Process Management [21, 31, 17]. In rule bases,
knowledge is represented with a distinction between rules and facts, where sets of
(provided) facts are evaluated against the set of business rules to make inferences.

As an illustrative example, consider the following rule base B1 from the financial
sector (we will formalize syntax and semantics later) with the intuitive meaning
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that we have two rules stating that 1) platinum customers are credit worthy, and 2)
customers that are on a ban-list are not credit worthy:

B1 = {creditWorthy ← platinumCustomer;
¬creditWorthy ← banList}

This rule base can be used to reason about loan applications. For this, sets of facts
(stemming from concrete customer loan applications, e. g., information about a cor-
responding customer) can be provided for making inferences. For example, consider
a provided fact set F1 = {platinumCustomer, ¬banList}. Then, using B′

1 = B1∪F1,
this allows to entail that the corresponding customer is in fact creditworthy.

Consider however a second example: If a loan application is filed by a customer
who has a platinum status but was also found in a ban list, this yields an incon-
sistency (due to contradictory conclusions creditWorthy, ¬creditWorthy). This
inconsistency arises due to an unforseen interaction of input facts, in this case:
platinumCustomer and banList. In this work, we refer to such a problematic com-
bination of rules as a potential issue (i. e., rules that could yield an inconsistency if
activated together).

Potential issues can easily arise during rule management and revision, as it is
hard, if not impossible, for human modellers to consider all combinations of rules
and check for any unwanted interactions between them. Thus, results are needed
that allow to identify all potential issues (RQ1).

In this context, it may however not be plausible to “simply” present the modeller
with a list of all potential issues, as there could be exponentially many (and it
could be highly unfeasible for the human to process this amount of information).
Therefore, further results are needed that allow to prioritize potential issues and
present these to the human ranked by their severity (RQ2). This is also necessary in
light of the complexity of computing all potential issues: As we will show, computing
all potential issues is intractable.

In this work, we address the research gaps raised via the above research questions
RQ1 and RQ2. In particular, our contributions are as follows:

1. We define the notion of potential issues (Section 3).

2. We investigate several aspects of computational complexity pertaining to the
analysis of potential issues (Section 4).

3. Towards application in practice, we present an initial ad-hoc approach for
computing a set of most severe potential issues (Section 5). Importantly, this
approach allows to compute the set of most severe potential issues without
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the need to precompute all potential issues. We implement and evaluate our
approach with real-life datasets.

Our discussion is based on preliminaries shown in Section 2 and is concluded in
Section 6.

The notion of potential issues introduced in this work is related to, yet, con-
ceptually different from the previously introduced notion of quasi-inconsistency [8].
Quasi-inconsistency describes situations where contradictory rules will always be
activated together (and cannot be activated independently from another). On the
contrary, for potential issues as discussed in this work, the individual rules can be
activated individually and can be used for reasoning in a meaningful way in such
cases. Thus, an entirely new question arises of having to analyze how likely certain
combinations of rules are activated together, which we address in this paper.

2 Preliminaries
2.1 (Business) Rule Bases

To describe rule bases, we consider a general monotonic rule-based knowledge rep-
resentation formalism [20]. For this, let A be a set of propositional atoms and L
the corresponding set of literals, i. e., L = {a,¬a | a ∈ A} where ¬ is interpreted as
classical negation. Then, a rule r has the form

r : l0 ← l1, . . . , lm. (1)

with l0, . . . , lm ∈ L and m ≥ 1 (we require rules to have a non-empty premise).
Note that the “←” is not equivalent to an implication in propositional logic but
is interpreted as a production rule (definite clauses). For example, as stated in [4]
rules of the form ¬a ← a are therefore not plausible in this setting. We denote
head(r) = l0 and body(r) = {l1, . . . , lm}, and RL as the set of all rules. A rule base
B is then a set of rules, i. e., B ⊆ RL. As shown in the introduction, fact sets can be
evaluated against the rule bases for reasoning. For this, let F ⊆ L be a set of facts.

A set M ⊆ L of literals is closed wrt. a rule base B and a fact set F , iff F ⊆M
and for every rule of the form in (1), if l1, . . . , lm ∈ M then l0 ∈ M . Here, the
F -minimal model M of a rule base B, is the smallest closed set of literals (wrt. set
inclusion). We say a set of literals M is consistent if it does not contain both a and
¬a for an atom a. Furthermore, we say a rule base B is F -consistent if its F -minimal
model is consistent. If not, we say that B is F -inconsistent. A rule base B is called
minimally F -inconsistent if
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1. F is consistent

2. B is F -inconsistent, and

3. for every F ′ ⊊ F , B is F ′-consistent.

Example 1. Consider the rule base B2 and fact set F1, defined via

B2 = {¬c← a; c← d; d← b}
F1 = {a, b}

Then we have F1 is a consistent set of facts, B2 is {a, b}-inconsistent, and there
is no proper subset S of F1 s.t. B2 is S-inconsistent, thus, B2 is minimally {a, b}-
inconsistent.

We refer the reader to [8] for some other properties of F -consistency. Note that
in this work, we consider the rule base to be acyclic, i.e., there are no cycles within
the rules (such as a ← b; b ← a).1 Some general observations for cyclic rule bases
are also provided in [8].

The introduced formalism and notion of F -inconsistency is mainly geared to-
wards definitional rules, i.e., rules that define structure [21]. In this sense, given
a rule “a platinum customer is creditworthy”, a potential issue would exist when
a second rule “a customer found on a ban-list is not creditworthy” is introduced
(cf. Section 1). Note however that the contents discussed in this work can also
be extended to behavioral rules, e.g., interpreting rules as “follows”-relations over a
sequence of time.

2.2 Related Work and Contributions
We recall the rule base B1. As discussed in Section 1, B1 contains what we call
a potential issue, which is a combination of rules that might become inconsistent,
depending on the instance-dependent fact input. The phenomenon of potential issues
is inherently related to knowledge- and rule engineering and touches multiple related
fields such as business rules management [21, 7], belief revision [2, 23], inconsistency
diagnosis/handling [27, 11], and conceptual modelling [5]. In particular, the core
problem of potential issues is the risk of invoking (classic-logical) inconsistency.

The central distinction to related works on inconsistency is satisfiability: For
knowledge that is inconsistent, there can exist no model. So in a sense, it is clear that

1Formally, for acyclic rule bases, consider the dependency graph GB of a rule base B as the
directed graph GB = (B, EB) where (r1, r2) ∈ EB for r1, r2 ∈ B iff head(r1) ∈ body(r2). Then, a
rule base is acyclic if the graph GB is acyclic.

568



Towards Handling Potential Issues in Business Rule Bases

this problem needs to be resolved for using the knowledge for (classical) reasoning as
intended – see e.g. [27], who shows how minimal correction sets can be used to resolve
inconsistency. On the contrary, if knowledge is classically consistent but contains
a potential issue, there is an almost arbitrary number of possible models. So a
novel problem of identifying such potential issues (in otherwise consistent knowledge)
arises here, which we address in this work. A related work in this direction is [4],
who studies the notion of rule inconsistency (vs. logical inconsistency). It seems
from this that for rule-systems, there are some problems “beyond” classic-logical
inconsistency, which is exactly what we address in this work, with potential issues.
Other related notions are that of incoherence [19, 13, 14] and quasi-inconsistency
[8].

Regarding inconsistency analysis in general, quantitative approaches have been
extensively studied in the context of inconsistency measurement [29]. In this regard,
a central problem which arises in our setting is that there can be vastly too many
potential issues to present to the human modeller, and thus approaches are needed
that prioritize issues, e.g., for determining resolution strategies. In general, the
problem of “recommending” an order in which elements/issues should be attended
to in the scope of re-modelling can be described as a bit underdeveloped in incon-
sistency measurement research (see [22] for an early work in this direction). Here,
we propose an approach for computing the top-k potential issues—intuitively, a set
of “most severe” potential issues—which is needed in our setting where it may be
unfeasible to attend to all issues individually. W.r.t. the classification on dimensions
on inconsistency from [32], the approach for computing the top-k potential issues
presented in this work focuses on the aspect of actions, in particular learning and
re-modelling.

Having the ability to rank potential issues by some form of severity also allows
for advanced means for inconsistency handling [24, 16, 22]. This related to the
question of what happens to the potential issues, once they are detected. The
underlying idea of our approach is very in line with ideas of paraconsistent reasoning
techniques, in such that we enable the user to determine a threshold w.r.t. “living
with” certain risks of potential issues, in favor of not having to process all potential
issues, which might be cognitively or computationally unfeasible. On the other
hand, if the severity or risk of certain issues is considered too high, suitable means
for inconsistency handling can be applied, e.g., various change operations such as
deleting or rewriting rules, modelling exceptions, or re-modelling the rule base in
general.
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3 Potential Issues in Business Rule Bases
We recall B1 from the introduction. As we have seen, this rule base contains a mod-
elling flaw, as there exists a fact combination F , s.t. B1 is F -inconsistent. Intuitively,
we therefore say that B1 contains a potential issue. Especially in industrial applica-
tion scenarios, identifying potential issues is of high interest during rule modelling,
as it is unclear at this point which combination of instance-dependent facts will be
observed “later” (during run-time). So experts may need to be aware of such risks,
such that they can assess these potential issues, e. g., as a basis for re-modelling and
improving the rule base.

For this purpose, we will define the notion of potential issues in the following.
For that, we need some further notation.

Definition 1 (Rule activation ). A set of facts X activates a finite set of rules R
iff there is a sequence < r1, . . . , rn > with {r1, . . . , rn} = R s.t.

1. body(r1) ⊆ X

2. for all i = 2, . . . , n we have body(ri) ⊆ {head(r1), . . . , head(ri−1)} ∪X

A set of facts X minimally (w.r.t. set-inclusion) activates a set of rules R iff X
activates R and there is no proper subset of X that activates R. If X (minimally)
activates R we also say that X is a (minimal) activation set of R.

Intuitively, X is a set of facts for deriving all conclusions of rules in R.

Example 2. We recall the rule base B2

B2 = {¬c← a; c← d; d← b}.

For each individual rule, its activation set consists simply of the body of the rule,
i. e., {a} is an activation set of {¬c ← a}. Furthermore, the set {b} also activates
both rules { c← d; d← b}.

We are now ready to define potential issues. The intuition we want to cap-
ture is that we want to present the modeller with the two sets of rules that can
potentially “clash”, i. e., can become inconsistent during run-time, given a certain
combination of facts is observed. So in a potential issue, we denote two sets of rules,
which relate to the “opposing” rules of the rule base that can contradict each other.
Furthermore, we denote for each of these two opposing rule sets the concrete facts
that would be needed to activate the rule sets. This duality allows the modeller to
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quickly understand the opposing sets of facts which, in combination, would yield an
inconsistency.2 In result, a potential issue is a quadruple as follows.

Definition 2 (Potential Issue). Let R1, R2 ⊆ RL be sets of rules and X1, X2 be
consistent sets of literals. A tuple (R1, X1, R2, X2) is called a potential issue iff

1. X1 \X2 ̸= ∅ and X2 \X1 ̸= ∅

2. X1 minimally activates R1.

3. X2 minimally activates R2.

4. R1 is X1-consistent and R2 is X2-consistent.

5. R1 ∪R2 is {X1 ∪X2}-inconsistent.

A tuple (R1, X1, R2, X2) is called a minimal potential issue iff there are no R′
1, R′

2,
X ′

1, X ′
2 with R′

1 ⊆ R1 and R′
2 ⊆ R2 (one of these set inclusions being proper) such

that (R′
1, X ′

1, R′
2, X ′

2) is also a potential issue. Let PotIssues(B) be the set of all
potential issues in B, and MinPotIssues(B) be the set of all minimal potential issues
in B.

In other words, a potential issue (R1, X1, R2, X2) describes a case where the
occurrence of a certain fact combination X1 ∪ X2 relative to a rule base B would
activate a combination of rules in B which entail an inconsistent conclusion. But
importantly, these rule sets are activated by different fact sets (which are, at least
partially, non-overlapping). So this means there could well be situations where the
individual rules in R1, or R2, respectively, can be activated on their own and used
properly for reasoning, however, if X1 and X2 are evaluated against the rule base
simultaneously, then an inconsistency will always arise. Hence the term: potential
issue.

Example 3. We recall the business rule base B1 from the introduction

B1 ={creditworthy ← platinumCustomer ;
¬creditworthy ← banList}.

2Note that denoting the opposing facts in two separate subsets is an important design-choice to
allow the modeller to consider a tradeoff if it possible/likely for these facts to occur simultaneously.
We will talk more about probabilities in Section 5.
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Then we have that

t1 =({creditworthy ← platinumCustomer},
{platinumCustomer},
{¬creditworthy ← banList},
{banList})

is a potential issue of B1. The tuple t1 can be read by the experts s.t. X1 and X2 in
combination (here: a customer who is both a platinum customer and is on a ban-list)
will trigger the corresponding, inconsistent rules. The expert can then decide if this
fact combination is e.g. likely to occur an whether the rules should be re-modelled
accordingly to account for this case.

The introduced notion of potential issues is related to, yet, conceptually different
from the previously introduced notion of quasi-inconsistency [8]. In short, quasi-
inconsistency refers to cases where there are rules in a rule base that will always be
activated together, but yield a contradictory conclusions, should they be activated.
For this, given R1, R2 ⊆ RL and two consistent sets of literals X1, X2 as before, a
“quasi-inconsistent tuple” (also referred to as an actual issues in [8]), is defined as
a tuple (R1, X1, R2, X2) s.t. conditions 2-5 from Definition 2 hold and X1 ⊆ X2.
In words, we have a situation where the rules in R1 and R2 cannot be activated
individually wrt. X2. This is an important distinction. With potential issues, we
have the situation that a certain fact combination could activate contradictory rules,
yet, it is in fact possible that the corresponding rules can be activated individually,
allowing to draw meaningful conclusions from them. This makes the debugging of
potential issues more challenging, as it requires to differentiate how likely certain
rules might be activated together. In summary, potential issues and actual issues
describe different types of problematic rule combinations with inherently different
resolution strategies.

Example 4. Consider the following rule bases B3–B6, defined via

B3 = {c← a; ¬c← b}
B4 = {c← a; ¬c← a}
B5 = {c← a; ¬c← a, b}
B6 = {c← a, d; ¬c← a, b}
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Then for

t2 = ({c← a}, {a}, {¬c← b}, {b})
t3 = ({c← a}, {a}, {¬c← a}, {a})
t4 = ({c← a}, {a}, {¬c← a, b}, {a, b})
t5 = ({c← a, d}, {a, d}, {¬c← a, b}, {a, b})

we have that t2 is a potential issue of B3 (but not an actual issue), t3 is an actual
issue of B4 (but not a potential issue), t4 is an actual issue of B5 (but not a potential
issue), and t5 is a potential issue of B6 (but not an actual issue). As a further
example, note that a tuple t6 = ({c ← a}, {a}, {¬c ← a, b}, {b}) would be neither a
potential or actual issue of B5, as {b} does not minimally activate {¬c← a, b}.
Corollary 1. Let B be a rule base as before and ActIssues(B) be the set of all
(minimal) actual issues in B, then PotIssues(B) ∩ ActIssues(B) = ∅.

4 Computational Complexity
We now continue with an investigation of central problems related to analyzing
potential issues in rule bases. For that, we assume familiarity with basic concepts of
computational complexity and basic complexity classes such as P and NP, see [25]
for an introduction.

We start with analysing the complexity of verification tasks pertaining to issues.

Lemma 1. Let B be a rule base, R1, R2 ⊆ B, and X1, X2 consistent sets of literals.
Checking whether (R1, X1, R2, X2) is a potential issue can be done in polynomial
time (in the size of B) and (R1, X1, R2, X2)).

Proof. We go through the properties of an issue step by step (compare with Defini-
tion 2):

1. Checking Xi \Xj ̸= ∅ is polynomial.

2. Checking that X1 activates R1 is simple forward propagation (check every rule
whether it can be activated with X1 alone; if yes add the head of that rule
to X1 and continue). This is polynomial in the number of rules in R1, the
number of literals in the bodies of rules in R1, and the size of X1. In order
to check that X1 minimally activates R1 it suffices to check whether X ′

1 ⊆ X1
where X ′

1 has exactly one fact less than X1 does not activate R1 (for all such
X ′

1, which are exactly |X1| many)
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3. Analogous for X2/R2.

4. Checking whether R1 is X1-consistent is simple forward propagation and check-
ing whether the set of derived literals is consistent; analogous for R2 and X2.

5. Checking whether R1 ∪R2 is {X1 ∪X2}-inconsistent is analogous.

This also holds for the verification of minimal potential issues.

Lemma 2. Let B be a rule base, R1, R2 ⊆ B, and X1, X2 consistent sets of liter-
als. Checking whether (R1, X1, R2, X2) is a minimal potential issue an be done in
polynomial time.

Proof. For checking whether (R1, X1, R2, X2) is an issue cf. Lemma 1. For min-
imality, check for each R′

1 ⊆ R1, R′
2 ⊆ R2, where exactly one of R′

1, R′
2 contains

one rule less, whether R′
1 ∪ R′

2 is X1 ∪ X2-consistent. Should this be the case,
(R1, X1, R2, X2) cannot be a minimal issue. Note that there are polynomially many
tuples (|R1|+ |R2|) to check, each check being polynomial, cf. Lemma 1.

For any rule base B, we are now interested if there is at least one potential issue
(as this allows to distinguish from a sound rule base). We refer to this verification
task as Dec-PI.

Dec-PI Input: Rule base B
Output: true iff there is a potential issue (R1, X1, R2, X2)

with R1, R2 ⊆ B

The above lemmas transfer to this verification task as follows.

Proposition 1. Dec-PI is NP-complete.

Proof. To show NP-membership, consider the following non-deterministic algorithm:
On input B, guess sets of rules R1, R2 with R1, R2 ⊆ B and consistent sets of literals
X1, X2. Then, if t = (R1, X1, R2, X2) is an issue of B, return true, otherwise return
false. Cf. Lemma 1 to see that this can be done in polynomial time. In result, we
have that Dec-PI ∈ NP.

To show NP-hardness, we use a reduction of the classical satisfiability problem
Sat to Dec-PI. For this, let Φ be an instance of Sat over the signature A (=set
of atoms), i. e., Φ = C1 ∧ . . . ∧ Cn where each Ci = li,1 ∨ . . . ∨ li,n(i) with literals
li,1, . . . , li,n(i) over A for i = 1, . . . , n (recall that a literal is either an atom a ∈ A
or its negation ¬a). The satisfiability problem Sat is then whether Φ is satisfiable,
i. e., whether there exists an interpretation I : A → {T, F} s. t. for all i = 1, . . . , n
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there is a k ∈ {1, . . . , n(i)} with I(l) = T (if l = li,k is an atom) or I(l′) = F (if
¬l′ = li,k is a negated atom). To show this, on input Φ, we construct a rule base
BΦ as follows: For each clause Ci for i = 1, . . . , n, we create new atoms αi and α′

i

(with the informal meaning that αi/α′
i is derivable in BΦ if Ci is satisfied). For each

clause Ci = li,1 ∨ . . . ∨ li,n(i) we then construct n(i) rules of the form

Bi = {αi ← li,1; . . . ; αi ← li,n(i); α′
i ← li,1; . . . ; α′

i ← li,n(i)}

Then, we create three new atoms π, β1, β2 and define BΦ to be composed of the
above rules and two further rules:

BΦ = B1 ∪ . . . ∪ Bn ∪ {π ← α1, . . . , αn, β1; ¬π ← α′
1, . . . , α′

n, β2}

Now, we claim that Φ is satisfiable iff BΦ contains a potential issue. We begin
by showing that satisfiability of Φ implies that there exists a potential issue in BΦ.
For this, let I be an interpretation that satisfies Φ. Without loss of generality, for
each clause Ci, let l1,i be the literal that is satisfied by I (can be easily achieved by
reordering the literals in each clause). Define X = {l1,1, . . . , l1,n} to be the set of all
these literals. Furthermore, define

R = {α1 ← l1,1; . . . ; αn ← l1,n} R′ = {α′
1 ← l1,1; . . . ; α′

n ← l1,n}
R1 = R ∪ {π ← α1, . . . , αn, β1} R2 = R′ ∪ {¬π ← α′

1, . . . , α′
n, β2}

By construction, X activates R and R′. Now let X1 ⊆ X s. t. X1 minimally activates
R, resp., let X2 ⊆ X s. t. X2 minimally activates R′. Then, define X ′

1 = X1 ∪ {β1},
and X ′

2 = X2 ∪ {β2}. Note that X1 ̸= X2. It follows that (R, X ′
1, R′, X ′

2) is a
potential issue of BΦ.

For the other direction, assume that BΦ contains a potential issue and let
(R1, X1, R2, X2) be an issue of BΦ. Observe that the only rules able to derive
contradictory claims in BΦ are the two rules with heads π and ¬π, respectively. So
one of these rules must be in R1 and the other in R2 (if they both would be in one of
them this would violate condition 4 of Definition 2). Moreover, for each such rule,
one of the literals of the corresponding clause must be present in an activation set.
From these literals, an interpretation I can be constructed satisfying all clauses Ci,
i = 1, . . . , j in analogy to the reverse direction before (note that this interpretation
is partial, not all propositions need to occur in X1 ∪X2; however, the truth value of
the remaining propositions is irrelevant and can be set arbitrary).

Finally, note that BΦ is of polynomial size wrt. Φ. This gives a polynomial-time
reduction from Sat to Dec-QI, showing NP-hardness.
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So the verification of whether a rule base contains a potential issue is indeed
intractable. Note that it is immediate to apply this result also for minimal potential
issues (for membership, apply the same non-deterministic algorithm as before and
apply a check via Lemma 2; for hardness, apply the same reduction as above and
ask whether the constructed rules are in a minimal potential issue). Also, using a
similar reduction as in [8], it is immediate to see that the problem of counting the
number of potential issues is #P-complete.3

Proposition 2. Counting the number of potential issues is #P-complete.

Proof. For #P-membership, Lemma 1 already showed that checking whether a given
tuple (R1, X1, R2, X2) is a potential issue can be decided in polynomial time. It
follows that counting the number of potential issues is in #P.

For showing hardness, we reduce the problem #1-3-SAT to our problems that
has been shown to be #P-complete in [10]. Given a formula Φ over A = {a1, . . . , am}
in 3-CNF, i. e., a formula of the form Φ = (l1,1 ∨ l1,2 ∨ l1,3) ∧ . . . ∧ (ln,1 ∨ ln,2 ∨ ln,3)
(with exactly 3 literals per clause), we ask for the number of those interpretations
I : A → {T, F} s. t. for all i = 1, . . . , n there is exactly one k ∈ {1, . . . , n(i)} with
I(l) = T (if l = li,k is an atom) or I(l′) = F (if ¬l′ = li,k is a negated atom).
We call an interpretation satisfying this condition 1-3-model of Φ. On input Φ we
construct a rule base BΦ as follows. For each clause Ci, i = 1, . . . , n, we create two
new atoms αi, α′

i (both with the informal meaning that αi/α′
i is derivable in BΦ

if Ci is satisfied). Furthermore, let ρ1 and ρ2 be two new atoms. For each clause
Ci = li,1 ∨ li,2 ∨ li,3 we construct six rules of the form

Bi = {αi ← li,1, li,2, li,3, ρ1;
αi ← li,1, li,2, li,3, ρ2;
αi ← li,1, li,2, li,3, ρ1;
αi ← li,1, li,2, li,3, ρ2;
αi ← li,1, li,2, li,3, ρ1;
αi ← li,1, li,2, li,3, ρ2}

Moreover, we create new atom δ1, . . . , δm and construct the following rules

BA = {δi ← ai; δi ← ¬ai | i = 1, . . . , m}

3#P is the complexity class of counting problems where the problem of deciding whether a
particular element has to be counted is in P.
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Then we create yet another new atoms π and define BΦ to be composed of the above
rules and two further rules:

BΦ = B1 ∪ . . . ∪ Bn ∪ BA ∪ {π ← α1, . . . , αn, δ1, . . . , δm;
¬π ← α1, . . . , αn, δ1, . . . , δm}

We now claim that the number of 1-3-models of Φ is exactly the number of potential
issues of BΦ.

Let I be a 1-3-model if Φ. Define (X ∪ {ρ1}, R1, X ∪ {ρ2}, R2) via

X = {a | a ∈ A, I(a) = T} ∪ {¬a | a ∈ A, I(a) = F}
RA = {δi ← ai | ai ∈ X} ∪ {δi ← ¬ai | ¬ai ∈ X}
R1 = RA ∪ {π ← α1, . . . , αn, δ1, . . . , δm}
∪ {αi ← li,1, li,2, li,3, ρ1 | I(li,1) = T, I(li,2) = F, I(li,3) = F, i = 1, . . . , n}
∪ {αi ← li,1, li,2, li,3, ρ1 | I(li,1) = F, I(li,2) = T, I(li,3) = F, i = 1, . . . , n}
∪ {αi ← li,1, li,2, li,3, ρ1 | I(li,1) = F, I(li,2) = F, I(li,3) = T, i = 1, . . . , n}

R2 = RA ∪ {¬π ← α1, . . . , αn, δ1, . . . , δm}
∪ {αi ← li,1, li,2, li,3, ρ2 | I(li,1) = T, I(li,2) = F, I(li,3) = F, i = 1, . . . , n}
∪ {αi ← li,1, li,2, li,3, ρ2 | I(li,1) = F, I(li,2) = T, I(li,3) = F, i = 1, . . . , n}
∪ {αi ← li,1, li,2, li,3, ρ2 | I(li,1) = F, I(li,2) = F, I(li,3) = T, i = 1, . . . , n}

Observe that for each clause Ci, i = 1, . . . , n both R1 and R2 contain exactly one rule
with head αi and that exact rule is activated by X∪{ρ1} and X∪{ρ2}, respectively.
It follows that X∪{ρ1} minimally activates R1 and X∪{ρ2} minimally activates R2.
Furthermore, X ∪{ρ1} is R1-consistent, X ∪{ρ2} is R2-consistent, and X ∪{ρ1, ρ2}
is R1 ∪ R2-inconsistent. It follows that (X ∪ {ρ1}, R1, X ∪ {ρ2}, R2) is a potential
issue of BΦ.

Conversely, let (X1, R1, X2, R2) be any potential issue. As the only derivable
conflict in RΦ is between π and ¬π, the corresponding rules must be present in R1
and R2, respectively. Assume π ← α1, . . . , αn, δ1, . . . , δm ∈ R1 then there has to be
at least one rule from {δi ← ai; δi ← ¬ai} for each i = 1, . . . , m in R1. As X1
must be consistent, not both rules can be activated, so there is exactly one of these
rules in R1. It also follows that X1 is exactly the union of the premises of that rules
and either ρ1 or ρ2. Without loss of generality, assume ρ1 ∈ X1. In order to have
X1 \X2 ̸= ∅ and X2 \X1 ̸= ∅, we must have ρ2 /∈ X1 and ρ2 ∈ X2. For each αi there
must be at least one of the three rules with head αi (where the body contains ρ1) in
R1, otherwise αi could not be derived. As at most one of these rules can be activated
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by X1, there is exactly one of the three rules in R1 (which is also activated, otherwise
(X1, R1, X1, R2) would not be a potential issue). The same applies to R2 and the
rules where the body contains ρ2. Define now an interpretation I via I(a) = T
if a ∈ X1 and I(a) = F if ¬a ∈ X1. As X1 activates each rule with head αi for
i = 1, . . . , n, I satisfies exactly one literal of each clause Ci. It follows that I is a
1-3-model of Φ.

It follows that each 1-3-model of Φ corresponds exactly to one potential issue of
BΦ. Therefore, their number is exactly the same. As BΦ is of polynomial size wrt.
Φ we have shown that counting the number of potential issues is #P-hard.

From these complexity results, we see that the intractability poses an obstacle
for applying the notion of potential issues in practice, e.g., it may be unfeasible to
compute all potential issues. To counteract this problem, we propose an approach
to compute the top-k potential issues (intuitively, a set of k most severe potential
issues), which we present in the following.

5 Application in Practice:
Computing the Top-k Potential Issues

As motivated in the introduction, analyzing a rule base for potential issues is an
important task during business rule management, as it is hard, if not impossible,
for human modellers to consider all rules and their interrelations for any unwanted
interactions. Assume a modeller needs to analyze a rule base for any potential issues.
In a naive setting, one could compute the set of all minimal potential issues via
Definition 2 and present the results to the user. However, with this naive approach,
we see two fundamental problems:

1. As shown in Section 4, the computation may be unfeasible.

2. Even if one could compute the set of all potential issues, a list of all such
potential issues may likely be too large for humans to process. This may
severely impede the ability of the human to actually leverage the presented
results for concrete actions, e.g., how to re-model the rule base.

From the two identified problems, it seems apparent that “simply” computing
the set of all potential issues may not be a viable solution in practice. Instead, only
a feasible number of results, e. g., a prioritized list, should be presented to the user.
Therefore, we present an approach to compute the top-k, i.e., “most severe”, poten-
tial issues. Importantly, we compute this limited set in an ad-hoc/online fashion,
i. e., without the need to pre-compute the entire set of potential issues in advance
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(which, as discussed, may be intractable). We build on the so-called Apriori ap-
proach from the field of associative rule learning (in relational databases) [1] for the
problem of retrieving highly problematic potential issues in rule bases. The Apriori
algorithm can be used to identify “frequent item sets” relative to certain quantitative
measures and therefore seems a good candidate for identifying a set of most severe
potential issues in our setting. Regarding the notion of a severity of a potential
issue, we argue this is closely linked to the probability of certain facts, respectively,
the occurrence of specific fact combinations: The combined probability of facts ocur-
ring together determines the probability of whether a potential issue will become an
actual inconsistency during run-time. From this perspective, if a fact combination
that would activate a potential issue is impossible or highly unlikely, the severity
of that potential issue also decreases; vice versa, a potential issue “activated” more
often can be seen as more severe.

Importanly, this notion of linking the severity of a potential issue to the prob-
ability of the corresponding activation set (= fact set) is one possible dimension of
severity. There might well exist other dimensions, for example, even if a potential
issue is unlikely, it might be considered as severe. We will further comment on
this in Section 6. However, the viewpoint we take here can cleary be motivated by
empirical evidence (we will introduce our evaluation and real-life datasets in Sec-
tion 5.2). The Business Process Intelligence Challenge4 provides real-life datasets
containing actual customer cases. From this data, the actual distribution of fact
occurrences over all cases can be computed. Figure 1 shows the distribution of fact
occurrences for the BPI 2020 dataset. As can be seen, there are only a few facts
that occur often, and many facts that occur seldomly. In this setting, we argue the
combined probability of certain fact sets can be used properly to assess the severity
of potential issues, e. g., issues associated with an activation set that has a very low
probability may be unproblematic. As we will show in Section 5.2 (Evaluation), the
distributions as shown in Figure 1 are very common in real-life settings and thus
facilitate a prioritization of potential issues as proposed in this work.

An observation that is in order is that we do not assume any form of domain
knowledge about dependencies between facts. Hence we assume we can actually
observe arbitrary fact sets stemming from customer cases without any further hid-
den constraints, i.e., probabilistic independence can be assumed for the occurrence
of these facts. Note however that if domain knowledge is available about certain
relationships, these (known) fact combination can also be provided as input to our
approach in order to check for potential issues pertaining to this input combination.
As we will show in our empirical evaluation (see below), the facts we observed in

4https://bit.ly/3AMBpra
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Figure 1: Distribution of fact occurrences over all cases of the BPI 2020_1 dataset.

real-life datasets were probabilisticly independent and we could not discover such
problems, so we argue there will be domains where this assumption is well justified.

We now continue to present and evaluate our approach.

5.1 Proposed Approach
Given a rule base B and the task to analyze the contained potential issues, we
propose to compute only the top-k potential issues, where the parameter k represents
a minimal threshold of the probability that the facts corresponding to the activation
set of the potential issue will actually occur together (i. e., that the potential issue
will actually become an inconsistency at run-time). In the following, we assume
that a distribution of the probability of occurrence for individual facts is known in
advance, either based on historic process data or based on expert assessment.

We begin by pairwise considering all fact sets ⊆ L. The motivation of considering
pairs of fact sets is that the individual sets of this pair are meant to correspond to
the two individual activation sets of a potential issue. In particular, we compute
those pairs of fact sets ⊆ L that have a combined probability5 > k, where k is a
user-defined parameter. Note that in the worst case, if all facts have a probability
of 1, this would scale exponentially, as it would require to compare all subsets of
available facts. However, based on the presented empirical evidence (cf. the above
discussion), the actual number of fact sets that need to be considered will likely be
much lower.

For all such pairs of fact sets that will occur with a probability > k, we store this
pair along with the corresponding probability. As we lean on the Apriori algorithm
principle, we refer to such a triple of fact set, fact set and probability as an apriori

5Recall that probabilistic indepence is assumed in our setting. Then, the combined probability
is the product of the individual probabilities.
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pair. Consequently, for all apriori pairs, denoting the two individual fact sets of
that pair as X1, X2, we verify whether there exists a tuple t = (R1, X1, R2, X2) with
R1, R2 ⊆ B and t being a minimal potential issue of B. If this is the case, the tuple
t belongs to the top-k potential issues. The described verification task of checking if
there exists a potential issue triggered by a given apriori pair can be easily computed
by representing the rule base as a directed graph GB = (B, EB) – where for every
r ∈ B we add an edge (body(r),head(r)) to EB – and then checking if there exists
individual paths from X1 and X2 to two nodes corresponding to two complementary
literals (e. g. a,¬a). Here, every path can be interpreted as a sequence of rules, c.f.
also Definition 1 on rule set activation. We refer the reader to [6] for a detailed
example.

As a result, we are able to identify the top-k potential issues for a rule base
B w.r.t. a threshold k. The approach proposed in this section is summarized in
Algorithm 1.

Algorithm 1: Algorithm for computing the top-k potential issues of a rule
base B

Input : Rule base B, List⟨String,Double⟩ factOccurrenceDistribution
(facts and their probabilities), threshold (minimal top-k threshold)

Output: Set of all top-k potential issues in B
1 aprioriPairs ← construct all apriori pairs with a minimal probability k //cf.

above discussion
2 topKPotentialIssues = {}
3 for a : aprioriPairs do
4 A1 ← a[0]
5 A2 ← a[1]
6 if ∃R1, R2 ⊆ B s.t. (R1, A1, R2, A2) is a min. pot. issue then
7 topKPotentialIssues← topKPotentialIssues ∪ (R1, A1, R2, A2)

8 return topKPotentialIssues

Example 5. Consider the business rule base B7, with

B7 ={creditworthy ← platinumCustomer ;
¬creditworthy ← hasDebt;
¬creditworthy ← blackListed;
platinumCustomer ← honorCircle}.
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Then we have the following four potential issues in B7

t1 =({creditworthy ← platinumCustomer}, {platinumCustomer},
{¬creditworthy ← hasDebt}, {hasDebt})

t2 =({creditworthy ← platinumCustomer}, {platinumCustomer},
{¬creditworthy ← blackListed}, {blackListed})

t3 =({creditworthy ← platinumCustomer ;
platinumCustomer ← honorCircle}, {honorCircle},

{¬creditworthy ← blackListed}, {blackListed})
t4 =({creditworthy ← platinumCustomer ;

platinumCustomer ← honorCircle}, {honorCircle},
{¬creditworthy ← hasDebt}, {hasDebt})

Assume the following probability of occurrence was observed from historic process
data:

platinumCustomer : 0.9 hasDebt : 0.1
blackListed : 0.5 honorCircle : 0.3

...

(e.g., the combined probability of platinumCustomer and hasDebt is 0.9∗0.1 = 9%).
Consider a minimum threshold k of 40%. This yields only one apriori pair with a
probability > k:

⟨platinumCustomer , blackListed, 0.45⟩

So via line 6 in Algorithm 1, we can correctly return {t2} as the set of top-k potential
issues with k = 40%, effectively filtering out 75% of all potential issues that have to
be presented to the user.

Theorem 1. For a given probability k, Algorithm 1 is correct for the problem of
computing the set of all potential issues that have an activation set with a combined
probability > k (i.e. the set of top-k potential issues).

Proof. Following [9], we consider an algorithm to be correct if it satisfies the prop-
erties of soundness and completeness. We address these in turn.

Regarding soundness, assume Algorithm 1 is not sound. Then the algorithm
would either 1) not return all potential issues with a probability > k, or 2) return
a potential issue with a probability <= k. Regarding case 1, this is not the case as
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we iterate through all apriori pairs (line 3) and verify if a corresponding potential
issue can be found. Note that we assume the algorithm assesses this verification of
min. potential issues by checking the conditions in Definition 2, i.e., the detected
tuples are min. potential issues by definition. Regarding case 2, this is implictly
assumed via the generation of all apriori pairs, i.e., a fact combination is only added
to the set of all apriori pairs if the combined probability exceeds k. So Algorithm 5
is sound by contradiction.

Regarding completeness, note that we assume the map of facts (and occurrences)
to be finite. In this case, note that any rule base without any potential issues, no
issues with a probability > k, or no facts has an empty set of top-k potential issues.
So there does not exist a case where failure should be reported as via the above
assumption. The set of top-k potential issues is initialized in line 2, and relevant
issues are added to this set (line 7). The set is then always returned in line 8. So
Algorithm 5 is complete by invariance.

5.2 Evaluation

To evaluate the benefits of our proposed approach for real-life settings, we conducted
an initial evaluation with real-life datasets. The goal of this evaluation is to compare
the runtimes and the number of potential issues for a) computing all potential
issues, and b) computing only the top-k potential issues (for a predefined k). In the
following, we present our evaluation results, which clearly show that our approach
can immensely reduce the number of potential issues that need to be presented to
the human expert. We begin by briefly introducing our dataset.

5.2.1 Description of Data-Set

We performed our experiments with the real-life datasets of the Business Process
Intelligence Challenge (BPIC). The BPIC is an international scientific challenge
series and provides real-life case data from various domains such as healthcare,
government or industry. We selected these data sets as they are real-life data sets
that stem from domains where correct decision-making is critical (for example, the
data set of the BPIC 2016 contains decision rules for the treatment of Sepsis - a life
threatening disease), thus, investigating potential issues here is an important task
in these domains.

Importantly, various tools exist that allow to mine rule sets from this case data.
Here, we applied the state-of-the-art tool MINERful [3]. With this tool, it is possible
to obtain a set of rules that define an if-then relation between atomic propositions.
Our rule mining approach was as follows: Importantly, we did NOT mine temporal
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rules (as we focus on structural rules in this work). So the process instances in
the datasets were “flattened” s.t. we analyzed only the co-occurrence of different
facts in individual instances. Here, a rule a ⇒ b denotes that the occurrence of a
implies the occurrence of b. In the MINERful tool, such a rule a ⇒ b is denoted
as a rule of type “CoExistence”. The inverse is “NotCoExistence”, which denotes
that a reaction b should not follow from an activation a in the instance. These rules
as mined from the datasets were transferred to the general rule form in (1) as used
in this work. Note that the presented implementation is not limited to rules with
only one premise. Also observe that there can be some other rule types beyond the
scope of this work, e. g., regarding cardinalities, which were therefore filtered out.
In result, using the MINERful tool, we can obtain rule bases of the general form as
considered in this work (see below for link to the obtained rule bases).

For our evaluation, we used the available BPIC datasets of the last 10 years.6
In Table 1, we show an overview of the analyzed datasets, including the domain,
the number of (customer) cases contained in the dataset, as well as the number
of distinct facts (i. e., activations and reactions) that can appear as literals in the
respective rule bases. As can be seen, the considered datasets reflect real-life case
data of industrial complexity, with up to 250.000 cases. As mining parameters, we
selected standard mining parameters as suggested in [15], namely a support factor
of 75% (minimum number of cases a rule has to be fulfilled in), as well as confidence
and interest factors of 12.5% (support scaled by the ratio of cases in which the
activation occurs, resp. support scaled by the ratio of cases both the activation and
reaction occur). All obtained rule sets can be found online7. Table 1 also indicates
the size of these obtained rule sets. As shown, the sizes of the considered rule bases
range up to 1000 rules.

6Note that public case data was not provided for the BPIC 2014, so this year is omitted. In
some years, the BPIC data sets contain multiple log files, which are marked accordingly.

7https://cloud.uni-koblenz.de/s/XLofLbCx82axtx5
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dataset domain # of cases # of facts # of rules
1 BPI2012 Financial Industry (Loan process) 13 087 24 75
2 BPI2013_1 Car manufacturing process (Volvo) 819 4 3
3 BPI2013_2 - 1 487 4 1
4 BPI2013_3 - 7 554 3 2
5 BPI2015_1 Government Sector (Permit process) 937 398 615
6 BPI2015_2 - 645 410 1013
7 BPI2015_3 - 1 087 383 594
8 BPI2015_4 - 787 356 721
9 BPI2015_5 - 892 389 922
10 BPI2016 Healthcare (Sepsis treatment process) 1 050 16 81
11 BPI2017 Financial Industry 31 509 26 144
12 BPI2018 Government (EU fund distribution process) 43 809 41 30
13 BPI2019 Industry (Purchase process) 251 734 42 25
14 BPI2020_1 Government (Travel reimbursement process) 6 886 17 20
15 BPI2020_2 - 7 065 34 84
16 BPI2020_3 - 2 099 51 51
17 BPI2020_4 - 6 449 29 33
18 BPI2020_5 - 10 500 19 23

Table 1: Overview of the considered datasets including industrial domain, number
of cases, number of facts, and size of the rule-base obtained via the described mining
tool.

We now continue to present our experiment results.

5.2.2 Experiment Results

For the considered datasets, we computed a) all potential issues, and b) only the
top-k potential issues (with k = 50%, 60%, ..., 90%). The experiments were run on
Mac OS with 3GHz i7 processor and 16 GB RAM. As we tested on fixed data-sets
and not random ones, re-running the tests yielded very similar results in our setting,
so we ommit a discussion of standard deviations etc. in the following.

As already discussed, the number of returned top-k potential issues relative to
a threshold k will strongly depend on the actual distribution of fact occurrences.
Interestingly, for all considered datasets, the occurrence distribution was very sim-
ilar, with only a few facts that occured many times, and many facts that occured
seldomly (cf. also the example in Figure 1). In our opinion, this re-affirms our mo-
tivation of using the notion of probability to rank potential issues by their severity
(i. e., there will be many potential issues which have a very low probability of being
actually “activated” at run-time). The fact occurrence distributions for all consid-
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Figure 2: Total number of potential issues (y-axis) for different thresholds k (x-axis;
where x includes: all issues; top-k issues for k = 50%, ..., 90%) for the considered
datasets.

ered datasets can be found in the appendix of this work. The reader can easily see
that those occurrences behave very similar to the one shown in Figure 1.

Continuing, the results of our evaluation are as shown in Figure 2. For every
dataset, the corresponding plot shows the total number of potential issues that exist
in the rule set (all pot. issues), as well as the concrete number of top-k potential

586



Towards Handling Potential Issues in Business Rule Bases

issues w.r.t. a threshold k (with k = 50%, ..., 90%).8 The y-axis represents the found
number of issues and the x-axis represents the discrete different settings for k.

For all considered datasets, there was a clear drop of the returned number of
potential issues when selecting a parameter of k ≥ 50%. This shows that setting
a minimal probability threshold (as to the probability of a potential issue being
actually activated at run-time) can clearly reduce the number of potential issues
that have to be analyzed. For a minimal threshold of k = 80%, there were many
datasets where the number of returned potential issues dropped to zero. Based on
these results, it seems promising to use our approach in order to reduce the load
for humans as many potential issues with very small probabilities can be “filtered
out”. This can be seen in Figure 3 (a), which shows the percental savings of potential
issues that do not have to be screened when the minimal threshold is set to k = 50%,
(vs. the case that all potential issues have to be screened).
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(a) Percentage of potential issues that can be
filtered out for the considered datasets when
setting a threshold of k = 50%.
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compute all potential issues, as well as only
the top-k potential isses (for k = 50%-90%)
for the considered datasets.

Figure 3: Overview of savings (percentage of issues that can be filtered for k = 50%
(a); runtimes (b)) when computing only the top-k potential issues.

As can be seen, setting the minimal threshold to 50% saved on average 82%
of potential issues (much higher for higher ks), with many of the savings ranging
upwards of 90%. We do not dispose over the domain knowledge to assess which
minimal threshold can be plausibly set in the considered domains. However, as
part of this initial evaluation, we can show that setting the minimal threshold to
50% can save on average 82% of potential issues that have to be analyzed (across the

8The datasets for BPI13 and BPI18 did not conatin any potential issues and were therefore
omitted.
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considered datasets), which we believe could be a valuable benefit for companies. Not
surprisingly, runtimes also drop off nicely when a minimal threshold is set, cf. Figure
3 (b). We do acknowledge that computation was very feasible for the considered
datasets, even for computing all potential issues (within the milliseconds). So for the
analyzed datasets, this factor may be discarded - we see a much higher advantage in
the fact that far less potential issues have to be presented to the human when setting
a threshold. Note however that computing potential issues is unfeasible from the
perspective of computational complexity, so the factor that runtime can be reduced
by setting a minimal threshold should not be neglected in general. In future works,
it would be interesting to analyze further datasets, if available.

Intuitively, how to select the parameters is highly dependent on the use-case and
has high impact on the algorithm performance. The underlying idea of our “top-k”
approach however remains to “live with” certain potential problems if their severity
(e.g., based on probability) is below an acceptable threshold, which is in line with
many ideas and approaches for paraconsistent reasoning techniques [11].

6 Conclusion

In this paper, we introduced the notion of potential issues in rule bases. Our re-
sults allow experts to identify those sets of rules that, if activated together, will
cause inconsistencies during run-time. Importantly, it is usually not clear which
rules might become activated, so deciding how to handle potential issues requires
a careful trade-off of how likely certain rules might become activated together. To
this end, we introduced the notion of a severity of a potential issue based on fact
probabilities, which allows to present a prioritized list of potential issues. Here, our
proposed approach allows to compute top-k potential issues in an online manner,
i.e., without the need to pre-compute the entire set of potential issues (which might
be intractable).

Our approach is applicable for many real-life applications such as rule modeling
or, in particular, rule mining. The developed implementation can directly be inte-
grated into state of the art rule mining tools, e.g. [3], to facilitate a post-processing
for rule mining algorithms. It is widely acknowledged that state of the art mining
approaches can suffer from yielding inconsistent rule sets (cf. [15]), so integrating
means for handling potential issues seems in line here.

A limitation of our proposed approach for computing the top-k potential issues
is that the notion of severity is based on how likely an issue is to be activated.
Intuitively, there could be other notions of severity, e.g., even unlikely potential
issues can be “severe” if the affected rules are business-critical. In future works, it
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would be useful to support modellers also with other forms of potential issue analysis,
possibly also investigating postulates that confine their “severity” for specific use-
cases. Notions such as inconsistency cost could be used as a basis towards this
direction. Also, the approach proposed in this work operates on a syntactical level,
so it might be promising to also consider the semantics in future works.

In regard to knowledge engineering, the work at hand also sheds light on method-
ological aspects related to (collaborative) rule modelling and knowledge lifecycles.
At the core, the problem of potential issues can arise due to unforseen interactions
between different pieces of knowledge. A naive strategy to counteract this problem
would be to model dedicated rules for all possible combination of fact inputs (e. g.,
as exceptions). However, such approaches seem highly unfeasible in practice, as this
could lead to an exponential explosion of required rules needed to capture all cases,
i.e., the rule base would not be maintainable anymore due to a lack of oversight. In
fact, recent works acknowledge this problem of exponential explosions when wanting
to capture all possible input combinations and explicitly recommend rule modelling
methodologies based on having incomplete rule bases [18, 28]. Here, the notion of
potential issues introduced in this work supports such recent knowledge engineer-
ing methods by allowing experts to analyze (incomplete) knowledge bases for any
potential issues. In this context, the introduced notion of a severity of a potential
issue also supports companies to select a cut-off point as to which issues need to be
handled through explicit re-modelling, and which issues can be ignored in favour of
lower rule base complexity. In the scope of verication and validation of rule-based
systems [30], the work at hand can be related to works on a priori revision [12],
with the goal of preventing issues by adding further constraints. However in this
setting, a set of rules is assumed to be given, which is then further processes. For
future works, it might be useful to investigate how rule modelling methodologies
can be extended to facilitate proactively preventing potential issues directly during
modelling.
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Appendix: Fact Occurrence Distributions for the BPI
Data-Sets
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Figure 4: Overview of fact occurrence probabilities (over all cases) for the considered
data-sets.
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