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Abstract

Conditionals, i. e. expressions of the logical form “if A, then B”, have been
a central topic of study ever since logic was on the academic menu. In contem-
porary logic, there is a consensus that the semantics of conditionals are best
obtained by stipulating a subset of possible worlds in which the antecedent is
true, and verifying whether the consequent is true in those worlds. Such a subset
of possible worlds can represent, for example, the most typical worlds in which
the antecedent is true. This idea has proven a fruitful basis, allowing for many
systematic characterisation results as well as for making connections to other
topics, such as belief revision and modal logic. In formal argumentation, the
potential of these semantical ideas has not gone unnoticed in the last years, and
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many works have attempted to bridge the worlds of conditionals and arguments
on the basis of these ideas. In this article, we give a thorough introduction to
the semantics of conditionals and survey the adaptions of these semantics in
the literature on computational argumentation, including structured argumen-
tation and generalisations of abstract argumentation such as abstract dialectical
frameworks. Furthermore, we highlight opportunities for future research on this
topic.

1 Introduction

The study of conditionals has a long tradition in philosophy. This has resulted,
among others, in a thorough and expansive formal study of conditionals, with a par-
ticular focus on semantical foundations of conditionals (see [54, 53] for an overview,
and Section 3 for a summary). The basic idea underlying these semantics is that
a conditional (ψ|φ) is accepted if ψ is true in a subset of φ-worlds. The details of
this selection depend on the specific semantics. For example, non-monotonic condi-
tionals of the form “if φ then typically ψ” define this selection in terms of the most
plausible worlds [44].

The relation between argumentative formalisms and conditionals has been on
the agenda of the computational argumentation community since its inception. On
an intuitive level, an argument can be accepted only if it is sufficiently defended or
supported, i. e., it seems that argumentation allows for a conditional interpretation.
However, the investigation of connections between argumentation and conditionals
on a more formal or semantical level provide a more nuanced perspective. It is
well-known that argumentation and nonmonotonic resp. default logics are closely
connected: In [19] it is shown that Reiter’s default logic can be implemented by
abstract argumentation frameworks, a most basic form of computational model of
argumentation to which many existing approaches to formal argumentation refer.
On the other hand, it is clear that argumentation allows for nonmonotonic, defeasible
reasoning, and in [62] computational models of argumentation are assessed by formal
properties that have been adapted from nonmonotonic logics. Furthermore, answer
set programming [29] as one of the most successful nonmonotonic logics has often
been used to implement argumentation [21, 15]. Nevertheless, argumentation and
nonmonotonic reasoning are perceived as two different fields which do not subsume
each other, and indeed, often attempts to transform reasoning systems from one side
into systems of the other side have been revealing gaps that could not be closed (cf.,
e. g., [70, 42, 35]). While one might argue that this is due to the seemingly richer,
dialectical structure of argumentation, in the end the evaluation of arguments often
boils down to comparing arguments with their attackers, and comparing degrees of
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belief is a basic operation in qualitative nonmonotonic reasoning. In this chaper,
we give a thorough introduction to the semantics of conditionals and provide an
overview of work done on the comparison or incorporation of conditional semantics
and argumentation.

Outline of this article In Section 2, we introduce the necessary preliminaries on
propositional logic (Section 2.1), Kleene’s Three-valued logic (Section 2.2) and ab-
stract dialectical frameworks (Section 2.3). We provide an overview of the semantics
of conditionals in Section 3, looking at semantics using selection functions (Section
3.1), systems of spheres (Section 3.2) and preferential models (3.3), while also point-
ing out connections with belief dynamics (Section 3.4). In Section 4, we look at work
that investigates syntactic similarities between conditionals and argumentative for-
malisms. In Section 5, we overview approaches integrating conditional semantics in
argumentative formalisms. In Section 5.3, we look at connections that have been
made between structured accounts of argumentation and conditonal logics. In Sec-
tion 6, we summarize further works that thematise conditionals and argumentation.
A summary and outlook is provided in Section 7.

2 Preliminaries
In this section, we introduce the necessary preliminaries on propositional logic (Sec-
tion 2.1), Kleene’s Three-valued logic (Section 2.2) and abstract dialectical frame-
works (Section 2.3).

2.1 Propositional Logic
For a (finite) set At of atoms let L(At) be the corresponding propositional language
constructed using the usual connectives ∧ (and), ∨ (or), ¬ (negation) and → (ma-
terial implication). A (classical) interpretation (also called possible world) ω for a
propositional language L(At) is a function ω : At → {T, F}. Let Ω(At) denote the
set of all interpretations for At. We simply write Ω if the set of atoms is implicitly
given. An interpretation ω satisfies (or is a model of) an atom a ∈ At, denoted by
ω |= a, if and only if ω(a) = T. The satisfaction relation |= is extended to formulas
as usual. As an abbreviation we sometimes identify an interpretation ω with its
complete conjunction, i. e., if a1, . . . , an ∈ At are those atoms that are assigned T
by ω and an+1, . . . , am ∈ At are those propositions that are assigned F by ω we
identify ω by a1 . . . anan+1 . . . am (or any permutation of this). For example, the
interpretation ω1 on {a, b, c} with ω(a) = ω(c) = T and ω(b) = F is abbreviated by
abc. For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ. We
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define the set of models Mod(X) = {ω ∈ Ω(At) | ω |= X} for every formula or set
of formulas X. A formula or set of formulas X1 entails another formula or set of
formulas X2, denoted by X1 ⊢ X2, if Mod(X1) ⊆ Mod(X2).

2.2 Kleene’s Three-Valued Logic
Due to the three-valued nature of ADFs, we will need a three-valued logic to use
as a basic logic underlying revision. Due to its high expressivity, we use Kleene’s
three-valued logic. A 3-valued interpretation for a set of atoms At is a function
v : At → {⊤, ⊥, u}, which assigns to each atom in At either the value ⊤ (true,
accepted), ⊥ (false, rejected), or u (unknown). The set of all three-valued inter-
pretations for a set of atoms At is denoted by V(At). We sometimes denote an
interpretation v ∈ V({x1, . . . , xn}) by †1 . . . †n with v(xi) = †i and †i ∈ {⊤, ⊥, u},
e.g., ⊤⊤ denotes v(a) = v(b) = ⊤ for At = {a, b}. A 3-valued interpretation v
can be extended to arbitrary propositional formulas φ ∈ L(At) via the truth tables
in Table 1. We furthermore extend the language with a second, weak negation ∼,
which is evaluated to true if the negated formula is false or undecided (i.e. there is
no positive information for the negated formula). Thus, ∼φ means that no explicit
information for φ being true (v(φ) ∕= ⊤) is given, whereas ¬φ means that φ is false
(v(φ) = ⊥). The truth table for ∼ can also be found in Table 1.1

It will prove convenient to define the connective ⊙ which stipulates a formula is
undecided. We define ⊙φ = ∼(¬φ ∨ φ). We define LK(At) as the language based on
At, the unary connectives 〈¬, ∼, ⊙〉 and the binary connectives 〈∧, ∨, →〉.

The following facts about ∼, which show some similarities between ∼ and clas-
sical negation, will prove useful below:

Fact 1. For any φ ∈ LK(At) and any v ∈ V(At): (1) v(∼φ) ∕= u, and (2) v(∼∼φ) =
⊤ iff v(φ) = ⊤.

We can show that ⊙ expresses the undecidedness of any formula φ ∈ LK:

Fact 2. For any φ ∈ LK(At), v(⊙φ) = ⊤ iff v(φ) = u.

We define the set of three-valued interpretations that satisfy a formula φ ∈
LK(At) as V(φ) = {v ∈ V(At) | v(φ) = ⊤}. A formula X1 K-entails another formula
X2, denoted X1 |=K X2, if V(X1) ⊆ V(X2). X1 ≡K X2 iff X1 |=K X2 and X2 |=K X1.

1In the terminology of [73], the negation ∼ corresponds to Bochvar’s external negation [11] and
¬ corresponds to Kleene’s negation in his three-valued logic. ∼ is also referred to as Kleene’s weak
negation [75], since the conditions for ∼φ being satisfied are weaker than those for ¬φ being satisfied
(i.e. {¬φ} |=K ∼φ).
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¬ ∼ ⊙
⊤ ⊥ ⊥ ⊥
u u ⊤ ⊤
⊥ ⊤ ⊤ ⊥

∧ ⊤ u ⊥
⊤ ⊤ u ⊥
u u u ⊥
⊥ ⊥ ⊥ ⊥

∨ ⊤ u ⊥
⊤ ⊤ ⊤ ⊤
u ⊤ u u
⊥ ⊤ u ⊥

Table 1: Truth tables for connectives in Kleene’s K

Given an interpretation v ∈ V(At), we define:

form(v) =


v(a)=⊤
a ∧



v(a)=⊥
¬a ∧



v(a)=u

⊙a

Clearly, form(v) expresses exactly the beliefs expressed by a three-valued interpre-
tation:

Fact 3. For any v ∈ V(At) and any a ∈ At: (1) form(v) |=K a iff v(a) = ⊤; (2)
form(v) |=K ¬a iff v(a) = ⊥; (3) form(v) |=K ⊙a iff v(a) = u.

2.3 Abstract Dialectical Frameworks
We briefly recall some technical details on ADFs following loosely the notation from
[14]. An ADF D is a tuple D = (At, L, C) where At is a finite set of atoms, L ⊆ At×At
is a set of links, and C = {Cs}s∈At is a set of total functions (also called acceptance
functions) Cs : 2parD(At) → {⊤, ⊥} for each s ∈ At with parD(s) = {s′ ∈ At |
(s′, s) ∈ L}. An acceptance function Cs defines the cases when the statement s can
be accepted (truth value ⊤), depending on the acceptance status of its parents in
D. By abuse of notation, we will often identify an acceptance function Cs by its
equivalent acceptance condition which models the acceptable cases as a propositional
formula. In more detail, Cs expresses the conditions that are to be accepted for s
to be accepted. D(At) denotes the set of all ADFs D = (At, L, C).

Example 1. We consider the following ADF D1 = ({a, b, c}, L, C) with L = {(a, b),
(b, a), (a, c), (b, c)} and Ca = ¬b, Cb = ¬a and Cc = ¬a ∨ ¬b. Informally, the
acceptance conditions can be read as “a is accepted if b is not accepted”, “b is accepted
if a is not accepted” and “c is accepted if a is not accepted or b is not accepted”.

An ADF D = (At, L, C) is interpreted through 3-valued interpretations V(At)
(see Section 2.2). Recall that Ω(At) consists of all the two-valued interpretations
(i. e. interpretations such that for every s ∈ At, v(s) ∈ {⊤, ⊥}). We define the
information order ≤i over {⊤, ⊥, u} by making u the minimal element: u <i ⊤ and
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u <i ⊥ and this order is lifted pointwise as follows (given two valuations v, w over
At): v ≤i w iff v(s) ≤i w(s) for every s ∈ At. The set of two-valued interpretations
extending a valuation v is defined as [v]2 = {w ∈ Ω | v ≤i w}. Given a set of
valuations V , we denote with ⊓iV the valuation defined by ⊓iV (s) = v(s) if for
every v′ ∈ V , v(s) = v′(s) and ⊓iV (s) = u otherwise. ΓD : V(At) → V(At) is defined
as ΓD(v)(s) = ⊓i[v]2(Cs). Intuitively, ΓD(v) assigns to an atom s the consensus of
the truth values assigned by all completions of v to Cs.

For the definition of the stable model semantics, we need to define the reduct
Dv of D given v, defined as: Dv = (Atv, Lv, Cv) with: (1) Lv = L ∩ (Atv × Atv), and
(2) Cv = {Cs[{φ | v(φ) = ⊥}/⊥] | s ∈ Atv}, where Cs[φ/ψ] is the formula obtained
by substituting every occurrence of φ in Cs by ψ.

Definition 2.1. Let D = (At, L, C) be an ADF with v : At → {⊤, ⊥, u} an interpre-
tation:

• v is a 2-valued model iff v ∈ Ω and v(s) = v(Cs) for every s ∈ At.

• v is admissible for D iff v ≤i ΓD(v).

• v is complete for D iff v = ΓD(v).

• v is preferred for D iff v is ≤i-maximally complete.

• v is grounded for D iff v is ≤i-minimally complete.

• v is stable iff v is a model of D and {s ∈ At | v(s) = ⊤} = {s ∈ At | w(s) = ⊤}
where w is the grounded interpretation of Dv2.

With 2val(D), admissible(D), complete(D), prf(D), grounded(D), respectively
stable(D) we denote the sets of two-valued, admissible, complete, preferred, grounded,
respectively stable interpretations of D.

We finally define inference relations for ADFs:

Definition 2.2. Given Sem ∈ {prf, grounded, 2val, stable}, an ADF D = (At, L, C)
and φ ∈ LK(At) we define: D |∼∩

Sem φ iff v(φ) = ⊤ for all v ∈ Sem(D).

Example 2 (Example 1 continued). The ADF of Example 1 has three complete
models v1, v2, v3 with:

v1(a) = ⊤ v1(b) = ⊥ v1(c) = ⊤
v2(a) = ⊥ v2(b) = ⊤ v2(c) = ⊤
v3(a) = u v3(b) = u v3(c) = u

2[14] has show the grounded interpretation is uniquely defined for any ADF.
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v3 is the grounded interpretation whereas v1 and v2 are both preferred, two-valued
and stable models.

Restricting ADFs to certain sub-classes based on the syntactic form of the accep-
tance conditions leads to representation of existing argumentative formalisms. One
such formalism are the well known Abstract argumentation frameworks [19] where
the only argumentative relation formalised is the one of attacks between arguments.
In that case, acceptance conditions Ca are restricted to conjunctions of negations
¬b1 ∧ . . . ∧ ¬bn, intuitively representing the attacks on the argument. For complete-
ness, we include also the traditional definition of an argumentation framework:

Definition 2.3. An abstract argumentation framework (AF ) is a directed graph
AF = (A, R) where A is a finite set of arguments and R is an attack relation
R ⊆ A × A.

For an AF AF = (A, R), an argument a is said to attack an argument b if
(a, b) ∈ R. We say that, an argument a is defended by a set E ⊆ A if every
argument b ∈ A that attacks a is attacked by some c ∈ E. For a ∈ A we define

a−
AF = {b | (b, a) ∈ R} and a+

AF = {b | (a, b) ∈ R}.

In other words, a−
AF is the set of attackers of a and a+

AF is the set of arguments
attacked by a. For a set of arguments E ⊆ A we extend these definitions to E+

AF

and E−
AF via E+

AF =


a∈E a+
AF and E−

AF =


a∈E a−
AF , respectively. If the AF is

clear in the context, we will omit the index.
An argumentation framework AF can be represented as the ADF DAF = (A, C)

where Ca =


b∈a− ¬b for every a ∈ A. In that case, all of the traditional extension-
based semantics [19] coincide with the ADF-semantics. It is interesting to notice
furthermore that two-valued models and stable models coincide in the case of ADFs
based on AFs. We will also call the sets of arguments labelled T according to a
certain kind of labelling as the respective extension. For example, if the grounded
labelling assigns T to the arguments a and c, we say that {a, c} is the grounded
extension.

We also mention here the notions of conflict-freeness and admissibility:

Definition 2.4. Given AF = (A, R), a set E ⊆ A is

• conflict-free iff ∀a, b ∈ E, (a, b) ∕∈ R;

• admissible iff it is conflict-free and it defends its elements.

We use cf(AF ) and ad(AF ) for denoting the sets of conflict-free and admissible
sets of an argumentation framework F , respectively.
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a b c d

Figure 1: Abstract argumentation framework AF from Example 3.

Example 3. Let AF = ({a, b, c, d}, {(a, b), (b, c), (c, d), (d, c)} be an AF depicted as
a directed graph in Figure 1. The sets {a, c} and {a, d} are the complete, preferred
and stable extensions. While {a} is the grounded extension.

3 Semantics of conditionals
The study of the semantics of conditionals is concerned with statements of the form
“if φ then ψ” as they are used in natural language. Several conditional logics have
been developed with the aim of providing a semantics for conditional statements,
and to study their properties. The aim of this section is to provide an introduction
to the topic and an overview of the main approaches.

Of all the distinctions we can make among the types of conditionals that we use
in everyday language, the most crucial distinction is that of indicative and subjunc-
tive conditionals. While indicative conditionals make statements about what holds
in the actual world, subjunctive conditionals make statements about hypothetical
situations. The following example, due to [1], illustrates the difference.

1. If Oswald didn’t kill Kennedy, then someone else did.

2. If Oswald hadn’t killed Kennedy, then someone else would have.

Conditional (1) is an indicative conditional. It refers to the actual world where Os-
wald either did or did not kill Kennedy. It states that, in case Oswald did not kill
Kennedy, someone else killed him. Conditional (2) is a subjunctive conditional. It
presumes that Oswald did in fact kill Kennedy, and makes a claim about the hypo-
thetical situation in which Oswald did not kill Kennedy. Subjunctive conditionals
are also referred to as counterfactuals. Clearly, despite the similarities between (1)
and (2), they make two very different claims. While it is quite reasonable believe
that (1) is true, the truth of (2) is more contentious.

Indicative conditionals may, as a first approximation, be interpreted as material
implications in propositional logic. According to this interpretation, the conditional
‘if φ then ψ” (φ → ψ) is true unless φ is true and ψ is false. While this definition
provides an adequate interpretation for conditionals as they are used in mathematical
proofs, it is not satisfactory for indicative conditionals as they are used in natural
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language. This is due to a number of unintuitive consequences of the definition, such
as that φ → ψ is implied by ψ and by ¬φ, that ¬(φ → ψ) implies φ, and that for
any φ and ψ, either φ → ψ or ψ → φ is true. Truth-functionality represents another
issue. The material implication is truth-functional, since the truth value of φ → ψ
is a function of the truth values of φ and of ψ. Conditionals as they are used in
natural language are not truth-functional. To see why, consider the sentences “John
is happy” and “Mary is happy”. Knowing the truth values of these two sentences
does not imply that we know the truth value of the conditional “If Mary is happy
then John is happy”.

The study of the semantics of conditionals is driven by the need for more sophis-
ticated accounts of the relationship between premises and conclusions of conditional
statements. In the following subsections, we look at the two main semantical ac-
counts of conditionals that have been developed since the sixties of the last century:
semantics using selection functions (Section 3.1) and semantics using systems of
spheres (Section 3.2). Thereafter, we look at the main semantical account of non-
monotonic conditionals, namely the preferential models (3.3) and survey connections
with belief dynamics (Section 3.4).

3.1 Selection Functions
The selection function approach, due to [68] and further developed by [49], repre-
sents one of the central ideas in the study of the semantics of conditionals. This
approach is based on the idea that a conditional φ > ψ is true whenever ψ is true
in the possible world where φ is true and which differs minimally from the actual
world. The semantics is defined in terms of a selection function that represents a
criterion to select such a possible world for any given antecedent φ and actual world
w. Let L be a propositional language that, in addition to the usual propositional
connectives, is closed under the conditional operator >. We will present the simpli-
fied formalisation of Stalnaker’s semantics due to Nute [54]. A Stalnaker model is a
quadruple (I, R, s, [·]) where I is a set of possible worlds; R ⊆ I ×I a binary reflexive
accessibility relation; s a selection function; and [·] assigns to each sentence φ ∈ L a
subset [φ] of I. The selection function s is a partial function that, if defined, assigns
to a sentence φ and world w ∈ I a world s(φ, w) ∈ I. A selection function must
satisfy the following conditions, which intuitively ensure that s(φ, w) can indeed be
regarded as the world where φ is true that differ minimally from w.

1. s(φ, w) ∈ [φ],

2. (i, s(φ, w)) ∈ R,

3. If s(φ, w) is undefined then for all w′ ∈ I s.t. (w, w′) ∈ R, w′ ∕∈ [φ],
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4. If w ∈ [φ] then s(φ, w) = w,

5. If s(φ, w) ∈ [ψ] and s(ψ, w) ∈ [φ], then s(φ, w) = s(ψ, w)

6. w ∈ [φ > ψ] iff s(φ, w) ∈ [ψ] or s(φ, w) is undefined.

Example 4. As an example, consider the model I = {bf, bf , bf, bf} with R = I × I
and s partially defined by s(b, bf) = bf and s(b, w) = bf for every w ∈ I \ {bf}.
Then we see that [b > f ] = {bf, bf, bf} and thus b > f is not true in bf but true in
all other worlds.

Given a Stalnaker model (I, R, s, [·]), the conditional φ > ψ is true in world w
whenever ψ is true in world s(φ, w) (more formally: s(φ, w) ∈ [ψ]). The resulting
logic, which Stalnaker refers to as C2, consists of those formulas that are true in
every world of every model. The following set of properties provides an axiomatiza-
tion of C2. More precisely, the logic C2 coincides with the smallest set of formulas
that is closed under the following two inference rules.
(RCEC) If φ ↔ ψ then (χ > φ) ↔ (χ > ψ).
(RCK) If (φ1 ∧ · · · ∧ φn) → ψ then

((χ > φ1) ∧ · · · ∧ (χ > φn)) → (χ → ψ) (for n ≥ 0).
and contains all instances of the axioms:

(ID) φ > φ
(MP) (φ > ψ) → (φ → ψ)
(MOD) (¬φ > φ) → (ψ > φ)
(CSO) ((φ > ψ) ∧ (ψ > φ)) → ((φ > χ) ↔ (ψ > χ))
(CV) ((φ > ψ) ∧ ¬(φ > ¬χ)) → ((φ ∧ χ) > ψ)
(CEM) (φ > ψ) ∨ (φ > ¬ψ)

The main point of contention in Stalnaker’s account concerns the CEM (Con-
ditional Excluded Middle) axiom. This axiom states that, for every φ and ψ, ei-
ther φ > ψ holds or φ > ¬ψ holds. Lewis offers the following counterexample to
CEM [48]: Let A stand for “Bizet and Verdi are compatriots”, F for “Bizet and Verdi
are French”, and I for “Bizet and Verdi are Italian”. According to Lewis, we may
well accept the conditional A > F ∨I but reject both A > F and A > I. If we accept
A > F ∨ I, however, then CEM forces us to accept either A > F or A > I. CEM is
closely related to what Nute refers to as the Uniqueness Assumption in Stalnaker’s
semantics [54]: for every antecedent φ and world w, there is exactly one world where
φ is true and which differs minimally from w. Dropping CEM amounts to letting
the selection function be a function that maps every antecedent φ and world w to
a set of possible worlds. This option was pursued by [48]. He formalises a logic
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similar to Stalnaker’s except that a conditional φ > ψ is taken to be true in world
w if ψ is true in all worlds where φ is true and which differ minimally from w. The
resulting logic, which Lewis calls VC, is axiomatised by the same set of inference
rules and axioms as that of C2 outlined above, except that CEM is replaced with
CS (Conjunctive Sufficiency):

(CS) (φ ∧ ψ) → (φ > ψ)

While this logic drops the Uniqueness Assumption, it still relies on the question-
able Limit Assumption: for every antecedent φ and world w, there is at least one
world where φ is true and which differs minimally from w. Lewis’ system of spheres
semantics, described in the next section, does not rely on the limit assumption.

3.2 Systems of Spheres

Recall that, according to the selection function account, φ > ψ is true in world w
whenever ψ is true in all worlds where φ is true and which differ minimally from
w. Recall that the Limit Assumption requires that, for any antecedent φ and world
w, there is at least one world where φ is true that differs minimally from w. Lewis
points out that this assumption disagrees with situations where worlds get closer and
closer to the actual world without end. This may happen if we consider antecedents
such as “I am over 7 feet tall”, where for any possible world where I am 7 +  feet
tall, there is an even closer possible world where I am 7+/2 tall [48]. Lewis’ system
of spheres semantics provides an alternative semantics for conditionals that does not
rely on the Limit Assumption, yet is characterised by the same axioms as the logic
VC described above [48]. It is based on the idea that the conditional φ > ψ is true in
world w whenever some world where both φ and ψ are true is closer then every world
where φ and ¬ψ are true. The formalisation of this idea requires a relative notion
of closeness between worlds. A sphere around a world w is a set S that contains w
and all worlds that are closer to w than every world not in S. A system of spheres
model is a triple (I, $, [·]) where I and [·] are defined as before, and $ maps each
w ∈ I to a nested set $w of spheres around w. We can compare worlds according to
their closeness to a world w as follows: if there is a sphere S ∈ $w such that w′ ∈ S
and w′′ ∕∈ S then w′ is more similar to w than w′′. Given the model (I, $, [·]), the
conditional φ > ψ is true in world w whenever either


$w ∩ [φ] is empty, or there is

an S ∈ $w such that S ∩ [φ] is not empty and S ∩ [φ] ⊆ [ψ].

Example 5. Consider the system of spheres (partially) defined by: $w =
{w}, {w, bf, b f, bf}, I. Then we see that in every world besides bf , b > f is true. In
more detail, consider e.g. the world b f . As there is a sphere {bf, bf , bf} ∈ $b f s.t.
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{bf, b f , bf}∩ [b] ⊆ [f ]. More informally,the b-world closest to b f is also an f -world,
and thus, in b f , the conditional b > f is true.

3.3 Preferential Model Semantics
The preferential model semantics of [45] and [47] represents yet another approach
to reasoning with conditionals. The main purpose of their approach, however, is
to provide a semantics for non-monotonic consequence relations. A non-monotonic
consequence relation is a relation |∼ between propositions having as its main char-
acteristic that it violates, unlike the classical ⊢, the Monotony property:

(Monotony) If φ |∼ ψ then φ ∧ χ |∼ ψ.

Monotony means that we never retract conclusions when further information
becomes known. However, in common sense reasoning, we often do so. We may,
for instance, conclude that birds fly (bird |∼ flies) but retract this conclusion if we
learn that the bird in question is a penguin (bird∧penguin ∕|∼ flies). The preferential
model approach represents one of the most influential approaches to the general
problem of non-monotonic reasoning.

The connection between non-monotonic consequence relations and conditionals
lies in the fact that we can regard a consequence relation |∼ as a “flat” (i.e., not
allowing nested conditionals) conditional logic: φ > ψ if and only if φ |∼ ψ. Fur-
thermore, as we will see, several properties considered in the preferential model
approach correspond to properties that are discussed in the context of conditional
logics. Monotony is the first example. [54] calls it Strengthening Antecedents and
dismisses it as invalid for any logic of subjunctive conditionals.

We will now provide an overview of the approach. We start with the model
theory, which provides a semantics for non-monotonic inference relations. These
models consist of a preference relation ≺ over states, where each state is labelled
with a set of possible worlds. The preference relation can be thought of as an
agent’s belief about the relative degree of normality of states: if s ≺ s′ then state s
is more normal than state s′. The agent is willing to conclude ψ from φ if all most
preferred states that satisfy φ also satisfy ψ. There are four classes of such models,
each putting additional restrictions on the preference relation or state labelling.
Cumulative models form the most general class:

Definition 3.1. A cumulative model over a set V of valuations is a triple W = (S, ≺
, l), where S is a set containing elements called states, ≺ is a binary relation over
S, l is a function mapping every state s ∈ S to a non-empty set l(s) ⊆ V , (S, ≺, l)
satisfies the smoothness condition defined below. For every formula φ ∈ lang we
define φ by φ = {s ∈ S | ∀v ∈ l(s), v |= φ}. A state s is said to be ≺-minimal in a
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set X ⊆ S iff s ∈ X and there is no s′ ∈ X such that s′ ≺ s. Furthermore, W is
called finite iff S is finite.

The smoothness condition is related to the Limit Assumption discussed in Sec-
tion 3.1. It ensures that, for every formula φ, it is possible to determine the preferred
states in φ.

Definition 3.2. A triple (S, ≺, l) satisfies the smoothness condition iff for all φ ∈
lang and s ∈ φ, either s is ≺-minimal in φ, or there is some s′ ∈ φ such that s′ is
≺-minimal in φ and s′ ≺ s.

The following definition defines three restricted classes of cumulative models.
Ordered and preferential models were defined by [45]. Ranked models were defined
by [47].

Definition 3.3. A cumulative model W = (S, ≺, l) is:

• ordered if ≺ is a strict partial order.

• preferential if it is ordered and for all s ∈ S, l(s) is a singleton.

• ranked if it is preferential and there exists a mapping R : S → N such that
s ≺ s′ iff R(s) < R(s′).

Definition 3.4. A triple W = (S, ≺, l) determines a consequence relation (denoted
by |∼W) by the following rule:

φ |∼W ψ iff for all s ≺-minimal in φ we have ∀v ∈ l(s), v |= ψ.

We now move on to the axiomatisation of the four classes of models just defined.
Consider the following set of properties.
(Reflexivity) φ |∼ φ
(Left Logical Equivalence) If φ ≡ ψ and φ |∼ χ then ψ |∼ χ
(Right Weakening) If φ |∼ ψ and ψ |= χ then φ |∼ χ
(Cut) If φ |∼ ψ and φ ∧ ψ |∼ χ then φ |∼ χ
(Cautious Monotony) If φ |∼ ψ and φ |∼ χ then φ ∧ ψ |∼ χ
(Loop) If φ0 |∼ φ1, φ1 |∼ φ2, . . . ,

φk−1 |∼ φk, φk |∼ φ0 then φ0 |∼ φk

(Or) If φ |∼ χ and ψ |∼ χ then φ ∨ ψ |∼ χ
(Rational Monotony) If φ ∕|∼ ¬ψ and φ |∼ χ then φ ∧ ψ |∼ χ

Let us point out that Reflexivity corresponds to the ID axiom of C2 and that Ra-
tional Monotony corresponds to the CV axiom. The set of axioms Reflexivity, Right



Heyninck, Kern-Isberner, Rienstra, Skiba and Thimm

Weakening, Left Logical Equivalence, Cut, Cautious Monotony, and Or have become
known as system P [45] and is considered as kind of a gold standard for nonmono-
tonic inference relations. The correspondence between these axioms and the four
classes of models is established by the following Theorem 3.6. The axiomatisation
of cumulative, ordered and preferential models is due to [45]. The axiomatisation of
ranked models is due to [47].

Definition 3.5. A consequence relation |∼ is said to be:

• cumulative iff it satisfies Reflexivity, Right Weakening, Left Logical Equiva-
lence, Cut and Cautious Monotony.

• loop-cumulative iff it is cumulative and satisfies Loop.

• preferential iff it is loop-cumulative and satisfies Or.

• rational iff it is preferential and satisfies Rational Monotony.

Example 6. As an example of a cumulative model, consider S consisting of all
possible worlds over the signature {p, b, f} and ≺ ordered as follows:

pbf
pbf
pb f

pbf

pbf

pb f
pbf pbf

≺

Then we see that e.g. pb |∼W f as the verifying world pbf is ≺-preferred to the only
falsifying world pbf , i.e., pbf ≺ pbf .

An example of a rational model is given by the following order:

pbf, pbf, pb f ≺ pbf, pbf ≺ pbf, pb f, pbf

We see here again that pb |∼W f

Theorem 3.6. Let |∼⊆ L×L. It holds that |∼ is cumulative (resp. loop-cumulative,
preferential, rational) iff |∼ is defined by a cumulative (resp. cumulative-ordered,
preferential, ranked) model. Furthermore, if L is logically finite (i.e., contains a
finite number of atoms) and |∼ is cumulative (resp. loop-cumulative, preferential,
rational) then |∼ is defined by a finite cumulative (resp. cumulative-ordered, prefer-
ential, ranked) model.

We have seen that the KLM-framework offers a formal model of the semantics of
defeasible conditionals. The framework, however, does not give an account of how
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to construct a cumulative model for a given conditional knowledge base (typically,
many different cumulative, or even preferential or ranked models are possible). In
more detail, given a set of conditionals ∆ of the form (φ|ψ) (where φ, ψ ∈ L), we
are interested in determining a unique cumulative model W s.t. for every (φ|ψ) ∈ ∆,
φ |∼W ψ, i.e. W accepts every conditional. Several approaches for constructing such
a model, sometimes called inductive inference operators, have been studied in the
literature [47, 32, 41]. Probably the best-known and most-studied (even though not
necessarily the best-behaved) approach is known as rational closure [47] or system
Z [32].

We focus on system Z defined as follows. A conditional (ψ|φ) is tolerated by
a finite set of conditionals ∆ if there is a possible world ω with (ψ|φ)(ω) = 1 and
(ψ′|φ′)(ω) ∕= 0 for all (ψ′|φ′) ∈ ∆, i. e. ω verifies (ψ|φ) and does not falsify any
(other) conditional in ∆. The Z-partitioning (∆0, . . . , ∆n) of ∆ is defined as:

• ∆0 = {δ ∈ ∆ | ∆ tolerates δ};

• ∆1, . . . , ∆n is the Z-partitioning of ∆ \ ∆0.
For δ ∈ ∆ we define: Z∆(δ) = i iff δ ∈ ∆i and (∆0, . . . , ∆n) is the Z-partioning of
∆. Finally, the ranking function κZ

∆ is defined via: κZ
∆(ω) = max{Z(δ) | δ(ω) =

0, δ ∈ ∆}+1, with max ∅ = −1. Notice that this ranking correspond to a cumulative
model, which we denote by WZ(∆).

We now illustrate ranked models in general and system Z in particular with the
well-known “Tweety the penguin”-example.
Example 7. Let ∆ = {(f |b), (b|p), (¬f |p)}. This conditional belief base has the
following Z-partitioning: ∆0 = {(f |b)} and ∆1 = {(b|p), (¬f |p)}. This gives rise to
the following κZ

∆-ordering over the worlds based on the signature {b, f, p}:

ω κZ
∆ ω κZ

∆ ω κZ
∆ ω κZ

∆
pbf 2 pbf 1 pbf 2 pb f 2
pbf 0 pbf 1 pbf 0 pb f 0

As an example of a (non-)inference, observe that e.g. ⊤ |∼WZ(∆) ¬p and p ∧
f ∕|∼WZ(∆) b.

3.4 Belief Revision and the Ramsey Test
Another important area in knowledge representation is that of belief change, which is
concerned with supplying a formal model of the change of a belief base. In the con-
text of this article, this is particularly interesting as there exist strong relationships
between belief change and conditional reasoning, as we will explain below.
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3.4.1 Belief Revision

We now recall the AGM-approach to belief revision [2] as reformulated for proposi-
tional logic by [40]. The following postulates for revision operators  : L × L → L
are formulated:

(R1) φ  ψ ⊢ ψ
(R2) If φ ∧ ψ is satisfiable, then φ  ψ ≡ ψ ∧ φ
(R3) If ψ is satisfiable, then so is φ  ψ
(R4) If φ1 ≡ φ2 and ψ1 ≡ ψ2, φ1  ψ1 ≡ φ2  ψ2
(R5) (φ  ψ) ∧ µ ⊢ φ  (ψ ∧ µ)
(R6) If (φ  ψ) ∧ µ is satisfiable, then φ  (ψ ∧ µ) ⊢ (φ  ψ) ∧ µ

An important result is the semantical characterisation of such a belief revision
operator. For such a characterisation, a function f : L(At) → ℘(Ω(At)×Ω(At)) that
assigns to each propositional formula φ ∈ L a total preorder ≼φ over Ω(At) is used.
The revision of a formula φ by a formula ψ is then defined as the formula which has
as models exactly the ≼φ-minimal models that satisfy ψ.

Definition 3.7 ([40]). Given a formula φ ∈ L(At), a function f : L(At) → ℘(Ω(At)×
Ω(At)) assigning preorders ≼φ over Ω(At) to every formula φ ∈ L(At) is faithful iff:

1. For every φ ∈ L(At), if ω, ω′ ∈ Mod(φ) then ω ∕≺φ ω′,

2. For every φ ∈ L(At), if ω ∈ Mod(φ) and ω′ ∕∈ Mod(φ) then ω ≺φ ω′,

3. For every φ, φ′ ∈ L(At), if φ ≡ φ′ then ≼φ=≼φ′.

In [40] the following representation theorem for an AGMrevision operator  was
shown:

Theorem 3.8 ([40]). An operator  : L(At)×L(At) → L(At) satisfies R1–R6 iff there
exists a faithful mapping f : L(At) → ℘(Ω(At) × Ω(At)) that maps each formula
φ ∈ L(At) to a total preorder s.t.:

Mod(φ  ψ) = min
f(φ)

(Mod(ψ)) (1)

3.4.2 The Ramsey Test

Close relationships between belief revision and conditional logics were noticed by
means of the Ramsey test [61], which says that a conditional (ψ|φ) is valid if ψ
is believed after revision with the antecedent φ. The Ramsey test also gave rise to
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impossibility results on the compatibility of belief revision and conditional reasoning
[26]. However, when [40] showed that total preorders underlie AGM-belief revision in
a fundamental and inevitable way, it was at once also established that belief revision,
conditional logic, and nonmonotonic inference were shown to be fully compatible.
They can thus be seen as two different sides of a single topic or mode of reasoning
[27, 50], at least when restricted to propositional beliefs. Indeed, when moving to
other kinds of belief revision (e. g. [33, 18]), weaker kinds of conditionals [34, 51] or
other forms of nonmonotonic inference, these interrelations tend to break down or
are not investigated. For example, for revision in Horn-theories, [18] has shown that
rational revision operators cannot be straightforwardly represented in terms of total
preorders, thus severing the link between belief revision and nonmonotonic infer-
ence. It was shown that for revision operators in Horn theories satisfying additional
postulates, semantics in terms of total preorders are sound and complete, but no
investigations in corresponding non-monotonic inference relations have been made.

4 Syntactic similarities between Conditionals
and Argumentative Formalisms

In this section, we survey work that explores syntactic similarities between for-
malisms in formal argumentation and conditionals, such as [38, 39, 37]. We explain
where similarities have been identified and point to relevant differences.

The reason for looking at the syntactic similarities between abstract dialectical
frameworks and conditional logic is the following. Syntactically, both frameworks
focus on pairs of objects such as (φ, ψ). In conditional logic, these pairs are inter-
preted as conditionals with the informal meaning “if φ is true then, usually, ψ is
true as well” and written as (ψ|φ). In abstract dialectical frameworks, these pairs
are interpreted as acceptance conditions, and interpreted as “if φ is accepted then
ψ is accepted as well”. The resemblance of these informal interpretations is strik-
ing, but both approaches use fundamentally different semantics to formalise these
interpretations. In several papers [38, 39, 37] these syntactical similarities formed
the basis of a comparison between abstract dialectical frameworks and conditional
logics. In more detail, they asked the question of whether, and how we can interpret
abstract dialectical frameworks in terms of conditional logic so that acceptance in
the argumentative system is defined by a nonmonotonic inference relation based on
conditionals. The main insights are that there is a gap between argumentation and
conditional semantics when applying several intuitive translations, but that there
exists a class of translations that preserve the semantics for the 2-valued model se-
mantics of ADFs (and for other semantics under certain conditions on the ADFs).



Heyninck, Kern-Isberner, Rienstra, Skiba and Thimm

Furthermore, none of the translations studied are adequate for the grounded seman-
tics and for the preferred and stable semantics in general. In the rest of this section,
we provide more details on these results.

The following summarizes the investigations by Heyninck et al on syntactic sim-
ilarities between ADFs and conditionals [38]. Where S is a set of atoms and DS

is the set of all ADFs defined on the basis of S (i.e. all ADFs D = (S, L, C)), and
(L(S)|L(S)) is the set of all condtionals over the propositional language generated
by S, we investigate mappings T : DS → ℘((L(S)|L(S))) (for arbitrary S).

There is a whole family of translations from ADFs to conditional logics which are
prima facie apt to express the links between nodes s and their acceptance conditions
Cs:

• Θ1(D) = {(s|Cs) | s ∈ S}

• Θ2(D) = {(Cs|s) | s ∈ S}

• Θ3(D) = Θ1(D) ∪ Θ2(D)

• Θ4(D) = Θ1(D) ∪ {(¬s|¬Cs) | s ∈ S}

• Θ5(D) = {((Cs ≡ s)|⊤) | s ∈ S}

• Θ6(D) = Θ2(D) ∪ {(¬Cs|¬s) | s ∈ S}.

• Θ7(D) = {(¬s|¬Cs) | s ∈ S} ∪ {(¬Cs|¬s) | s ∈ S}.

Notice that all of these translations are based on the idea that there is a strong
connection between the acceptance of an acceptance condition Cs and the acceptance
of the corresponding node s. Indeed, as [14] puts it: “each node s has an associated
acceptance condition Cs specifying the exact conditions under which s is accepted”.
However, in this formulation, it is not specified (1) when a formula is true according
to a three-valued interpretation (i.e. is a ∨ ¬a true according to an interpretation v
with v(a) = u? Different three-valued logics give different answers to this question),
(2) what to accept when there are conflicts between different acceptance conditions
(e.g. if Ca = ¬b and Cb = ¬a) and (3) under which conditions we are justified in
rejecting a node. Therefore, we systematically investigate different forms of condi-
tionals based on the common idea that “the influence a node may have on another
node is entirely specified through the acceptance condition” [14].

We now explain in more detail every translation. Θ1 formalizes the intuition
that whenever the condition of a node s is believed, normally, s should be believed
as well. Likewise, Θ2 formalizes the idea that if a node is believed, its condition
should be believed as well. Θ3 combines the two aforementioned intuitions. Θ4 is
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a slight variation on this idea, combining Θ1 with the constraint that whenever the
negation of a condition of a node is believed, the negation of the node itself should be
believed as well. Θ5 postulates that a node should be equivalent to its condition. Θ6,
formalizes the following intuition: if s is believed, Cs has to be believed, and if ¬s
is believed, ¬Cs has to be believed as well. Finally, Θ7 is a formalization of the idea
that whenever the negation of a node, respectively the negation of the condition of a
node is believed, the negation of the condition of the node, respectively the negation
of the node should be believed. Note that Θ1 has already been investigated to
some small extent in [43]. These translations were investigated with respect to their
adequacy in full detail in [38]. In more detail, the following notion of adequacy was
used there:

Definition 4.1. Let S be a set of atoms and T : DS → ℘((L(S)|L(S))) be a trans-
lation from ADFs to conditional knowledge bases. We furthermore define W |= ∆ iff
φ |∼W ψ for every (ψ|φ) ∈ ∆. T is:

• OCF-adequate with respect to Sem if: for every D = (S, L, C) there is some
ranked model W s.t. (1) W |= T(D) and (2) for every s ∈ S, D |∼∩

Sem s iff
⊤ |∼W s.3

• Z-adequate with respect to Sem if: for every D = (S, L, C) and every s ∈ S it
holds that: D |∼∩

Sem s iff T(D) |∼Z s.

Intuitively, a translation is OCF-adequate if the beliefs sanctioned by some rank-
ing that is a model of the translation correspond to the consequences of the translated
ADF D under some semantics Sem. The general picture that emerges in [38] is that:

• the translations Θ1 and Θ2 are not OCF-adequate or Z-adequate under any
ADF-semantics,

• the translations Θ3, . . . , Θ7 are OCF-adequate and Z-adequate under the two-
valued model semantics, and

• the translations Θ3, . . . , Θ7 are not OCF-adequate and Z-adequate under any
other ADF-semantics.

We refer to [38] for full formal details, but illustrate this here with a few simple
examples.

3The term OCF-adequate comes from ordinal conditional functions, a particularly useful imple-
mentation of ranked models due to Spoh [66].
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Example 8 (Z-Inadequacy of Θ1 w.r.t. 2mod). We consider the following ADF
D1 = ({a, b, c}, L, C) . Notice that

Θ1(D1) = {(b|¬a), (a|¬b), (c|¬a ∨ ¬b)}

which has the following Z-ranking:

ω κz
∆ ω κz

∆ ω κz
∆ ω κz

∆

abc 0 abc 0 abc 0 abc 1
abc 0 abc 1 abc 1 abc 1

We therefore see that Θ1(D1) ∕ |∼Z c even though D |∼∩
2mod c and thus Θ1 is not

Z-adequate with respect to the 2mod-semantics.

Example 9 (Z-Inadequacy of Θ2 w.r.t. 2mod). We consider the following ADF
D2 = ({a, b, c}, L, C) where:

Ca = ¬b Cb = ¬a Cc = a ∨ b

D2 has three complete models v1, v2, v3 with: v1(a) = v2(b) = v1(c) = v2(c) = ⊤,
v1(b) = v2(a) = ⊥ and v3(a) = v3(b) = v3(c) = u. Only v1 and v2 are 2-valued.

Moving to Θ2(D) = {(¬a|b), (¬b|a), (a ∨ b|c)}, we see that

(κZ
Θ2(D))

−1(0) = {abc, abc, abc, abc, abc}.

This means that Θ2(D2) ∕ |∼Z c even though D |∼∩
2mod c, i.e. Θ2 is not Z-adequate with

respect to the 2mod-semantics.

Example 10. If we look at D2 = ({a, b, c}, L, C) from the previous example again,
we see that

Θ3(D2) = {(a|¬b), (b|¬a), (c|a ∨ b), (¬a|b), (¬b|a), (a ∨ b|c)}.

We see that (κZ
Θ3(D))

−1(0) = {abc, abc}. This illustrates OCF-adequacy and Z-
adequacy of Θ3(D2). For the other translations Θ4, . . . , Θ7, a similar result holds.

This example also lets us illustrate the Z-inadequacy of these translations for
the complete and grounded semantics. Indeed, as there is one complete model of
D2 v3 with v3(a) = v3(b) = v3(c) = u, we see that D ∕ |∼grounded a ∨ b whereas
Θ2(D2) |∼Z a ∨ b.

Likewise, for preferred semantics, all translations prove inadequate:
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Example 11. We consider the following ADF D3 = ({a, b, c}, L, C) where Ca = ¬b,
Cb = ¬a, and Cc = ¬b ∧ ¬c. This ADF has the following unique 2-valued models:
v(a) = v(c) = ⊥ and v(b) = ⊤. If we consider e.g. Θ3(D3) = {(a|¬b), (b|¬a), (c|¬b ∧
¬c), (¬b|a), (¬a|b), (¬b ∧ ¬c|c)}, we see that κZ

Θ3(D))
−1(0) = {abc} which means

Θ3(D3) |∼Z b. However, D3 has two preferred intepretations: one corresponds to
the κZ

Θ3(D)-minimal world (v(a) = v(c) = ⊥ and v(b) = ⊤), and a second preferred
model is v′ with v′(a) = ⊤, v′(b) = ⊥ and v′(c) = u. Thus, D |∼∩

preferred b.

5 Conditional semantics in argumentation

In this section, we survey work that applies ideas from conditional logic in formal
argumentation.

5.1 Abstract argumentation

In the following, we discuss the works [64] and [65] which apply conditional logic
semantics in abstract argumentation frameworks.

5.1.1 Non-Classical Semantics for Abstract Argumentation

Classical interpretations of propositional logic (and other classical logics) provide a
simple interpretation for the elements in the signature of the logic: an interpretation
(or possible world) ω either evaluates an atom a ∈ At to T or F. Similarly, classical
interpretations of abstract argumentation frameworks (extensions) provide the same
view on the acceptance status of arguments: either an argument a is contained in
an extension E or it is not.

In conditional logics, interpretations provide more structure and are usually
based on some form of rankings of classical interpretations wrt. their plausibility,
such as with ordinal conditional functions (or ranking functions). In the following,
we consider ranking functions for abstract argumentation, i. e., functions that assign
a degree of plausibility to extensions. Such a ranking between sets of arguments
allows us to reason in a more fine-grained manner than with extension-based se-
mantics. Where in classical extension-based semantics, we can either say that a
particular set of arguments is an extension or not, in the ranking-based approach,
we can compare two sets (which are not necessarily extensions for a given semantics)
on the basis of how close they are to being acceptable.

In order to approach the topic in a general manner, we first consider extension-
ranking semantics by [64].
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a b c d

Figure 2: AF from Example 12.

Definition 5.1 (Extension-ranking semantics). Let AF = (A, R) be an AF. An
extension ranking on AF is a preorder4 ⊒ over the power set of arguments 2A. An
extension-ranking semantics τ is a function that maps each AF to an extension
ranking ⊒τ

AF on AF .

Note that extension rankings are not necessarily total. For an AF AF = (A, R),
an extension-ranking semantics τ , an extension ranking ⊒τ

AF , E, E′ ⊆ A, and for
E ⊒τ

AF E′ we say that E is at least as plausible as E′ with respect to τ in AF . We
introduce the usual abbreviations:

• E is strictly more plausible than E′, denoted E ⊐τ
AF , if E ⊒τ

AF E′ but not
E′ ⊒τ

AF E;

• E and E′ are equally plausible, denoted E ≡τ
AF E′, if E ⊒τ

AF E′ and E′ ⊒τ
AF E;

• E and E′ are incomparable, denoted E ≍τ
AF E′, if neither E ⊒τ

AF E′ nor
E ⊒τ

AF E′.

To motivate the need of extension rankings further consider the following example.

Example 12. Lets recall the AF from Example 3 with

AF = ({a, b, c, d}, {(a, b), (b, c), (c, d), (d, c)}

and depicted in Figure 2. To compare the two sets {b} and {c, d} extension-based
semantics such as admissible semantics do not provide a suitable solution. Both these
sets are not admissible extensions, however {c, d} is not even conflict-free, while {b}
is conflict-free. Therefore we argue that {b} is a “better” set than {c, d}, since
conflict-freeness is an undisputed property in the area of abstract argumentation.
Extension-ranking semantics provides a suitable approach to rank {b} and {c, d}.

Extension-based semantics provide a naive way of defining extension-ranking
semantics. A set of arguments E is “better” than another set E′ if the first set
satisfies an extension-based semantics and the second set does not.

4A preorder is a (binary) relation that is reflexive and transitive.
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Definition 5.2 (Least-discriminating extension-ranking semantics). Let AF =
(A, R) be an AF. Given an extension-based semantics σ, we define the least-
discriminating extension-ranking semantics wrt. σ, denoted LDσ by:

• E ⊐LDσ

F E′ if E ∈ σ(F ) and E′ /∈ σ(F );

• and E ≡LDσ

F E′, if E, E′ ∈ σ(AF ) or E, E′ /∈ σ(F ).

Example 13. Continuing Example 12. Consider the two sets {a, c} and {c, d}.
{a, c} is an admissible set, while {c, d} is not even conflict-free, by using LDad we
have {a, c} ⊐LDad

AF {c, d}. So, the least-discriminating extension-ranking semantics
is behaves in line with the binary classification of extension-based semantics. A set
is either accepted or not wrt. an extension-based semantics σ i.e. a set is either part
of the upper level if that set satisfies semantics σ or on the lower level if the set does
not satisfy σ.

5.1.2 Ordinal Conditional Functions for Abstract Argumentation

[65] introduced ranking functions for abstract argumentation frameworks. These
ranking functions are a starting point for fully capturing the ideas and concepts
of conditional logics in abstract argumentation. A ranking function κ(I, O) for an
AF = (A, R) is used to compute a numerical plausibility value for a set of arguments
I ⊆ A to be considered in under the assumption that the set of arguments O ⊆ A is
considered out. Unlike ranking functions for conditional logics, ranking functions for
argumentation frameworks need two parameters to compute a numerical plausibility
value, since AFs do not have a notion of negation. E.g. in Example 12, the pair
({a, c}, {b, d}) can be seen as an analogue to the world abcd.

Definition 5.3. Let AF = (A, R) be an AF. A ranking function for AF is a function
κ : 2A → N ∪ {∞} with κ−1(0) ∕= ∅. For sets I, O ⊆ A we abbreviate

κ(I, O) = min{κ(S)|I ⊆ S, S ∩ O = ∅}
κ(I, O) = ∞ if I ∩ O ∕= ∅

Example 14. Let AF2 = ({a, b, c}, {(a, b), (b, c)} be an AF and consider an ex-
emplary ranking function κ. Since {a, c} is the preferred extension we argue
that {a, c} should receive a plausibility value of 0, because no set is more plau-
sible than a preferred extension, i.e. κ({a, c}, ∅) = κ({a, c}, {b}) = 0. Then
the two admissible sets {a} and ∅ should receive a plausibility value of 1, be-
cause these two sets are atleast admissible even-though they are not preferred, i.e.
κ({a}, {b, c}) = κ({a}, {b}) = κ({a}, {c}) = κ({a}, ∅) = 1 and κ(∅, S) = 1 for every
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S ⊆ {a, b, c}. The two conflict-free sets {b} and {c} receive a plausibility value of 2,
i.e. κ({b}, {a, c}) = κ({b}, {a}) = κ({b}, {c}) = κ({b}, ∅) = 2 and κ({c}, {a, b}) =
κ({c}, {a}) = κ({c}, {b}) = κ({c}, ∅) = 2. Since the two sets {a, b} and {b, c}
each entail only one conflict each, they should receive a better plausibility value than
{a, b, c}, i.e. κ({a, b}, {c}) = κ({a, b}, ∅) = κ({b, c}, {a}) = κ({b, c}, ∅) = 3 and
κ({a, b, c}, ∅) = 4.

Conditional logics semantics follows one single principle for conditional accep-
tance (“a conditional is accepted if its verification is more plausible than its vi-
olation”). On the other hand in abstract argumentation and in particular for
admissible-based reasoning two guiding principles can be found:

Conflict-freeness: An argument should not be accepted if one of its attackers is
accepted.

Reinstatement: An argument should be accepted if all its attackers are not ac-
cepted.

Conflict-freeness describes that a set should not contain two arguments that attack
each other. So conflicting sets should be less plausible than conflict-free sets. Re-
instatement describes that if there is no reason to reject an argument, then that
argument should not be rejected. So a set which defends itself against all possible
attackers is at least as plausible as a set that does not defend itself. The implemen-
tation of these two principles for ranking functions κ is:

Definition 5.4. Let AF = (A, R) be an AF, a, b ∈ A, and κ a ranking function.

• κ accepts an attack (a, b) with a ∕= b if κ({a}, {b}) < κ({a, b}, ∅).

• κ possibly reinstates an argument a if κ(S ∪ {a}, a−) ≤ κ(S, {a} ∪ a−) for all
S ⊆ A with S ∩ (a− ∪ a+) = ∅.

In other words, for an attack (a, b) to be accepted by a ranking function, it is
more plausible for a to be in and b to be out than for both a and b to be in at
the same time. An argument a is possibly reinstated by a ranking function if all
attackers of a are out, then a being in should be at least as plausible as a being out.

If a ranking function satisfies the two principles for all arguments and all attacks
of an AF, then that ranking function satisfies that AF.

Definition 5.5. A ranking function κ satisfies an AF AF = (A, R) if it accepts all
attacks in R and possibly reinstates all arguments in A.
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i κ−1(i)
3 ({a, b}, ∅)
2 (∅, {a}), (∅, {b}), (∅, {a, b})
1 ({b}, {a}), ({b}, ∅)
0 (∅, ∅), ({a}, ∅), ({a}, {b})

Table 2: Example ranking function for Example 15. Note κ is only partially defined.

Example 15. Consider AF3 = ({a, b}, {(a, b)}). So the following statements have
to hold for a ranking function κ to satisfy AF3:

1. κ({a}, {b}) < κ({a, b}, ∅)

2. κ({a}, ∅) ≤ κ(∅, {a})

3. κ({b}, {a}) ≤ κ(∅, {a, b})

Table 2 depicts a ranking function that satisfies AF3. The two admissible sets are ∅
and {a}, these two sets are also on the lowest level, meaning that these sets are the
most plausible sets. If we compare the two not admissible sets {b} and {a, b} we see
that {b} is ranked higher than {a, b}. This behaviour is intuitive, since while both
these sets are not admissible and {b} is at least conflict-free.

Note that if an AF contains any self-attacking argument a, then there can be
no ranking function that satisfies that AF. This is because in order to accept the
attack (a, a), it must hold that κ({a}, {a}) < κ({a}, ∅), which is impossible since
κ({a}, {a}) = ∞.

5.1.3 System Z Ranking function for Abstract Argumentation Frame-
works

Next, we discuss a ranking function for AFs inspired by system Z. Recall that the
basic idea of system Z is that a conditional (φ|ψ) is tolerated by a set of conditionals
if it is confirmed by a possible world ω and no other conditional is refuted. When
investigating an attack (a, b) in an argumentation framework, it can be concluded
that if a is part of an extension E, then b should not be part of the same extension.
Thus attacks between two arguments within an argumentation framework represent
a conditional relation between those two arguments, i.e. for an attack (a, b) we
can formulate: “if a is acceptable then b should not be acceptable”. Therefore, we
interpret the attack relation of an argumentation framework as a set of conditionals
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and to model the idea of system Z it has to hold that in order to tolerate an attack
(conditional) we have to find a set of arguments (interpretation), which verifies that
attack while not violating any other attack.

Definition 5.6. Let AF = (A, R) be an AF.

• A set S ⊆ A verifies an attack (a, b) iff a ∈ S and b /∈ S.

• A set S ⊆ A violates an attack (a, b) iff a ∈ S and b ∈ S.

• A set S ⊆ A satisfies an attack (a, b) iff it does not violate it.

Intuitively, a set of arguments satisfies an attack if this set does not contain both
the attacker and the target of the attack. For AF AF2 = ({a, b, c}, {(a, b), (b, c)})
from Example 14, we can observe that the set S1 = {a} verifies the attack (a, b) and
does not violate the attack (b, c), while the set S2 = {a, b} verifies the attack (b, c),
however S2 violates attack (a, b).

Verifying an attack is not enough to capture the full picture of reasoning in ab-
stract argumentation since only conflict-freeness is captured. To capture reinstate-
ment as well the notion of defence has to be modelled with the toleration notion.
For this purpose we add an another condition for an attack to be tolerated by a set
of arguments, the so-called attack admissibility. To satisfy attack admissibility of an
argument it has to hold that if all the attackers of the argument are out, then the
argument itself should be in.

Definition 5.7. Let AF = (A, R) be an argumentation framework.

• A set S ⊆ A verifies attack admissibility of a ∈ A iff a ∈ S and b /∈ S for all
b ∈ a−.

• A set S ⊆ A violates attack admissibility of a ∈ A iff a /∈ S and b /∈ S for all
b ∈ a−.

• A set S ⊆ A satisfies attack admissibility of a ∈ A iff it does not violate it.

Recall AF2 = ({a, b, c}, {(a, b), (b, c)}), then set S3 = {a, c} verifies attack admis-
sibility of argument c, because the only attacker of c, b is not part of S3 and one of
the attackers of b is contained in S3. For set {b} we have the case where argument a
is not part of {b}, however {b} also does not contain any attacker of a, hence attack
admissibility of a is violated.

By combining these two definitions, we define when an attack can be tolerated.

Definition 5.8. Let AF = (A, R) be an argumentation framework. A set P ⊆ R
tolerates an attack (a, b) iff there is a set S ⊆ A that
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1. verifies (a, b),

2. satisfies each attack in P , and

3. satisfies attack admissibility of each c ∈ A

To tolerate an attack, we have to find a set of arguments S that is conflict-free and
every argument not in S has to be attacked. Recall AF2 = ({a, b, c}, {(a, b), (b, c)}),
then attack (b, c) is not tolerated by {(a, b), (b, c)}. For (b, c) to be verified for any
set S, it must hold that b ∈ S. Then, to not violate (a, b) a is not allowed to be
contained in S. However, then we have the problem that S does not contain any
attackers of a, meaning that attack admissibility of a is violated.

With the help of the notion of toleration, we define a ranking function κZ inspired
by system Z for AFs.

Definition 5.9. Let AF = (A, R) be an argumentation framework. Then the Z-
attack-Partitioning (R0, . . . , Rn) with R0 ∪ . . . ∪ Rn ⊆ R is defined as

• R0 = {r ∈ R | R tolerates r}

• (R1, . . . , Rn) is the Z-attack-Partitioning of R \ R0

For r ∈ R define ZR(r) = i if r ∈ Ri and

κZ(S, X) = max{Z(r) | S violates r} + 1

where X ⊆ A is any set s.t. S ∩ X = ∅.

Attacks in R0 are tolerated with respect to the complete set of attacks R of an
AF = (A, R), while attacks in R1 are tolerated only after removing the attacks in
R0. Using this partitioning of attacks we can rank the sets of arguments based on
their plausibility with respect to the attacks. If a set violates an attack on level 0,
while a different set violates an attack on level 1, then the first set is more plausible
than the second one. The higher an attack is ranked, the worse its violation is.
Thus, the partitioning of attacks can be interpreted as a split based on the impact
of each attack in the AF, with attacks on lower ranks being considered better. It
is therefore more important to satisfy a single high ranked attack than to satisfy
several low ranked attacks.

Example 16. Consider AF from Example 12. Then to tolerate attack (b, c) argu-
ment b has to be verified, however then attack admissibility of a is violated, hence
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i κ−1(i)
2 ({b, c}, X), ({a, b, c}, X), ({b, c, d}, X), ({a, b, c, d}, X)
1 ({a, b}, X), ({c, d}, X), ({a, b, d}, X), ({a, c, d}, X)
0 (∅, X), ({a}, X), ({b}, X), ({c}, X), ({d}, X), ({a, c}, X), ({b, d}, X), ({a, d}, X)

Table 3: κZ , where for every pair (I, X) X ⊆ A is any set s.t. I ∩ X = ∅.

(b, c) /∈ R0. The remaining attacks are tolerated by R, so the Z-attack-Partitioning
of R is (R0, R1) with

R0 = {(a, b), (c, d), (d, c)}
R1 = {(b, c)}

Consider sets {a, c, d} and {b, c}, then {a, c, d} violates (a, b), (c, d) and (d, c) while
{b, c} violates (b, c). Since (b, c) ∈ R1 it holds that

κZ
AF ({a, c, d}, ∅) < κZ({b, c}, ∅).

Table 3 depicts κZ
AF for AF from Example 12.

5.1.4 Extension-ranking Semantics based on System Z

The ranking functions for AFs can be seen as a special instance of extension-ranking
semantics. These functions allow us to rank sets of arguments based on their plau-
sibility. So we can define an extension-ranking semantics based on the system Z
ranking function for AFs by stating that a set of arguments E is at least as plausible
as another set E′ if κZ returns a lower value for E than for E′ with respect to the
remaining arguments.

Definition 5.10. Let AF = (A, R) be an AF and E, E′ ⊆ A. Define the system Z
extension-ranking semantics ⊒κZ

AF via

E ⊒κZ

AF E′ iff κZ(E, A \ E) ≤ κZ(E′, A \ E′).

In other words, E is at least as plausible as E′, if E being in, while all other
arguments not in E are considered out is more plausible than E′ being considered
in while all arguments not in E′ are considered out.

Example 17. Consider again AF from Example 12. Then Table 4 depicts the
ranking corresponding to ⊒κZ

AF . All conflict-free sets are part of the most plausible
sets, while sets with conflicts are ranked lower. The number of conflicts is not as
important as in the approaches of [64]. In their approaches, {b, c} is always ranked
strictly better than {b, c, d}. While for κZ these two sets are ranked equally.
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∅ ≡κZ

AF {a} ≡κZ

AF {b} ≡κZ

AF {c} ≡κZ

AF {d} ≡κZ

AF {a, c} ≡κZ

AF {b, d} ≡κZ

AF {a, d}
⊒κZ

AF {a, b} ≡κZ

AF {c, d} ≡κZ

AF {a, b, d} ≡κZ

AF {a, c, d}
⊒κZ

AF {b, c} ≡κZ

AF {a, b, c} ≡κZ

AF {b, c, d} ≡κZ

AF {a, b, c, d}

Table 4: Extension-ranking for AF based on ⊒κZ

AF .

For further discussions about the system Z extension-ranking semantics we refer
to [65].

In this subsection, we have seen that the ideas and concepts of ranking functions
can be applied to abstract argumentation frameworks. Sets of arguments can be seen
as interpretations and an attack between two arguments can be seen as a conditional
i.e. for an attack (a, b) we say that if a is accepted, then b is not accepted. The
results of this investigation are functions allowing us to compare sets of arguments
based on their plausibility, which is in line with recent work on extension-ranking
semantics [64].

5.2 Dynamic Conditionals for Abstract Dialectical Frameworks

Partially based on the differences between the semantics of ADFs and conditionals
(Section 4), [36] defined conditional inference relations for ADFs. They took inspi-
ration from the propositional setting, where there exist strong connections between
conditional inference and belief revision as explained in Section 3.4.

For simplicity, we explain here the main ideas for two-valued ADF-semantics (in
particular, the two-valued model and stable semantics). We refer to full details, and
analogous results for three-valued semantics (e.g. complete, grounded and preferred)
to [36].

5.2.1 Revising ADFs

Informally, [39] study the revision of argumentative contexts, which are represented
by an ADF D, by new information, represented as logical formula φ, resulting in a
revised argumentative context D  φ.

We concentrate on revising ADFs by formulas, resulting in a new ADF, i.e. revi-
sion operators  : D(At) × LK(At) → D(At). Revisions is always relative to a chosen
semantics, and when this semantics is two-valued (e. g. two-valued models or stable
models), we will restrict attention to revision by formulas in propositional logic in
view of the two-valued nature of the mentioned semantics.

As an example of when this kind of revision can be useful, consider the following:
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a b

c

Cb = ¬aCa = ¬b

Cc = ¬a ∨ ¬b

Figure 3: Argumentative representation of Example 18.

Example 18. Consider making travel plans while being based in Germany. There
are three candidate destinations: Addis Aba (Ethiopia), Boston (USA), and Cochem
(Germany). There is not enough time to make two intercontinental travels, but when
making at most one intercontinental travel, you will have enough money and time
for an additional holiday in Germany. When you would make two intercontinental
travels, no time for traveling to Cochem would be left.

Argumentation can be used to make an informed decision in this scenario: there
are three arguments a, b and c for the three respective destinations. a and b attack
each other, whereas {a, b} attack c. We have represented this as an ADF consisting
of three arguments a, b and c with their respective acceptance conditions Ca, Cb and
Cc. This results in the ADF D1 = ({a, b, c}, L, C) with L = {(a, b), (b, a), (a, c), (b, c)}
and Ca = ¬b, Cb = ¬a and Cc = ¬a ∨ ¬b. D1 is represent graphically in Figure
3. Informally, the acceptance conditions can be read as “a is accepted if b is not
accepted”, “b is accepted if a is not accepted” and “c is accepted if a is not accepted
or b is not accepted”.

The argumentative formalisation does not tell us, however, how we should adapt
our beliefs in view of changing information. For example, suppose that a highly
infectious disease breaks out in Cochem. In that case, argumentative semantics do
not give information about what can be expected, unless we change the ADF in view
of this information and recalculate the semantic interpretations for this new ADF.
However, it might be useful to have an indication of what can be expected in the face
of dynamic information. For example, is it reasonable to expect we can still make
an intercontinental travel when we do not travel to Cochem (i.e. ¬c |∼∨

a b)? The
derivation of such statements about what can be expected requires the investigation
of belief revision and the resulting dynamic conditionals in the setting of formal
argumentation.

To give a formal account of such revision scenarios, We adapt the AGM-postulates
for propositional revision to the setting of revision-operators  : D(At) × L(At) →
D(At) of ADFs by propositional formulas as follows:
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Definition 5.11. An operator  is a bivalent ADF revision operator (in short, ADF2
-

operator) for an ADF D = (At, L, C) and a semantics Sem s.t. Sem(D) ⊆ Ω(D)5 iff
 satisfies:

(ADF2
1) D  ψ |∼∩

Sem ψ
(ADF2

2) If Sem(D) ∩ Mod(ψ) ∕= ∅ then
Sem(D  ψ) = Sem(D) ∩ Mod(ψ)

(ADF2
3) If ψ is satisfiable, then Sem(D  ψ) ∕= ∅

(ADF2
4) If Sem(D) = Sem(D′) and ψ1 ≡ ψ2 then

Sem(D  ψ1) = Sem(D′  ψ2)
(ADF2

5) Sem(D  ψ) ∩ Mod(µ) ⊆ Sem(D  (ψ ∧ µ))
(ADF2

6) If Sem(D  ψ) ∩ Mod(µ) ∕= ∅, then
Sem(D  ψ) ∩ Mod(µ) ⊇ Sem(D  (ψ ∧ µ))

Remark 5.12. Equivalent formulations of (ADF2
5) and (ADF2

6) (that might be
more intuitive to some readers) are:

(ADF2
5) D  ψ |∼∩

2mod µ →


Sem(D  (ψ ∧ µ))6

(ADF2
6) If Sem(D  ψ) ∩ Mod(µ) ∕= ∅, then

D  (ψ ∧ µ) |∼∩
2mod (


Sem(D  ψ) ∧ µ)

These postulates are explained as follows. ADF2
1 requires that any revision is

successful, i. e. the formula that induces the revision should follow from the revised
ADF. The second postulate ADF2

2 requires that if some of the Sem-interpretations
of the original ADF satisfy the formula inducing the revision, the revised ADF should
have as Sem-interpretations exactly the Sem-interpretations of the original ADF that
satisfy the formula inducing the revision. The third postulate states that revising by
a consistent formula results in a Sem-consistent ADF, i. e. an ADF that admits Sem-
interpretations. ADF2

4 requires syntax independence: revising ADFs with the same
Sem-interpretations by equivalent formulas results in Sem-equivalent revised ADFs.
Finally, ADF2

5 and ADF2
6 are direct adaptations of the super- and sub-expansion

postulates. They require, in the non-trivial case where D  ψ ∕|∼∩
Sem ¬µ (i. e. there

is at least one Sem-interpretation of D  ψ that entails µ, or, in other words, D  ψ
is consistent, under Sem, with µ), that the Sem-interpretations of D  (ψ ∧ µ) are
exactly the Sem-interpretations of D  ψ that satisfy µ.

As is usual in work on belief revision, a semantic characterisation in terms of
plausibility-orders over interpretations is given. In more detail, we can semantically
characterise revision of an ADF D with a formula φ in terms of total preorders

5The postulates (ADF2
1)-(ADF2

6) can easily be generalised to a three-valued semantics by
substituting Sem(D) by


v∈Sem(D)[v]2. Since we define three-valued revisions below and for reasons

of simplicity, we chose to restrict ourselves here to two-valued semantics.
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over two-valued interpretations, in analogue to propositional revision. In order to
do so, we consider mappings of the type D(At) → ℘(Ω(At) × Ω(At)), i. e. functions
mapping every ADF D to a total preorder ≼D over possible worlds. We first modify
Definition 3.7 of an assignment of preorders to be faithful w.r.t. an ADF D and a
semantics Sem:

Definition 5.13. Given a semantics Sem s.t. Sem(D) ⊆ Ω(At) for every D ∈ At,
a function f : D →≼D assigning7 a total preorder ≼D over Ω(At) to every ADF
D ∈ D(At) is faithful w.r.t. the semantics Sem iff:

1. For every D ∈ D(At), if ω, ω′ ∈ Sem(D), then ω ≼D ω′;

2. For every D ∈ D(At), if ω ∈ Sem(D) and ω′ ∕∈ Sem(D), then ω ≺D ω′;

3. For every D, D′ ∈ D(At), if Sem(D) = Sem(D′) then ≼D=≼D′.

The intuition behind a faithful preorder for D (w.r.t. a two-valued semantics
Sem) is that the beliefs justified on the basis of an ADF D can be represented as the
formulas entailed by all interpretations in Sem(D) (which is in complete accordance
with taking as beliefs all φ s.t. D |∼∩

Sem φ). A faithful preorder then represents the
relative plausibility of formulas (or equivalently, possible worlds) given the ADF D.
Therefore, the interpretations sanctioned by D are on the lowermost level, and other
interpretations are ranked according to their plausibility by ≼D.

Example 19. We illustrate the above definitions by looking at the Dalal-revision
operator [17], adapted here to our setting. We first define the symmetric distance
function between two possible worlds ω, ω′ ∈ Ω(At) as: ω△ω′ = |s ∈ At | ω(s) ∕=
ω′(s)|. We can then define ≼△

D over Ω(At) by setting

κdl(ω) = min{ω′△ω | ω′ ∈ 2mod(D)}

for any ω ∈ Ω(At) and letting ω1 ≼△
D ω2 iff κdl(ω1) ≤ κdl(ω2).

For the ADF of Example 1, we then obtain the following ranking:

ω κdl ω κdl ω κdl ω κdl

abc 1 abc 2 abc 0 abc 1
abc 0 abc 1 abc 1 abc 2

7Recall that Ω(At) is the set of all (two-valued) interpretations for S.
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We can now semantically characterise revision of an ADF D (under the two-
valued semantics Sem) by a formula ψ ∈ L(At) as the ADF D  ψ s.t. :

Sem(D  ψ) = min
≼D

(Mod(ψ)) (2)

Example 20. Looking again at Example 19, we can use Equation 2 to obtain a
revision operator dl, which we illustrate by revising D with ¬c based on the preorder
κdl which has as two-valued models: 2mod(D dl ¬c) = {abc, abc}.

As we will see below, this revision satisfies all ADF2
-postulates.

Notice firstly that strictly speaking the revision above does not determine a
unique ADF. However, it does determine a unique ADF up to semantical equiva-
lence. Indeed, in view of Postulate ADF2

4, we are justified in thus restricting our
attention, since the result of the revision of two ADFs D1 and D2 with the same
Sem-interpretations will result in two ADFs D1  φ and D2  φ with the same Sem-
interpretations. Secondly, notice that the revision operator defined above is a purely
semantical characterisation of revision of ADFs, i. e. the revision of an ADF D by a
formula ψ is identified with a set of models. Below we will describe one strategy for
obtaining a specific ADF on the basis of the set of two-valued models of an ADF.

In [36], it is shown that the semantic characterisation outlined above is sound
and complete:

Corollary 5.14. Given a finite set of atoms At, an operator  : D(At) × L(At) →
L(At) is an ADF2

-operator for two-valued model semantics 2mod iff there exists a
function f : D(At) → ℘(Ω(At) × Ω(At)) that is faithful w.r.t. 2mod s.t.:

2mod(D  ψ) = min
≼D

(Mod(ψ))

We now move to revision under the stable semantics, where the semantic char-
acterisation is more complicated. In more detail, not every set of two-valued inter-
pretations is realisable under the stable semantics, which means that there might
not exist an ADF that has exactly this set of two-valued interpretations as stable
models. Indeed, the problem of realisability has been studied in depth by [60].
To characterise revision under stable semantics, we need to ensure realisability of
the corresponding faithful mappings. The basic idea is that every “layer” is a ≤⊤-
antichain. This ensures that every ≼D-minimal set of two-valued interpretations
is realisable under the stable semantics [60]. For example, it is shown there that
a set of two-valued interpretations is realisable under the stable semantics if and
only if it forms an anti-chain under ≤t, i.e. every two interpretations in the set are
≤t-incomparable. The need for an additional requirement on faithful orderings is
shown by the following example
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Example 21. Consider the ADF D from Example 1 and consider ≼ defined as:

abc, abc ≺ abc, abc, abc, abc ≺ . . . .

Notice that ≼ is faithful w.r.t. stable. If we revise by ab ∨ ¬c by selecting the ≼-
minimal models satisfying ab ∨ ¬c, we obtain stable(D  (ab ∨ ¬c)) = {abc, abc, abc}.
However, there exists no ADF (D  (ab ∨ ¬c) ∈ D({a, b, c}) with {abc, abc, abc} as
stable models, since, abc <⊤ abc contradicts stable(D  (ab ∨ ¬c)) forming an <⊤-
antichain (which we know in view of the results of [60]).

This problematic behaviour can be avoided by requiring additionally that every
layer of a faithful mapping is an ≤⊤-antichain:

Definition 5.15. Given a semantics Sem s.t. Sem(D) ⊆ Ω(At) for every D ∈ D(At),
a function f : D →≼D assigning a total preorder ≼D over Ω(At) to every ADF
D ∈ D(At) is a ⊤-modular faithful assignment w.r.t. the semantics Sem iff:

1. if ω1 ≼D ω2 and ω2 ≼D ω1 then ω1 ∕<⊤ ω2 and ω2 ∕<⊤ ω1;

2. For every D ∈ D(At), if ω, ω′ ∈ Sem(D) then ω′ ≼D ω;

3. for every D ∈ D(At), if ω ∈ Sem(D) and ω′ ∕∈ Sem(D) then ω ≺D ω′;

4. for every D, D′ ∈ D(At), if Sem(D) = Sem(D′) then ≼D=≼Sem(D′) for any
ADF D′ = (At, L′, C ′).

Thus, the above definition extends faithful mappings with the requirement that
every layer is ≤t-modular.

Example 22. Consider again the preorder ≼ from Example 21. We can turn this
into a T-modular faithful mapping ≼′ as follows (among many other possibilities):

abc, abc ≺′ abc ≺′ abc, abc, abc ≺′ . . . .

Revising D by ab ∨ ¬c now results in stable(D  (ab ∨ ¬c)) = {abc}. By the results
of [60], {abc} is realisable under stable semantics. This illustrates the usefulness of
⊤-modular faithful mappings, as now any selection is ensured to be realisable under
stable semantics. This is further ilustrated by the following propositions.

Theorem 5.16. An operator  : D(At) × L(At) → L(At) is a revision operator 
for stable semantics iff there exists a function f : D(At) → ℘(Ω(At) × Ω(At)) that is
⊤-modular faithful w.r.t. stable s.t.:

stable(D  ψ) = min
≼D

(Mod(ψ)) (3)
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5.2.2 Dynamic Conditionals

On the basis of a revision operator, one can define conditional inference based on
the Ramsey-test. In more detail, we can now stipulate that the conditional (ψ|φ)
follows from the ADF D (relative to a revision operator  for some semantics Sem),
in symbols D |∼Sem

 (ψ|φ), iff ψ is in all Sem-models of D  φ. More informally, the
conditional ’if φ then usually ψ’ is true in the argumentative context D if and only
if ψ is true according to all argumentative positions that can be rationally taken in
the argumentative context resulting from D revised by φ.

We first notice that, given a ADF2
-operator  and an ADF D, where  is based

on the total preorder f(D) =≼D, see Theorem 5.14, a dynamical conditional con-
sequence relation D |∼Sem

 can be equivalently represented as conditional inference
relation induced by the total preorder ≼D over Ω. Given a ADF2

-operator satisfying
(ADF2

1)-(ADF2
6), we denote by f(D) the total preorder over Ω induced by  and

D as in Theorem 5.14.8

Proposition 5.17. Given a semantics Sem ∈ {2val, stable}, an ADF D and a ADF2
-

operator  satisfying (ADF2
1)-(ADF2

6), D |∼Sem
 (ψ|φ) iff φ |∼f(D) ψ.

Thus,conditional inference based on ADFs w.r.t. two-valued semantics is a special
case of preferential inference. This stands in contrast with dynamic conditionals
based on three-valued semantics, for which an extension to a three-valued logic
(such as Kleene’s logic) is necessary. For more details, we refer to [36].

Example 23. Continuing with Example 20, we see that D |∼Sem
dl

(a|¬b) in view of
2mod(D dl ¬c) = {abc, abc}, i.e. if Cochem is not a viable travel option anymore,
we will still go to Addis Aba if we don’t go to Boston.

5.3 Structured Argumentation
In structured argumentation, arguments are not considered as abstract, atomic en-
tities but are kind of rules, consisting of premises and conclusions, making the flow
of reasoning more transparent. Since we focus on conditionals in argumentation
here, we recall prominent approaches which make use of defeasible rules which are
particularly well aligned to conditionals.

8Notice that the semantics Sem relative to which a ADF2
-operator is defined are implicitly taken

into account in f(D), in the sense that the realisability of this semantics will be taken into account
in the additional conditions on the total preorder.
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5.3.1 Defeasible Logic Programming and Ranking Functions

Defeasible Logic Programming (DeLP) [25] combines logic programming with de-
feasible argumentation. DeLP works in a highly dialectical way, allowing series of
attacks and counterattacks to finally mark those statements as warranted for which
all attackers could be invalidated. Attacks in DeLP are identified via logical contra-
dictions, but the defeat relation needs a preference relation that originally was based
on a notion of specificity. The paper [42] makes use of ranking functions [66] and
more specific information from System Z [55] to define preference (and hence defeat)
between arguments. To this aim, the authors introduce the notions of examples and
counterexamples of arguments via possible worlds which are evaluated on the base
of ranking functions. The basic idea here is that arguments are as convincing and
successful as their most plausible examples, and arguments with more plausible ex-
amples should prevail. We recall the basics of this approach from [42], where the
strict parts of defeasible logic programs are restricted to be facts.

Let L be a finitely generated propositional language with atoms a, b, c, . . ., and
with formulas A, B, C, . . ., and let Ω denote the set of possible worlds over L. A
defeasible logic program (de.l.p.) P = (Φ, ∆) consists of a set Φ of facts9 and a
set ∆ of defeasible rules which are written as conditionals δ = (L|B1 . . . Bn) with
literals L, B1, . . . , Bn. In accordance with the notions in logic programming, we call
L the head of the conditional (L = head(δ)) and B1 . . . Bn its body. Notice that the
syntax of rules in DeLP is a special case of that of conditional logics, as the heads
consist of single literals and the bodies consist of conjunctions of literals, whereas in
conditional logic, any propositional formula is allowed in both the antecedent and
the consequent. A literal L can be defeasibly derived from ∆′ ⊆ ∆, ∆′ |∼ L, iff there
exists a finite sequence L1, . . . , Ln = L of ground literals, such that each Li is either
a fact in Π or there exists a rule in Π∪∆′ with head Li and body {B1, . . . , Bm}, and
every literal Bj in the body is such that Bj ∈ {Lk}k<i. Φ∪∆′ is called contradictory
iff there is a literal L such that both L and L have defeasible derivations from Φ∪∆′.
For any de.l.p. P, we will presuppose that Φ is non-contradictory.

Given a de.l.p. P = (Φ, ∆) and a literal L, A is an argument for L, denoted
〈A, L〉, if A is a minimal set of defeasible rules in ∆ such that there exists a defeasible
derivation of L from Φ ∪ A, and Φ ∪ A is non-contradictory.

An argument 〈B, Q〉 is a sub-argument of 〈A, L〉 if B is subset of A. Argument
〈A1, L1〉 attacks, or counterargues another 〈A2, L2〉 at a literal L if there exists a
sub-argument of 〈A2, L2〉, 〈A, L〉, i. e., A ⊆ A2, such that there exists a literal L′

verifying both Φ ∪ {L, L1} |∼ L′ and Φ ∪ {L, L1} |∼ L′. Note that an argument 〈∅, L〉
with L ∈ Π can not be attacked since all arguments have to be consistent with

9Note that in general, the strict part of a de.l.p. also may contain strict rules.
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Φ. Finally, another crucial notion involving consistency in DeLP is the notion of
concordance. A set of arguments Ai, 1 ≤ i ≤ m, of a defeasible logic program (Φ, ∆)
is called concordant iff Φ ∪

n
i=1 Ai is non-contradictory.

Example 24. We consider the propositional variables b bird, p penguin, c chicken,
s is_scared, f flies, w has_wings, and the set of conditionals: ∆ = {δ1 = (b|c), δ2 =
(b|p), δ3 = (f |b), δ4 = (f |p), δ5 = (f |c), δ6 = (f |cs), δ7 = (w|b)}. For a de.l.p., this
set of conditionals can be instantiated with various facts. For example, consider the
defeasible logic program P1 = ({cs}, ∆). Then the following arguments can be built
supporting f resp. f :

〈A1, f〉, A1 = {(b|c), (f |b)};
〈A2, f〉, A2 = {(f |c)};
〈A3, f〉, A3 = {(f |cs)}.

Clearly, 〈A2, f〉 attacks 〈A1, f〉, and 〈A3, f〉 attacks 〈A2, f〉. Note that
{〈A1, f〉, 〈A3, f〉} is concordant, while {〈A1, f〉, 〈A2, f〉, 〈A3, f〉} is not.

As usual in argumentation theory, an attacked argument may not be lost, but
can be found to be stronger than its attacker(s). DeLP makes use of a preference
relation to compare arguments, and in the end, the crucial question in DeLP is
whether an argument is warranted. For the moment, we leave the exact instantiation
of the preference relation open because the procedure to ensure warrancy in DeLP
is the same for any suitable preference relation.

If 〈A1, L1〉 and 〈A2, L2〉 are two arguments 〈A1, L1〉 is a proper defeater for
〈A2, L2〉 at literal L iff there exists a sub-argument of 〈A2, L2〉, 〈A, L〉 such that
〈A1, L1〉 counterargues 〈A2, L2〉 at L and 〈A1, L1〉 is strictly preferred over 〈A, L〉.
Alternatively, 〈A1, L1〉 is a blocking defeater for 〈A2, L2〉 at literal L iff there exists
a sub-argument of 〈A2, L2〉, 〈A, L〉 such that 〈A1, L1〉 counterargues 〈A2, L2〉 at L
and neither 〈A1, L1〉 is strictly preferred over 〈A, L〉 nor is 〈A, L〉 preferred over
〈A1, L1〉. If 〈A1, L1〉 is either a proper or a blocking defeater of 〈A2, L2〉, it is said
to be a defeater of the latter.

In the warrancy procedure, arguments A are evaluated in so-called dialectical
trees where the root of such a tree is the argument to be evaluated. The paths of
the tree consist of (finite) acceptable argumentation lines [A = 〈A0, L0〉, 〈A1, L1〉,
〈A2, L2〉, · · · ] where each node is a defeater of its parent node, and acceptability of the
argument lines is specified by further constraints. Here, it is presupposed that both
the sets of supporting arguments [〈A0, L0〉, 〈A2, L2〉, 〈A4, L4〉, · · · ] and interfering
arguments [〈A1, L1〉, 〈A3, L3〉, 〈A5, L5〉, · · · ] are concordant. Finally, the nodes are
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marked U (undefeated) or D (defeated), where a node is marked U iff every child is
marked D; in particular, leaves are marked U .

As a novelty, in [42], preference between arguments in DeLP was given an
example-based semantics.

Definition 5.18 (Examples, counterexamples). Let P = (Φ, ∆) be a defeasible logic
program. Let ω ∈ Ω be a possible world, and let 〈A, L〉 be an argument in P.

ω is an example for 〈A, L〉 iff ω satisfies all facts, ω |= Φ, and ω verifies all
rules in A. ω is a counterexample to 〈A, L〉 iff ω |= Φ and there is at least one
rule in A that is falsified by ω. ω is a supported counterexample to 〈A, L〉 iff ω
is a counterexample to 〈A, L〉 and there is an argument 〈A′, L′〉 such that ω is an
example of 〈A′, L′〉.

The set of examples of an argument 〈A, L〉 is denoted by 〈A, L〉+, the set of
counterexamples by 〈A, L〉−.

From the definition, it is immediately clear that 〈A, L〉+ = Mod(Φ ∧


δ∈A head(δ)),
and 〈A, L〉− = Mod(Φ∧


δ∈A head(δ)). By the definition of arguments, it is ensured

that every argument has examples.

Example 25. For the arguments 〈A1, f〉, 〈A2, f〉, 〈A3, f〉 stated in example 24, ex-
amples and counterexamples are given as follows:

〈A1, f〉+ = Mod(csbf) 〈A1, f〉− = Mod(cs(b ∨ f))
〈A2, f〉+ = Mod(csf) 〈A2, f〉− = Mod(csf)
〈A3, f〉+ = Mod(csf) 〈A3, f〉− = Mod(csf)

Hence, ω1 = csbpfw is an example of 〈A1, f〉 and 〈A3, f〉 and a counterexample to
〈A2, f〉. Reciprocally, ω2 = csbpfw is an example of 〈A2, f〉, and a counterexample
to 〈A1, f〉 and 〈A3, f〉.

Attacks can be characterized in terms of examples, as the next proposition shows.

Proposition 5.19. Let 〈A1, L1〉, 〈A2, L2〉 be two arguments. If 〈A1, L1〉 attacks
〈A2, L2〉, then all examples of 〈A1, L1〉 are (supported) counterexamples to 〈A2, L2〉,
i.e. 〈A1, L1〉+ ⊆ 〈A2, L2〉−. Conversely, if all examples of 〈A1, L1〉 are counterex-
amples to 〈A2, L2〉, then there is a sub-argument of 〈A1, L1〉 that attacks 〈A2, L2〉.

Moreover, examples are also helpful to check the crucial notion of concordance
in argumentation lines.

Proposition 5.20. A set of arguments 〈Ai, Li〉, 1 ≤ i ≤ m, is concordant iff they
have common examples, i.e. iff


1≤i≤m 〈Ai, Li〉+ ∕= ∅.
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By bringing ranking functions now into the play, plausibility degrees of arguments
can be defined. Arguments are assumed to be as plausible as their most plausible
examples, and the plausibilities of their counterexamples represent the degree to
which they can be challenged. This makes comparisons between arguments easy.

Definition 5.21 (κ-values of arguments, κ-preference). Let κ be an ordinal condi-
tional function on Ω, let 〈A, L〉 be an argument. Then κ+(〈A, L〉) = min{κ(ω) | ω ∈
〈A, L〉+}, and κ−(〈A, L〉) = min{κ(ω) | ω ∈ 〈A, L〉−}. Let 〈A1, L1〉, 〈A2, L2〉 be two
arguments. Then 〈A1, L1〉 ≽κ 〈A2, L2〉 iff κ+(〈A1, L1〉) ≤ κ+(〈A2, L2〉).

From the remarks above, it is immediately clear that κ+(〈A, L〉) = κ(Φ ∧
δ∈A head(δ)) and κ−(〈A, L〉) = κ(Φ ∧


δ∈A head(δ)).

κ-preference yields a declarative criterion for warrant:

Proposition 5.22. Let 〈A, L〉 be an argument. If

κ+(〈A, L〉) < κ−(〈A, L〉)

then 〈A, L〉 is undefeated and hence warranted.

Of course, when we use a ranking function κ to assess the plausibility of ar-
guments built over a de.l.p. P, we expect κ to be a model of ∆. To find such a
proper model, we may make use of the distinguished system Z approach [31] as a
particularly well-behaved ranking model.

Example 26. We apply system Z to ∆ from P1 in Example 24. Here, the tolerance
partitioning used by system Z is ∆0 = {δ3, δ7}, ∆1 = {δ1, δ2, δ4, δ5}, ∆2 = {δ6}. We
compute the κz-values of the arguments in Example 25 as follows:

κ+
z (〈A1, f〉) = κz(csbf) = 2 κ−

z (〈A1, f〉) = κz(cs(b ∨ f)) = 2
κ+

z (〈A2, f〉) = κz(csf) = 3 κ−
z (〈A2, f〉) = κz(csf) = 2

κ+
z (〈A3, f〉) = κz(csf) = 2 κ−

z (〈A3, f〉) = κz(csf) = 3

From Proposition 5.22, we may conclude immediately that 〈A3, f〉 is a warrant for
the literal f .

Let us now consider the defeasible logic program P2 = ({p}, ∆). In system Z, we
have κz(pw) = κz(pw) = 1, so, the status of the query w can not be determined by
system Z. This means that it cannot be proved in system Z if penguins have wings.
This effect has become known as the drowning effect (see, e.g. [31]).

This problem can be solved in our argumentation framework: The only argument
that can be built to connect p and w is 〈{(b|p), (w|b)}, w〉, which is not attacked at
all, so, in particular, is undefeated. Hence, w can be warranted. Note, however,
that Proposition 5.22 would not be helpful here because κ+

z (〈{(b|p), (w|b)}, w〉) =
κz(pbw) = 1 = κz(p(b ∨ w) = κ−

z (〈{(b|p), (w|b)}, w〉).
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We thus see here that insights from conditional logics can be made useful for
argumentation (e.g. by supplying a preference relation as above), and that argu-
mentation can help improve existing conditional logics (e.g. by helping in avoiding
the drowning effect as demonstrated above).

Moreover, in [42], the authors also proposed another preference relation between
arguments which is based on system Z by, a bit more simply, comparing the Z-values
of the conditionals contained in the involved arguments. This allows for a declarative
criterion for ensuring warrancy that just considers the (positive) examples of an
argument. For further details, we refer to [42].

5.3.2 Pollock’s Defeasible Reasoning and Ranking Functions

Pollock developed a theory of defeasible reasoning [58] where arguments consist
of a set of premises and a conclusion which are connected by an inference rule,
or reason-schema, respectively. In [67], Spohn briefly discussed the basic ideas of
Pollock’s work and elaborated on possible connections to his own framework of
ranking functions.

The core of Pollock’s theory is a large set of defeasible inference rules which
can be seen as specific proposals for a constructive theory of defeasible reasoning.
Arguments have strengths and can be defeated, and Pollock proposed a formal theory
of how defeats and strengths interact in an integrated graph with the aim of arriving
at warranted beliefs. Doxastic states are seen as huge networks of inferences and
justifications, and all reasoning starts with perceptions.

Spohn appreciated the constructive and dynamic (regarding the flow of reason-
ing) nature of Pollock’s theory, but criticizes it to be basically static because no new
information (which are restricted to perceptions in Pollock’s theory) can be taken
into account in a way that makes the flow of change transparent. For each new
perception, the whole reasoning machinery has to start again.

According to Spohn, Pollock’s theory overlaps with ranking theory insofar as
both approaches deal with justified and warranted belief. However, while ranking
theory describes declaratively10 how such beliefs behave, Pollock’s defeasible rea-
soning implements how such beliefs emerge in many procedural ways. According
to [59], all norms of rationality have to be procedural. This seems to be the most
crucial difference between both approaches.

The problem with theories of defeasible reasoning like Pollock’s approach where
inference relies on intuitive procedural rules is that there is no independent as-
sessment of the quality of their products, i.e., warranted beliefs. Spohn called it
“normative defectiveness”.

10Spohn called ranking theory a regulative theory.
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Defeasible logic programming (DeLP), as described in Section 5.3.1, is also
mainly procedural in elaborating warranted beliefs, but it relies on basic logic by
exploring contradictions and uses declarative notions like a (more or less) abstract
preference relation to determine defeats between arguments. However, while it uses
logic programming as kind of a base logic, the semantics of warranted beliefs in
DeLP cannot be fully captured by answer set semantics [69]. Nevertheless, DeLP
appears to be a good compromise between procedural vs. declarative (or computa-
tional vs. regulative, as Spohn termed it in [67]) approaches.

5.3.3 Structured Argumentation Based on Axiomatic Conditional Logic

In the paper [6], the authors extend the deduction-based approach to argumenta-
tion from [7] by introducing an additional conditional connective ⇒ (giving rise to
a logical language Lc) and the novel concept of contrariety between arguments (for-
mulas of Lc). Conditional rules in Lc specified by ⇒ are meant to be hypotheses to
be used for tentative reasoning, but which can be attacked by contrary rules in an
argumentative process.

For implementing conditional reasoning, Besnard et al. make use of the condi-
tional logic MP [16] which is defined beyond Boolean logic by the following axioms
and rules of inference ⊢c:

RCEA ⊢c α ↔ β

⊢c (α ⇒ γ) ↔ (β ⇒ γ)

RCEC ⊢c α ↔ β

⊢c (γ ⇒ α) ↔ (γ ⇒ β)

CC ⊢c ((α ⇒ β) ∧ (α ⇒ γ)) → (α ⇒ (β ∧ γ))

CM ⊢c (α ⇒ (β ∧ γ)) → ((α ⇒ β) ∧ (α ⇒ γ))

CN ⊢c (α ⇒ ⊤)

MP ⊢c (α ⇒ β) → (α → β)

Note that (RCEC) and (MP) are also axioms of Stalnaker’s logic C2 that we de-
scribed in Section 3.1. Contrariety is then defined on the base of the logic MP and
covers two main cases: first, α ∈ Lc is contrary to β if both formulas are inconsis-
tent in MP, i.e., {α, β} ⊢c ⊥. The second case deals explicitly with rules involving
⇒. The basic idea is that a formula α = φ ∧  ⇒ ψ should be in contrariety to
β = φ ⇒ ψ because α suggests that additional preconditions must be satisfied for
β to hold. For the precise formal definition of contrariety, we refer to the original



Heyninck, Kern-Isberner, Rienstra, Skiba and Thimm

paper [6]. If α is in contrariety to β, this is denoted by α ⊲⊳ β. Note that ⊲⊳ is
neither symmetric, nor antisymmetric. Contrariety is lifted to sets of formulas by
α ⊲⊳ Φ if there is β ∈ Lc such that Φ ⊢c β and α ⊲⊳ β.

Given a knowledge base ∆ ⊆ Lc, an argument is a pair 〈Φ, α〉 where the following
conditions hold:

• Φ ⊆ ∆;

• for all β such that Φ ⊢c β, β ∕⊲⊳ Φ;

• Φ ⊢c α;

• for all Φ′ ⊂ Φ, Φ′ ∕⊢c α.

Two arguments 〈Φ, α〉, 〈Ψ, β〉 are quasi-identical if Φ = Ψ and α ≡c β, where α ≡c β
means α ⊢c β and β ⊢c α.

Attacks between arguments are defined in terms of contrariety. An argument
〈Ψ, β〉 is a rebuttal for 〈Φ, α〉 if β ⊲⊳ α, and 〈Ψ, β〉 is a defeater for 〈Φ, α〉 if β ⊲⊳ Φ.
Besnard et al. show that rebuttals are subsumed by defeaters so that we can focus
on defeaters from now on. However, defeaters can be quite general so that we
need additional attributes to characterize most relevant defeaters. First, defeaters
should be most specific both in a set-theoretical and logical sense: an argument
〈Φ, α〉 is at least as conservative than an argument 〈Ψ, β〉 if Φ ⊆ Ψ and β ⊢c α.
In the following, an enumeration 〈Ψ1, β1〉, 〈Ψ2, β2〉 . . . of all maximally conservative
defeaters for 〈Φ, α〉 is assumed to be fixed for each argument. 〈Ψi, βi〉 is a pertinent
defeater for 〈Φ, α〉 if for each j < i, 〈Ψi, βi〉 and 〈Ψj , βj〉 are not quasi-identical.

Finally, pertinent defeaters are used to build argumentation trees. An argu-
mentation tree for α has an argument for α as its root, and each child node is a
pertinent defeater of its parent node; moreover, for each node 〈Ψ, β〉 with ancestor
nodes 〈Ψ′

1, β′
1〉, . . . , 〈Ψ′

n, β′
n〉, we have Ψ ∕⊆ Ψ′

i for i ∈ {1, . . . , n}. Argumentation in
this conditional logic then may follow the lines of the classical framework in [7].

It is interesting to note that the semantics for conditionals provided by ranking
functions [66] which is used to equip DeLP argumentation with an example-based
semantics in Section 5.3.1 satisfies the axioms and inference rules of the conditional
logic MP (under mild prerequisites). This can easily be verified by observing that
RCEA, RCEC, CC, and CM are implied by system P [44] (see also Section 3.1)
which inference based on ranking functions is known to satisfy, and MP is a simple
arithmetic exercise for ranking functions. CN holds for consistent formulas as all
ranks assigned to worlds are finite. An interesting research question would be if
ranking functions can also provide a semantics for the approach presented in [6],
and how contrariety can be characterized in terms of ranking functions.
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5.4 Other approaches

We now shortly discuss some other approaches that can be argued to connect struc-
tured argumentation and conditional logics.

Gabbay and d’Avila Garcez [24] ask a methodological question about structured
argumentation by giving detailed considerations on the different options for instan-
tiating abstract argumentation frameworks. This paper argues that there is a wide
variety of options to do so, and gives several detailed examples of how this can be
done. Among others, non-monotonic logics, i.e. consequence relations satisfying re-
flexivity, cut and cautious monotony, are discussed. In more detail, Gabbay and
d’Avila Garcez suggest that nodes in an argumentation graph could represent pairs
of sets of non-monotonic conditionals and a conclusion based on these conditionals,
and that an argument (∆, φ) attacks an argument (Θ, ψ) if adding φ leads to ψ not
being derivable anymore in view of Θ. For example (adapting the notation some-
what to our article), ({p}, p) attacks ({b, b |∼,

f p ∧ b |∼f
¬}, f) as the knowledge that

something is a penguin no longer allows us to derive that it flies according to most
non-monotonic logics.

A brand of non-monotonic logics that allows to reason with conditional state-
ments that we have not discussed here are input/output-logics [52]. They provide
a fine-grained picture of the different ways of reaching a conclusion by forward
chaining a selected subset of conditionals, and have been proven especially useful
in deontic logics. These logics are given an argumentative characterisation by Van
Berkel and Straßer [74]. They do this by defining deontic argument calculi, which
allow for structured argumentation on the basis of a set of conditionals interpreted
as normative statements. The different input/output-logics from the literature are
then captured by allowing for different inference rules in the process of argument
construction, many of which are quite familiar to the axioms from conditional logics.
It is an interesting question whether also the conditional logics discussed above can
be represented in a similar way.

6 Further works

Both conditional logic and abstract argumentation (or some extension of it such as
ADFs) are logical formalisms for reasoning. In this article, we discussed several ideas
on how to combine these formalisms into a single formalism. Our focus was on works
where we used the foundational ideas of semantical evaluation from one formalism
and applied it in the other. Another general approach for combining arbitrary logics
into a joint formalisms is that of fibring, see [22, 23]. Given two logics L1 and L2,
the fibring L1,2 of L1 and L2 that combines both syntax and semantics for both base
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logics in a simple manner. The syntax of L1,2 allows for an arbitrary combination
of the syntax of L1 and L2, e. g., formulas may contain connectors of both L1 and
L2 in an arbitrary manner. Informally speaking, if one were to fibre conditional
logic and abstract argumentation, a valid formula would be (aRb|bRc) with the
intuitive meaning ”if b attacks c, then usually a attacks b“. The semantics of L1,2 is
then a combination of the semantics of both L1 and L2 as well. In particular, [23]
defines an inference relation |∼ 1,2 on L1,2 that is a conservative extension of given
inference relations |∼ 1 and |∼ 2 on L1 and L2, respectively, in the sense, that L1,2
coincides with L1 and L2 on the respective syntactical fragments of L1,2. However,
properties of this new inference relation |∼ 1,2 cannot be derived in a general manner
and depend highly on the logics L1 and L2 and their inference relations |∼ 1 and
|∼ 2, respectively. In essence, fibring logics allows for joint reasoning of two different
formalisms in one single framework, while most of the work discussed in this article
was concerned with an integrated approach to reasoning. How exactly a fibred logic
using conditional logic and abstract argumentation (or ADFs) behaves, could be an
interesting avenue for future work, though.

[77, 78, 79] presents a new semantics for abstract argumentation, which is also
rooted in conditional logical terms. In more detail, a ranking interpretation is pro-
vided for extensions of arguments instantiated by strict and defeasible rules by using
conditional ranking semantics. Thus, Weydert presupposes a conditional knowledge
base that is used to construct an argumentation framework.

[10] relates Abstract Dialectical Frameworks to causal reasoning, and, more pre-
cisely, to Pearl’s causal models [56]. In essence, a causal model describes causal
dependencies between exogeneous variables (which cannot directly be observed) and
endogenous variables, which can be observed. A causal model formalises how states
of variables are caused by other states of variables and, due to the non-monotonicity
of causality, a causal model can thus be interpreted as a specific non-monotonic the-
ory, quite similar to conditional logics. Bochman then shows certain correspondences
between semantical notions of ADFs and causal models by modelling acceptance
conditions of ADFs as causal rules. A previous study by [8] already revealed sim-
ilar relationships between assumption-based argumentation by [12] and the causal
reasoning approach of [30].

Another contribution of Alexander Bochman [9] proposes a conceptual differ-
entiation between two paradigms of non-monotonic reasoning, which he calls pref-
erential and explanatory. The conditional logics discussed above fall under the
first paradigm, whereas argumentation is an example of a formalism for explana-
tory non-monotonic reasoning. A number of differences between the two kinds of
non-monotonic reasoning are discussed, and a general axiomatic theory for each of
these paradigms is given. Even though the general conclusion of [9] agrees with the
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insights expounded in this overview, we leave a deeper comparison between these
works for the future.

Verheij has initiated a line of work [76] that integrates ideas from preferential
reasoning into argumentation by means of so-called case models. A case model
(C, ≥) consists of a set C of logically consistent, mutually incompatible formulas and
a total preorder ≥ over these cases. Arguments, conceived of as pairs of formulas
(φ, ψ) representing the premise φ and conclusion ψ, are then classified on the basis
of a case model using ideas inspired by preferential semantics. For example, an
argument (φ, ψ) is presumptively valid11 if, among all cases verifying the premise φ,
there is a ≥-maximal case that also verifies ψ.

[3, 4] consider preferential interpretations for abstract argumentation frameworks
that are derived from gradual semantics. The latter allow to assign numeric values
of argument strength to individual arguments and are therefore similar to ranking
functions (and therefore preferential interpretations) for conditional logics. This
approach allows to reason over argument acceptance (and arbitrary formulas over
arguments) through defeasible rules that can be derived from the preferential inter-
pretations.

[71, 72] introduce stratified labelings, a semantical approach to abstract argumen-
tation frameworks, where arguments receive a non-negative natural number that as-
sesses the controversiality of arguments and are inspired by ordinal ranking functions
from conditional logics. As a matter of fact, [71] show that conditional knowledge
bases can be transformed into abstract argumentation frameworks, such that ratio-
nal stratified labelings of the latter behave similarly as the system Z ranking function
of the former.

The behaviour of abstract argumentation in dynamic settings in is studied [63].
In more detail, they ask the question whether the labelling status of arguments is
preserved when adding or removing arguments or attacks in an abstract argumenta-
tion framework. This conceptually is quite similar to postulates such as (cautious)
monotony, where beliefs persist when adding (believed) formulas.

Finally, we notice that some foundational papers on non-monotonic conditionals
expand on ideas that are, at least conceptually, related to argumentation. For
example, in Lehmann and Magidor’s prolific paper on rational closure [46], the
authors motivate the preference-comparison between cumulative models using the
notions of attack and defence. Geffner and Pearl [28] go even further, giving a full-
fledged argumentative proof theory that is sound and complete with respect to their
conditional inference method of conditional entailment.

11[76] uses different notations for different kinds of arguments, e.g. a presumptively valid argu-
ment is denoted by φ ⇝ ψ.
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There are further works that only loosely touch on the subject of this article,
but still model some aspect of conditional inference. For example, [5] introduce
conditional preference-based argumentation frameworks, which allow the specifica-
tion of preferences between arguments. In fact, preferences are given conditioned
on selected sets of arguments and can differ for different sets. A similar approach
for structured argumentation is discussed by [20]. [57] define conditional labels for
arguments that describe conditions about the acceptance of arguments, given the
status of other arguments (similarly as acceptance conditions in ADFs). These can
be used in dialogues to enable strategic moves of agents. Another form of condi-
tional labelings are presented by [13]. Here, a conditional labeling assigns acceptance
status to arguments, under the condition that another set of labelings is assumed to
evaluate the argumentation framework rationally. Using conditional labelings, the
strict semantical evaluation of classical semantics can be relaxed and conditional
labelings models rationality as close as possible, given the circumstances. The work
of [13] therefore shares some motivation with the work of [64, 65] that we discussed
in Section 5.

7 Summary and Conclusion

In this article, we gave a thorough introduction to the logic of conditionals, and
have surveyed work that integrated ideas inspired by conditional logics into formal
argumentation. We saw that despite the differences between the two approaches
(Section 5), integrating insights from conditional logic into formal argumentation is
still useful and results in richer argumentative models (as demonstrated in Section 4
and 5.3), while argumentative models can also improve upon conditional logics (as
we saw in Section 5.3). As indicated in several parts of this article, we believe there
is still a lot of exciting work to be done in this area, and hope our article will serve
as a useful basis for such further investigations.
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