
On Independence and SCC-Recursiveness in Assumption-Based Argumentation
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Abstract

We introduce a notion of conditional independence
in (flat) assumption-based argumentation (ABA),
where independence between (sets of) assumptions
amounts to the presence of information about one
set of assumptions not impacting the acceptability
of another. We study general properties, computa-
tional complexity, and the relation to independence
in abstract argumentation. In light of the high com-
putational complexity of deciding independence,
we introduce sound methods for checking indepen-
dence in polynomial time via two different routes:
the first utilizes the strongly connected components
(SCCs) of the instantiated abstract argumentation
framework; the second exploits the structure of the
ABA framework directly. Along the way, we intro-
duce the notion of SCC-recursiveness for ABA.

1 Introduction
The ability to recognize and manage (in)dependence is cru-
cial in symbolic reasoning at large [Darwiche and Pearl,
1994; Darwiche, 1997; Lang et al., 2002; Rienstra et al.,
2020]. It plays an essential role in causal reasoning [Pearl,
2009], e. g., in probabilistic models, where (in)dependence
between variables is built into graphical representations such
as Bayesian networks [Geiger et al., 1990]. The ability
to determine independence contributes to the explainabil-
ity [Halpern and Pearl, 2001] and trustworthiness [Belle et
al., 2024] of reasoning systems, while also improving effi-
ciency by empowering breaking problems down so that they
can be managed more effectively.

In this paper, we study conditional independence in com-
putational argumentation, which captures how different parts
of the argumentative information can be logically separated.
Two prominent areas therein are abstract argumentation,
coined by the seminal paper of Dung (1995), and structured
argumentation, as overviewed by Besnard et al. (2014b). Un-
like abstract argumentation, where arguments are considered
abstract, structured argumentation frameworks focus on the
structure of the arguments, enabling a finer-grained analysis
of the arguments and relations. Assumption-based argumen-
tation (ABA) [Bondarenko et al., 1997; Čyras et al., 2018] is a

well-known form of structured argumentation, whose build-
ing blocks are assumptions (defeasible elements) and infer-
ence rules. We illustrate this with the following example.

Example 1.1. Alice, Bob, and Carol plan a tandem trip; we
consider assumptions a (Alice cycles), b (Bob cycles), and
c (Carol cycles) for each of our protagonists. Naturally, only
two of them cycle at the same time, that is, not all our assump-
tions can be true at once. We capture the relations between
our assumptions with inference rules; e. g., “if Bob and Carol
cycle then Alice does not” is captured by the rule (a← b, c),
here, a is the contrary of a. Crucially, if the weather is bad
(d) nobody can cycle. On the bright side, then there is no
need to water the plants (w) outside. Also, Alice thinks about
bringing her book (k), but if she cycles, it might be too heavy.1

ABA has been broadly studied computationally [Toni,
2013; Cyras et al., 2021a; Craven and Toni, 2016; Lehtonen et
al., 2024a; Lehtonen et al., 2024b]. ABA is also widely appli-
cable, e.g., in healthcare [Cyras et al., 2021b], to provide ex-
planations [Cyras et al., 2021a], for causal discovery [Russo
et al., 2024], and planning [Fan, 2018]. In all these settings,
a good understanding of independence between various com-
ponents in ABA frameworks (ABAFs) is crucial. However, to
date the study of independence within ABA remains under-
explored. Actually, with the notable exception of the condi-
tional independence analysis in abstract argumentation [Rien-
stra et al., 2020], the topic has been largely neglected in the
computational argumentation literature so far.

Turning our attention to ABA, we address the following
question: under what conditions are two (sets of) assumptions
independent from each other, relative to a (potentially empty)
set of assumptions that is considered prior knowledge? In
other words, does the choice of truth values for one set of
assumptions restrict the available choices for the truth values
of another set, given the truth values for a third set are fixed?

Example 1.2 (Example 1.1 cont.). Let us find out if Alice
and Bob influence each other’s cycling activities. First, are
a and b (unconditionally) independent of each other? The
answer to that question is positive: knowing that Alice cycles
does not give us any information about Bob, Alice could cycle
with either Bob or Carol; similarly, if Alice does not cycle
we do not know whether Bob cycles; either Bob and Carol

1A formalization is given in Example 3.2.



cycle together or the weather could have ruined their trip. In
contrast, a and b depend on each other, given c: knowing that
Carol cycles implies that one of the other two cycles as well.

Note that w and k depend on each other, because there is
no way to reject both of them at the same time. They are in-
dependent when given information about {a}, {d}, or {b, c}.

Identifying conditional independence in ABA is compu-
tationally challenging, as we will show. To alleviate the
high computational complexity we exploit the structure of
ABA and explore SCC-recursiveness for ABAFs. Rienstra et
al. (2020) demonstrate the advantages of SCC-recursiveness
for efficiently checking conditional independence between
arguments, based on the SCCs of an abstract argumenta-
tion framework (AF) [Dung, 1995]. Despite these consid-
erable computational advantages, SCC-recursiveness has not
received attention in the context of structured argumentation
so far. In the scope of our independence studies for ABA,
we tackle this issue and propose an SCC-recursive schema
for ABA semantics alongside sound independence checks for
assumptions in ABAFs.

Overall, we make the following contributions, for a well-
studied fragment of ABA whereby assumptions cannot be in-
ferred (known as flat ABA) and where assumptions, their con-
traries and any sentences in inference rules are atomic.

• We introduce conditional independence in ABA and
study its properties. We analyze its computational com-
plexity and reveal the close relation of independence in
ABAFs and AFs. We also settle the complexity of the
corresponding decision problems for AFs. Section 4

• We introduce sound and poly-time methods for checking
independence in ABA via two different routes:
(1) applying the approach by Rienstra et al. (2020) to a

suitable AF instantiation for ABAFs; Section 5.1
(2) exploiting the structure of the ABAF directly,

based on the SCCs of the so-called dependency
graph [Rapberger et al., 2022]. Section 5.3

• To facilitate route (2), we introduce SCC-recursiveness
for ABA and show that all semantics under considera-
tion satisfy this property. Section 5.2

Due to space restrictions, we focus on complete-based se-
mantics; analogous results for admissible semantics, along-
side with proofs and further discussions are included
in an extended version found online (DOI 10.5281/zen-
odo.15470789, https://zenodo.org/records/15470789).

2 Related Work
To address the challenges of computationally demanding
dependency models, researchers [Verma and Pearl, 1988;
Rienstra et al., 2020] have proposed sound (but potentially
incomplete) Directed Acyclic Graph (DAG) representations
to check independence. In the context of computational ar-
gumentation, Rienstra et al. (2020) identify a way to trans-
form AFs into DAGs, based on their SCCs, to express (some)
dependencies between arguments. Our study of the relation
between SCCs in ABA and independence is inspired by this
work. However, differently from their work, we focus on
structured argumentation in the form of ABA.

Heyninck (2023) proposes a generic framework for study-
ing independence in approximation fixpoint theory, applica-
ble to any logic with fixpoint semantics, including logic pro-
grams under partial stable models and well-founded model
semantics. Since the latter are instances of ABA in general,
and of the restricted form of ABA we consider, the resulting
framework in [Heyninck, 2023] is applicable to our setting,
too. That being said, our focus lies on the relation to abstract
argumentation, and the relation between independence and
SCCs (which we newly introduce in this paper for ABA).

Some works use reasoning with independence information
to perform causal discovery with ABA [Russo et al., 2024]
or paradigms related to ABA, such as ASP [Zhalama et al.,
2019]. This line of work is orthogonal to ours, as we focus
on studying independence in ABA, rather than using ABA
for ascertaining independence for causal discovery. Another
work [Besnard et al., 2014a] defines an approach to reason-
ing about causes via argumentation, which, like in our case,
is structured but built on classical logic and including ontolo-
gies. It does not consider independence in argumentation.

3 Background
A directed graph is a pair G = (V,E) where V is a set of
vertices and E ⊆ V 2. A (un)directed path p is a sequence
v1 . . . vn, vi ∈ V , vi ̸= vj , i ̸= j, with (vi, vi+1) ∈ E
(or (vi+1, vi) ∈ E); a cycle is a sequence vnv1 . . . vn where
v1 . . . vn is a directed path. G is a directed acyclic graph
(DAG) if it contains no directed cycles. For a vertex set
U ⊆ V , PAG(U) = {w ∈ V | (w, u) ∈ E, u ∈ U} \ U
are the parents of U , ANG(U) = {w ∈ V | ∃u ∈ U, p =
(w, ..., u) directed path} \ U the ancestors of U . We say
v ∈ V is a descendant of U , if U ∩ ANG({v}) ̸= ∅. We
denote by DDG(v) the set of all descendants and by NDG(v)
the set of all non-descendants and non-parents of U .

3.1 Assumption-based Argumentation
We recall assumption-based argumentation (ABA) [Čyras et
al., 2018]. We assume a deductive system (L,R), where
L is a formal language, i. e., a set of sentences, and R is a
set of inference rules over L. A rule r ∈ R has the form
a0 ← a1, . . . , an with ai ∈ L. We write head(r) = a0 and
body(r) = {a1, . . . , an} for the possibly empty body of r.
Definition 3.1. An ABA framework (ABAF) is a tuple
(L,R,A, ) with a deductive system (L,R), a non-empty set
A ⊆ L of assumptions, and contrary function : A → L.

Unless otherwise specified, we assume a unique contrary
ac for each assumption a ∈ A. We write a to denote ac.
Example 3.2. We formalise the introductory Example 1.1 as
ABAF D with assumptions {a, b, c, d, w, k}, their contraries,
and inference rules, (v ← d), (d← v) for v ∈ {a, b, c}, and

a← b, c b← a, c c← a, c k ← a w ← d

Below, we fix an arbitrary ABAF D = (L,R,A, ). A
sentence p ∈ L is tree-derivable from assumptions A ⊆ A
and rules R ⊆ R, denoted by A ⊢R p (tree-derivation), if
there is a finite rooted labelled tree T such that the root is
labelled with p, the set of labels for the leaves of T is equal to
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A or A ∪ {⊤}, and there is a surjective mapping from the set
of internal nodes to R, satisfying that for each internal node v,
there is r ∈ R, s.t. v is labelled with head(r), and the set of all
successor nodes corresponds to body(r) or ⊤ if body(r) = ∅.
We say p is derivable (in D) iff there is a tree-derivation A ⊢R
p, A ⊆ A, R ⊆ R. We call A ⊢ p an (ABA) argument if there
is R ⊆ R s.t. A ⊢R p. Arguments of the form {a} ⊢ a,
a ∈ A are assumption arguments, arguments with R ̸= ∅
rule-based arguments. Each assumption argument is unique;
we identify assumption arguments with their assumptions.

By ThD(A) = {p | ∃A ⊢ p} we denote the set of all
claims derivable from assumptions A in D. We let A = {a |
a ∈ A}. The set A attacks B ⊆ A if there is A′ ⊆ A, b ∈ B
s.t. A′ ⊢ b. A is conflict-free if it does not attack itself; A is
admissible if it is conflict-free and defends itself.

A semantics σ is a function assigning ABAF a set of σ-
labellings. We recall complete, grounded, preferred, and sta-
ble semantics (abbr. co, gr , pr , st) [Schulz and Toni, 2017].
Definition 3.3. A labelling is a (partial) function λ : A → L,
L = {in,out,und}. For A ⊆ A, we let λA : A → L
denote a partial labelling of A; λ|A denotes the restriction of
λ to A. For lab ∈ L, lab(λ) = {x ∈ A | λ(x) = lab}.
Definition 3.4. λ : A → L is a complete labelling (abbr. co-
labelling) of an ABAF D = (L,A,R, ) iff for each a ∈ A,

• λ(a)=in iff for all B⊢a, there is b∈B s.t. λ(b)=out;
• λ(a)=out iff there is B⊢a s.t. λ(b)=in for all b∈B.

A co-labelling λ is grounded iff und(λ) is⊆-maximal among
all co-labellings of F ; preferred iff in(λ) is ⊆-maximal
among all co-labellings of F ; and stable iff und(λ) = ∅.

For semantics σ, the set Λσ denotes the set of all σ-
labellings of ABAF D. For A ⊆ A, we say λA is σ-
compatible with D if there is λ ∈ Λσ(D) s.t. λ|A = λA.
Assumption 3.5. We focus on ABAFs which are flat, i. e., for
each rule r ∈ R, head(r) /∈ A (no assumption can be de-
rived, and finite, i. e., L,R, A are finite; moreover, each sen-
tence in s ∈ L is atomic and derivable, i. e., there is A ⊆ A
s.t. A ⊢ s, and each rule is stated explicitly (given as input).
ABAFs and Abstract Argumentation An argumentation
framework (AF) [Dung, 1995] is a directed graph F = (A,R)
where A ⊆ U are arguments and R ⊆ A2 are attacks. We fix a
non-finite set U of arguments. For x, y ∈ A, if (x, y) ∈ R we
say x attacks y; E ⊆ A defends x if it attacks each attacker of
x; E is conflict-free if it does not attack itself; and admissible
if it is conflict-free and defends all x ∈ E.

We recall labelling-based complete, grounded, preferred,
and stable semantics (abbr. co, gr , pr , st) for AFs, follow-
ing [Caminada and Pigozzi, 2011]. Analogous to ABAFs, a
labelling is a function λ : A→ L (cf. Definition 3.3).
Definition 3.6. A labelling λ : A→ L is a complete labelling
(abbr. co-labelling) of an AF F = (A,R) iff for each x ∈ A,

• λ(x) = in iff λ(y) = out for every attacker y of x;
• λ(x) = out iff λ(y) = in for some attacker y of x.

A co-labelling λ is grounded iff und(λ) is⊆-maximal among
all co-labellings of F ; preferred iff in(λ) is ⊆-maximal
among all co-labellings of F ; and stable iff und(λ) = ∅.

We use Λσ , analogous to ABAFs (cf. below Definition 3.4).
ABAFs are closely related to AFs [Čyras et al., 2018].

Definition 3.7. The associated AF FD = (A,R) of an ABAF
D=(L,R,A, ) is given by A = {A ⊢ p | ∃R ⊆ R : A ⊢R
p} and attack relation (A ⊢ p,A′ ⊢ p′) ∈ R iff p ∈ A′.

The translation preserves the semantics [Schulz and Toni,
2017], the correspondence is 1:1 for all considered semantics.
Proposition 3.8. Let D be an ABAF with AF FD, σ ∈ {gr ,
co, pr , st}. If λ ∈ Λσ(D) then ({A ⊢ p | A ∈ in(λ)}, {A ⊢
p | ∃a ∈ A : a ∈ out(λ)}, {A ⊢ p | ∃a ∈ A : a ∈
und(λ), A ∩ out(λ) = ∅}) ∈ Λσ(F ); if λ ∈ Λσ(F ) then
(in(λ|A),out(λ|A),und(λ|A)) ∈ Λσ(D).

Each AF induces an ABAF by associating assumptions and
arguments [Toni, 2012]. The translation preserves semantics.
Definition 3.9. For an AF F = (A,R), we define the ABAF
DF =(L,A,R, ) s.t. A = A, and a← b ∈ R iff (b, a)∈R.
Proposition 3.10. Let F be an AF, DF its associated ABAF,
and σ ∈ {co, pr , gr , st}. Then, Λσ(F ) = Λσ(DF ).

3.2 Conditional Independence
A dependency model I over a set of variables V is a ternary
relation over disjoint subsets of V . We write X⊥IY | Z
iff (X,Y, Z) ∈ I and say X and Y are independent, given
Z [Pearl and Paz, 1986]. We drop I if clear from context.

We recall semi-graphoid axioms [Pearl, 2009]:
Symmetry A⊥B | C ⇒ B⊥A | C
Decomposition A⊥B ∪B′ | C ⇒ A⊥B | C
Weak Union A⊥B ∪B′ | C ⇒ A⊥B | C ∪B′

Contraction A⊥B | C ∧ A⊥B′ | C∪B ⇒ A⊥B∪B′ | C
For a DAG, the notion of d-separation introduces a de-

pendency model which is a semi-graphoid; also, checking
d-separation is in P [Darwiche, 2009]. A node v = vi in
path v1 . . . vn is a collider iff (vi−1, vi), (vi+1, vi)∈E.
Definition 3.11. Let G=(V,E) be a DAG and A,B,C ⊆ V .
Then, A and B are d-separated, given C (A⊥dB | C) in G,
iff for all undirected paths p between A and B, it holds that
p contains a collider v s.t. ({v} ∪ DDG(v)) ∩ C = ∅ or
C ∩ {v ∈ p | v is not a collider} ≠ ∅.

Rienstra et al. [2020] introduce independence for AFs.
Definition 3.12. For an AF F = A,R, semantics σ and dis-
joint sets A,B,C ⊆ A we say A is σ-independent of B, given
C in F , written A⊥σB | C, iff, for all λ1, λ2 ∈ Λσ(F ), if
λ1|C = λ2|C then there is some λ3 ∈ Λσ(F ) s.t. λ3|A =
λ1|A, λ3|B = λ2|B and λ3|C = λ1|C = λ2|C .

4 Independence in ABA
We investigate a semantical notion of conditional indepen-
dence between assumptions. Similar to [Rienstra et al., 2020;
Darwiche, 1997], we base our notion on the acceptance status
of assumptions. Intuitively, two sets of assumptions A and B
are independent of each other, given a third set C, if coming
to know the acceptance status of A in addition to knowing
the acceptance status of C does not influence the acceptance
status of B.



Definition 4.1. Let D = (L,R,A, ) be an ABAF, σ be a
semantics, and let A,B,C ⊆ A be disjoint sets of assump-
tions. Then A is σ-independent of B, given C in D, writ-
ten A⊥σB | C, iff, for all labellings λ1, λ2 ∈ Λσ(D), if
λ1|C = λ2|C then there is some labelling λ3 ∈ Λσ(D) s.t.
λ3|A = λ1|A, λ3|B = λ2|B and λ3|C = λ1|C = λ2|C .

We drop σ and write A⊥B | C, if clear from context. By
Iσ we denote the corresponding dependency model.

Example 4.2. The ABAF D from Example 3.2 has five co-
labellings; four of them are preferred and stable:

σ-lab a b c d w k
co, gr und und und und und und

co, pr , st in in out out in out
co, pr , st in out in out in out
co, pr , st out in in out in in
co, pr , st out out out in out in

We can infer several (in)dependencies here.

• The assumptions a and b are σ-independent wrt. ∅ for
σ ∈ {pr , st}. For this, we identify the labels which are
individually assigned to a and b under σ and verify that
each combination of them is realized under σ.

• a and b are not co-independent, though: assigning a the
label in and b the label und is individually possible, but
there is no labelling with λ(a) = in and λ(b) = und.

• When conditioning on {d}, the assumptions a and b are
dependent under pr and st semantics. If λ(d) = out,
then a and b can be individually out, but not together.

Our first central result sheds light on the close connec-
tion between assumption independence and independence be-
tween arguments (cf. [Rienstra et al., 2020]). We show that
two sets of assumptions A, B are independent, given C, iff
their corresponding assumption arguments are. Below, we
identify assumption argument {a} ⊢ a with assumption a.

Proposition 4.3. Let D = (L,R,A, ) be an ABAF, FD its
corresponding AF, and let σ ∈ {co, gr , pr , st}. Then, for all
A,B,C ⊆ A, we have A⊥σB |C in D iff A⊥σB |C in FD.

Example 4.4. Consider the ABAF from Example 4.2. We ob-
tain an AF FD with assumption arguments xv : {v} ⊢ v for
v ∈ {a, b, c, d, w, k} and rule-based arguments

xk : {a}⊢k xa : {b, c}⊢a xb : {a, c}⊢b xc : {a, c}⊢c
xw : {d}⊢w ∀v∈{a, b, c} : xd

v : {d} ⊢ v xv
d
: {v} ⊢ d

We have (x, y) ∈ R iff x = A ⊢ p, y = B ⊢ q, and for some
b ∈ B : b = p. We depict the corresponding AF FD below.
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By Proposition 4.3 we can use the AF labellings to check
for independence between assumptions; e.g., since xk and xa

are pr -dependent in FD, k and a are pr -dependent in D.

As a consequence, we can transfer results from the AF lit-
erature [Rienstra et al., 2020] to our setting. We so obtain that
our independence notion for ABA is a semi-graphoid.

Proposition 4.5. σ-independence in ABA is a semi-graphoid.

Since each AF induces an ABAF [Toni, 2012] we can
transfer ABA independence results to AFs as well.

Proposition 4.6. Let F = (A,R) be an AF, DF its associated
ABAF, and σ ∈ {co, gr , pr , st}. Then, for all A,B,C ⊆A,
we have A⊥σB |C in F iff A⊥σB |C in DF .

In what follows, we assume an arbitrary but fixed ABAF
D = (L,R,A, ). First, note that under gr semantics, all
sets are independent since the gr -labelling is unique. Next,
we show that two assumption sets are independent when con-
ditioned on a set that uniquely defines one of them.

Definition 4.7. Assumption set A ⊆ A σ-defines B ⊆ A
iff for all partial σ-compatible labellings λA of A, there is a
unique labelling λB which is σ-compatible with D.

Proposition 4.8. Let A,B,C ⊆ A be disjoint sets of assump-
tions. If C σ-defines B then A⊥σB | C.

As a corollary, we obtain that conditional independence is
downwards closed wrt. set inclusion.

Corollary 4.9. A⊥σB | C implies A′⊥σB
′ | C for any se-

mantics σ and for all A′ ⊆ A, B′ ⊆ B.

In contrast to d-separation in DAGs (cf. Def. 3.11), it is,
however, not possible check independence between sets of
assumptions by looking at the pairwise independence of their
members. In Example 3.2, for instance, the singletons a, b, c
are pairwise st-independent while {a, b} and {c} are not.

We conclude by showing that deciding independence can
be computationally hard. In addition, we identify the com-
plexity of the corresponding decision problem for AFs.

Proposition 4.10. Let C denote the class of AFs/flat ABAFs.
Deciding σ-independence in C is ΠP

2 -complete for σ ∈ {co,
st} and ΠP

3 -complete for σ = pr .

5 SCC-driven Independence Checks
The goal of this section is to establish sound and com-
putationally efficient criteria for checking independence for
ABAFs. First, we make use of the close connection between
AFs and ABAFs and apply the d-graph method for AFs by
[Rienstra et al., 2020] to ABAFs (Section 5.1). It turns out,
however, that the applicability of the approach is limited due
to the specific structure of the instantiated AF. For the second
approach, we first define and investigate SCC-recursiveness
for ABA based on the dependency graph [Rapberger et al.,
2022] in Section 5.2. Next, in Section 5.3, we show that the
SCC-Markov condition [Rienstra et al., 2020] is satisfied by
universal and SCC-recursive ABA semantics, thereby provid-
ing the prerequisites for an independence check in ABAFs.

In each of these sections, SCCs will play an important part.



Definition 5.1. Let G = (V,E) be a directed graph, N ⊆ V .
N is a strongly connected component (SCC) of G iff for all
u, v ∈ N there is a path from u to v and N is ⊆-maximal
with this property. SCC (G) denotes the set of all SCCs in G.

The SCCs of G induce a DAG CG = (SCC (G), {(S, T ) |
S ⊆ PAG(T )}. We call an SCC an initial SCC if it has no
parents and a terminal SCC if it has no children in CG.

5.1 AF-Based d-Graph Approach for ABA
Rienstra et al. [2020] develop a sound method to check inde-
pendence in polynomial time: they transform a given AF into
a DAG where each node corresponds to an argument or an
SCC and, for a given SCC node, outgoing arcs encode mem-
bership and incoming arcs its parents in the AF. We restate
their definition of the d-graph below.
Definition 5.2. Given a directed graph Q = (V,E), the d-
graph GQ = (Vd, Ed) is a DAG with Vd = V ∪ {s | S ∈
SCC(F )}; and (u, v) ∈ Ed iff (i) v ∈ V , u ∈ SCC(F ) and
v ∈ u or (ii) u ∈ V , v ∈ SCC(F ) and u ∈ PAG(v).

This seems promising at first sight: by Proposition 4.3, we
can instantiate an ABAF and use the d-graph approach on the
AF to check for independence in ABAFs. Below, we identify
assumptions with their corresponding nodes in the d-graph.
Theorem 5.3. Let D = (L,R,A, ) be an ABAF, FD the
corresponding AF, GFD

the d-graph resulting from FD, and
let σ ∈ {pr , co}. Then, for disjoint sets A,B,C ⊆ A of
assumptions, A⊥dB | C in GFD

implies A⊥σB | C in D.
Example 5.4. Let D = (L,L,R, ) with A = {a, b, c, d},
contraries a = b, d = c, c = d, and rule (b ← a, d). The
resulting AF FD is given below (with x = {a, d} ⊢ b):

a b x c d

We have three SCCs: S1 = {a}, S2 = {b, x}, S3 = {c, d}.
From the d-graph approach, we obtain the following DAG:

a s1 b x s2 c d s3

We can use the DAG to identify independencies between as-
sumptions: for given sets of assumptions A, B, C, check if
C d-separates A and B; e.g., since b cuts the path between a
and c, we infer {a}⊥σ{c} | {d}, σ ∈ {pr , co}, in the ABAF.

To avoid the exponential blow-up of the AF instantiation,
we can utilize the poly-sized, polynomial-time computable,
and (under projection) semantics-preserving AF-sensitive in-
stantiation ([Lehtonen et al., 2023], cf. Def. D.5 )
Proposition 5.5. Checking independence in ABA using the
d-graph approach on its AF-sensitive instantiation is in P.

Note that we require an SCC-structure which is informa-
tive enough. The SCCs that contain assumption arguments
are however often either terminal or initial SCCs (cf. Propo-
sition D.2). In an ABAF with separated contraries, i. e., if
A∩A = ∅, conditioning on a set C cannot make assumption
sets independent if they are not independent already.
Proposition 5.6. Let D=(L,A,R, ) be an ABAF,A∩A =
∅, FD its corresponding AF, and GFD

the resulting d-graph,
Then, for all disjoint sets A,B,C ⊆ A, if A ̸ ⊥IDB | C in
GFD

then A ̸⊥dB |C ′ in GFD
for all assumption sets C ′⊇C.

Indeed, in case of our initial example not much can be said.
Example 5.7. In the associated AF FD of the ABAF D from
Example 4.2, all assumptions are terminal SCCs. When ap-
plying the d-graph approach, we get a DAG where all nodes
that correspond to assumptions are connected with collider-
free paths. Also, we cannot use assumptions to d-separate
them; thus, A ̸⊥dB | C for all assumption sets A,B,C ⊆ A.

In the next two subsections, we propose a native SCC-
based method for ABAFs that circumvents the AF instanti-
ation by exploiting the attack structure of the ABAF directly.

5.2 SCC-Recursiveness for ABA
We explore the notion of SCC-recursiveness in ABA. In our
context, we first need to clarify what the SCCs of an ABAF
are. For this, we make use of the dependency graph [Rap-
berger et al., 2022].
Definition 5.8. The dependency graph PD = (V,E, l) for
an ABAF D = (L,R,A, ) is an edge-labelled graph with
V = L; and edge e = (s, t) ∈ E iff (i) there is some rule
r ∈ R with s ∈ body(r) and head(r) = {t}, in this case
l(e) = +; or (ii) t ∈ A and t = s, in this case, l(e) = −.
Example 5.9. Let D = (L,R,A, ) be an ABAF with A =
{t1, t2, t3, s1, s2, s3, s4}, and the following rules:

t̄1 ← t2 t̄2 ← t1 t̄2 ← t3 t̄3 ← t1, t2 t̄3 ← t3

s̄1 ← s2 s̄2 ← s3 s̄2 ← t1 s̄3 ← t1, t2 s̄3 ← s4, t3

s̄4 ← t3 s̄4 ← s3, t2 s̄4 ← s1, s2

Then the dependency graph PD is given below.

t1 t2 t3t̄1 t̄2 t̄3

s1

s2

s3

s̄4s̄1

s̄2 s̄3 s4

Definition 5.10. Let D = (L,R,A, ) be an ABAF with de-
pendency graph PD. The SCCs of D are given by

SCC (D) = {N ∩ A | N is SCC of PD, N ∩ A ≠ ∅}.

For S, T ∈ SCC (D), T is a parent of S iff there is a
directed path T1 . . . Tn of SCCs from T to S in CPD

s.t.
T1 = T, Tn = S and Ti = ∅ for i /∈ {1, n}.

Let us delve into the concepts needed to understand SCC-
recursiveness in ABA. SCC-recursive semantics can be com-
puted locally, starting from the initial SCCs. In what follows,
we will go through such a recursion step by step, using Ex-
ample 5.9, and introduce all required concepts along the way.
Example 5.11 (Ex. 5.9, cont.). Our ABAF D from before has
two SCCs: S = {s1, s2, s3, s4} and T = {t1, t2, t3}. Here,
T is an initial SCC, the (unique) parent SCC of S.

In the first step, we compute all σ-labellings for the single
initial SCC T . If a given SCC has no parents, the computation
amounts to evoking a so-called base function that returns all



its σ-labellings. Let σ = co. We obtain two labellings λ1 and
λ2 with λ1(ti) = und, i ≤ 3, and λ2(t1) = in, λ2(t2) =
out, λ2(t3) = und. We continue with labelling λ=λ2.

When computing the labellings for a non-initial SCC, the
first step is to partition its elements based on the incoming
arcs of the parent SCCs. In contrast to AFs, we can have at-
tacks where the attacking assumption set consists both of as-
sumptions from the parent and the current SCC, similar as in
SCC-recursiveness for SETAFs [Nielsen and Parsons, 2006],
cf. [König et al., 2022; Dvorák et al., 2024]. Before com-
ing up with a suitable partition of the assumptions in a given
SCC, we will first partition the rules accordingly.
Definition 5.12. Let D = (L,R,A, ) be an ABAF, A ⊆ A
an assumption set and λ : A→ L a labelling. A rule r∈R is
deactivated, r ∈ Rd(λ) iff λ(ai) = out

for some assumption ai ∈ body(r) ∩A

semi-active, r ∈ Rs(λ) iff λ(ai) = und
for some assumption ai ∈ body(r) ∩A and r /∈ Rd(λ)

active, r∈Ra(λ) iff r is neither deactivated nor semi-active.
We omit λ and writeRs,Ra if it does not cause confusion.

Example 5.13 (Ex. 5.9, cont.). We now want to move on and
compute S, based on the information we got from T . La-
belling λ deactivates rules with (the out-labelled) t2 in the
body (first row); it renders non-deactivated rules using t3
semi-active (second row); the rest is active (last row).

t̄1 ← t2 t̄3 ← t1, t2 s̄3 ← t1, t2 s̄4 ← s3, t2

t̄3 ← t3 t̄2 ← t3 s̄3 ← s4, t3 s̄4 ← t3

t̄2 ← t1 s̄1 ← s2 s̄2 ← s3 s̄4 ← s1, s2 s̄2 ← t1

We are ready to define the partition of S into defeated, pro-
visionally defeated, and undefeated assumptions.
Definition 5.14. Let D = (L,R,A, ) be an ABAF, S ∈
SCC (D), λ : PAD(S) → L a labelling, and Ra,Rs sets of
active and semi-active rules. An assumption a ∈ S is
defeated, a ∈ def D(S, λ,Ra,Rs) iff in(λ) ⊢Ra a

provisionally defeated, a ∈ prdef D(S, λ,Ra,Rs) iff a is
not defeated and A \ (S ∪ out(λ)) ⊢Ra∪Rs a

undefeated, a ∈ undef D(S, λ,Ra,Rs) iff a is neither de-
feated nor provisionally defeated

These sets can be considered a pre-selection for a labelling
on S. We define a provisional labelling λp on S ∪ PAD(S).
Definition 5.15. Let D = (L,R,A, ) be an ABAF, S ∈
SCC (D), λ : PAD(S) → L a labelling, and Ra,Rs sets
of (semi-)active rules. We define the partial provisional la-
belling λp(S, λ,Ra,Rs) : S ∪ PAD(S)→ L by

out(λp) = def D(S, λ,Ra,Rs) ∪ out(λ)
und(λp) = prdef D(S, λ,Ra,Rs) ∪ und(λ)
in(λp) = undef D(S, λ,Ra,Rs) ∪ in(λ)

Example 5.16 (Ex. 5.9, cont.). In D, the assumption s2 is
defeated, s4 is provisionally defeated, and {s1, s3} are unde-
feated. We use this partition of S to extend λ: the so-obtained
provisional labelling λp is given by out(λp) = {s2, t2},
und(λp) = {s4, t3}, and in(λp) = {t1, s1, s3}.

To carry out the recursion on the given SCC S, we restrict
our ABAF using λp. The restriction D↓λp

S contains only the
provisionally defeated and undefeated assumptions of S; to
compute our new rule set, we first update Ra and Rs to get
rid of rules that use defeated assumptions from S.

Definition 5.17. Let D = (L,R,A, ) be an ABAF and
λp(S, λ,Ra,Rs) a provisional labelling for an SCC S ∈
SCC (D), and (semi-)active rule setsRup

a ,Rup
s . We define

• the restriction D↓λp

S =(L,R′,A′, ) of D to S under λp,

A′ = S ∩ (in(λp) ∪ und(λp))

R′ = {head(r)← body(r) \ (A \ S) | r ∈ Rup
a ∪Rup

s }

whereRup
s = ((Ra(λp)\Rup

a )∪Rs(λp))∩ (Ra∪Rs)
and Rup

a = Ra(λp) ∩ Ra are the updated sets of semi-
active and active rules, respectively; and

• the restricted rule sets to S, λp areRs↓
λp

S = R′ \Ra↓
λp

S

andRa↓
λp

S ={head(r)← body(r) \ (A\S) | r∈Rup
a }.

Example 5.18 (Ex. 5.9, cont.). Restriction D↓λp

S has assump-
tions s1, s3, s4. To computeR′, we first update our rule sets:

Rup
s : t̄3 ← t3 t̄2 ← t3 s̄3 ← s4, t3 s̄4 ← t3

Rup
a : t̄2 ← t1 s̄2 ← s3 s̄2 ← t1

Now, R′ contains the updated (semi-)active rules where all
for the restriction irrelevant assumptions, i. e., assumptions
not contained in {s1, s3, s4}, are removed from the bodies:

semi-active in S : t̄3 ← t̄2 ← s̄3 ← s4 s̄4 ←
active in S : t̄2 ← s̄2 ← s3 s̄2 ←

Now, without further knowledge about which of the rules
are semi-active only, we could come to the false conclusion
that s3 can be accepted because s4 is attacked by a fact (i. e.,
by ∅). However, the rule (s4 ←) is semi-active because it
had an und-labelled assumption in its body, meaning that
it cannot be counted as a successful attack against s4. We
thus remember the restricted rule sets Rs ↓

λp

S and Ra ↓
λp

S
(corresp. to the semi-active resp. active rules in S) for the
next recursion step.

D↓λp

S has three SCCs: S1 = {s1}, S2 = {s3}, S3 = {s4}.
Again, we start with the initial SCCs. TakingRs into account,
we obtain label und for s3 and s4, in for s1, out for s2.
Together with λ, we thus get a co-labelling for D.

We are ready to state our definition for SCC-recursiveness.
We use a function GF (D,E,Ra,Rs), that takes as param-
eters an ABAF D, a set of candidate assumptions E, sets of
(semi-)active rules Rs, Ra to compute a set of labellings on
D. A semantics σ is SCC-recursive if GF can be computed
locally on each SCC with a σ-specific base function BF .

Definition 5.19. A semantics σ satisfies SCC-recursiveness
if there exists a local function BFσ(D,E,Ra,Rs) such that
for every ABAF D = (L,R,A, ) we have λ ∈ Λσ(D) iff
λ ∈ GFσ(D,A,R, ∅) where λ ∈ GFσ(D,E,Ra,Rs) iff

• if |SCC (D)| = 1, λ ∈ BFσ(D,E,Ra,Rs)



• otherwise, for each S ∈ SCC (D), λ|S = λ′ for some
λ′ ∈ GFσ(D ↓

λp

S ,in(λp),Ra ↓
λp

S ,Rs ↓
λp

S ) on D ↓λp

S ,
and λ(s) = out for s ∈ S \ D ↓λp

S , for the partial
provisional labelling λp(S, λ|PAD(S),Ra,Rs).

We give our main result of this subsection. The σ-specific
base functions are given at the end of Appendix E.

Theorem 5.20. Each ABA semantics σ ∈ {co, pr , st , gr}
satisfies SCC-recursiveness.

5.3 Direct d-Graph Approach for ABA
We propose a sound method to determine conditional inde-
pendence that does not rely on the AF instantiation. The idea
is to apply the d-graph approach to the SCCs of the depen-
dency graph of an ABAF instead of the associated AF.

Definition 5.21. The d-graph of an ABAF D = (L,R,A, )
is GD=GPD

the d-graph wrt. its dependency graph PD.

Example 5.22. Consider an ABAF D with assumptions
a, b, c and rules (a ← a), (b ← a), (c ← b). Each assump-
tion has its own SCC in PD, thus, GD is a simple chain:

sa a sb b sc c

For the check, we now first compute the dependency graph
PD of the ABAF D, then build the d-graph GD based on the
SCCs of PD, and, finally, use the d-separation criterion in
GD to check independence between sets of assumptions. To
show soundness of the approach, we recall the crucial SCC-
Markov property [Rienstra et al., 2020], which generalizes
the local Markov property (cf. Def. A.4).

Definition 5.23. A dependency model I satisfies the SCC-
Markov condition wrt. graph G iff, for all S ∈ SCC (G),
S⊥INDG(S) | PAG(S).

We call σ an SCC-Markovian semantics if Iσ satisfies the
SCC-Markov condition wrt. PD. To guarantee this property,
we require σ to be SCC-recursive, universal (Λσ(D) ̸= ∅
for all D), and admissible (in(λ) is admissible for all λ ∈
Λσ(D)).

We provide a counterpart of [Rienstra et al., 2020, Thm. 2].

Theorem 5.24. If σ is SCC-recursive, admissible, and uni-
versal, then Iσ satisfies the SCC-Markov condition.

Since co, gr , and pr are admissible, universal, and, by The-
orem 5.20, also SCC-recursive, we conclude the following.

Corollary 5.25. Each σ∈{co, pr , gr} is SCC-Markovian.

We show that the native ABA d-graph approach is sound:
we can indeed use the d-separation criterion in d-graph GD

to check independence for SCC-Markovian ABA semantics.

Theorem 5.26. Let D = (L,R,A, ) be an ABAF and σ
be SCC-Markovian. Then, for disjoint sets A,B,C ⊆ A of
assumptions, A⊥dB | C in GD implies A⊥σB | C in D.

The approach is in P since constructing PD is linear in the
size of D. Thus, we can check for σ-independence between
assumptions in polynomial time for all except st semantics.

As it turns out, the native d-graph approach for ABAFs
reveals different independencies than the AF-approach.

Example 5.27. All assumptions of the d-graph GFD
of AF

FD for ABAF D from Example 5.22 are in terminal SCCs.

s1 a ⊢ a

sa a

s2 a ⊢ b

sb b

s3 b ⊢ c

sc c

In GFD
, we cannot say if a and c are independent, given b,

since they are connected by a collider-free path not contain-
ing b. In contrast, b separates a and c in GD depicted in
Example 5.22. So, from GD we can conclude a⊥σc | b for all
semantics σ which satisfy the conditions in Theorem 5.24.

As for AFs, all elements in the same SCC are dependent.
As a result, we can only determine independence between
assumptions from different SCCs. Thus, just like the AF-
approach, the native ABA-approach is incomplete, i.e., not all
independencies can be identified. That being said, the ABA
d-graph approach still gives us information the AF-approach
cannot procure, specifically for ABAFs with separated con-
traries. Finally, let us head back to our introductory example.

Example 5.28. In the d-graph GD for the ABAF D from Ex-
ample 3.2, assumption d separates every undirected path from
w to, e.g., a. Therefore a⊥σw | d in D for σ ∈ {co, pr , gr}.

6 Summary and Conclusion
We have conducted a comprehensive study of a semantical
notion for conditional independence between assumptions in
flat ABA, including satisfaction of semi-graphoid axioms, re-
sults on computational complexity and two methods for a
sound check of independence in polynomial time, the latter
based on our novel notion of SCC-recursiveness for ABA.
The proposed independence model is based on three-valued
labellings, a choice which was motivated by promising results
for a similar notion in the setting of abstract argumentation
[Rienstra et al., 2020]. Other concepts of independence be-
tween assumptions are feasible, though. In particular, defin-
ing independence wrt. joint acceptability of assumptions in-
stead proved to be a well-behaved notion in a preliminary
analysis which is beyond the scope of this paper. Diametric to
this future work direction, ABA frameworks offer rich struc-
tural aspects, and investigating independence between liter-
als, rules and independence in dynamic settings, also for non-
flat ABA, are natural next steps. Specifically, our approach
could empower enforcement methods as well as repairing and
forgetting research [Rapberger and Ulbricht, 2023; Rapberger
and Ulbricht, 2024; Berthold et al., 2023] by enabling the
decomposition of global reasoning tasks into local reasoning
tasks in smaller instances. The high computational complex-
ity of deciding independence may prove challenging for these
studies. Overcoming their inherent limitations when it comes
to handling ABAFs with large SCCs we consider an inter-
esting albeit possibly challenging research objective. Lastly,
ABA is closely related to other forms of structured argumen-
tation, the adaptation of our results to other structured argu-
mentation formalisms such as ASPIC+ [Modgil and Prakken,
2013] or defeasible logic programming [Garcı́a and Simari,
2004] would be worth investigating.
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