
P R O B A B I L I S T I C R E A S O N I N G W I T H
I N C O M P L E T E A N D I N C O N S I S T E N T B E L I E F S

D I S S E RTAT I O N

Z U R E R L A N G U N G D E S G R A D E S E I N E S
D O K T O R S D E R N AT U RW I S S E N S C H A F T E N

der Technischen Universität Dortmund
an der Fakultät für Informatik

Matthias Thimm

Technische Universität Dortmund — Fakultät für Informatik — Dortmund, Germany — 2011

Tag der mündlichen Prüfung: 21.06.2011

Dekan: Prof. Dr. Gabriele Kern-Isberner
Gutachter/Gutachterinnen: Prof. Dr. Gabriele Kern-Isberner

Prof. Dr. Christoph Beierle

Matthias Thimm: Probabilistic Reasoning with Incomplete and Inconsistent Be-
liefs, Dissertation, Department of Computer Science, Technische Universität
Dortmund, Germany. © August 30, 2011

A B S T R A C T

Reasoning with inaccurate information is a major topic within the fields of
artificial intelligence in general and knowledge representation and reason-
ing in particular. This thesis deals with information that can be incomplete,
uncertain, and contradictory. We employ probabilistic conditional logic as
a foundation for our investigation. This framework allows for the represen-
tation of uncertain pieces of information by using probabilistic conditionals,
a specific approach to handle if-then-rules within a probabilistic framework.
Uncertainty can be expressed by means of probabilities attached to those
rules and incompleteness can be handled in this framework by reasoning
based on the principle of maximum entropy. This principle is a powerful
approach when only incomplete information is at hand as it allows for fill-
ing missing pieces of information in the most unbiased way. This principle
is realized for reasoning by selecting the one unique probability function
that both satisfies the knowledge base and has maximum entropy. In this
thesis we focus on two major issues that arise when representing knowl-
edge with probabilistic conditional logic. On the one hand, we look at
the problem of contradictory information that, e. g., arises when multiple
experts share their knowledge in order to come up with a common knowl-
edge base consisting of probabilistic conditionals. As in classical logic this
is a severe problem because inconsistency of a knowledge base forbids ap-
plication of model-based inductive inference approaches such as reasoning
based on the principle of maximum entropy. We investigate this issue by
presenting ways to analyze inconsistencies and ways to restore consistency.
More specifically, we introduce the concept of measuring inconsistencies
in probabilistic conditional logic and present inconsistency measures that
are apt for the application in a probabilistic setting. While analyzing in-
consistencies is a first step to remove inconsistencies we also have a look
at automatic approaches for restoring consistency. On the other hand, we
investigate an extension of the syntactical and semantical notions of proba-
bilistic conditional logic to the relational case. Until now, most approaches
for reasoning in probabilistic conditional logic only consider propositional
logic as the underlying foundation. When switching to the more expres-
sive framework of first-order logic, traditional semantics seem to fail in
the interpretation of relational probabilistic conditionals in a commonsen-
sical manner. In particular, the problem of contradictory information is
an issue in first-order extensions of probabilistic conditional logic as well
and we present novel semantical approaches to probabilistic conditionals
that circumvent non-satisfiability in an intuitive and rational manner. We
also extend the approach of reasoning based on the principle of maximum
entropy to the framework of relational probabilistic conditional logic and
investigate its properties.

iii

P U B L I C AT I O N S A N D D I S C L A I M E R

Some ideas and texts in this thesis have been previously published in sev-
eral papers. As scientific work is never the work of a single researcher,
many people participated in the work reported in this thesis. In the fol-
lowing, I want to acknowledge both the published works that led to this
thesis and the contributions of several of my co-workers who participated
in these works.

The work reported in this thesis on measuring and resolving inconsisten-
cies in probabilistic conditional logic bases on the paper (Thimm, 2009a).
Nonetheless, the ideas from (Thimm, 2009a) have been further pursued and
the approximations for the MinDev inconsistency measure, the extensions
to more expressive frameworks, and the whole investigation on solving
conflicts is novel to this thesis.

The work on inference in relational probabilistic conditional logic bases
on several works by Christoph Beierle, Marc Finthammer, Jens Fisseler,
Gabriele Kern-Isberner, Sebastian Loh, and myself. While the develop-
ment of averaging semantics in relational probabilistic conditional logic
and the properties for reasoning in this framework has been started by
myself (Thimm, 2009b), the initial work on aggregating semantics is due
to Gabriele Kern-Isberner (Kern-Isberner and Thimm, 2010). Further re-
search in this area is due to Gabriele Kern-Isberner, Jens Fisseler, and myself
(Thimm and Kern-Isberner, 2011; Thimm et al., 2011b). Novel to this thesis
is a deeper analysis of the averaging and aggregating semantics and the
technical elaborations on both standard and lifted inference. Much of this
work on relational probabilistic reasoning has been initialized by my par-
ticipation in the DFG project KReate1 that “aims at developing a common
methodology for learning, modelling and inference in a relational proba-
bilistic framework”. While the theoretical research in this project led to
the work cited above, a practical aspect of KReate was the development
and implementation of the integrated development environment KReator2

which is supervised by Marc Finthammer and myself. Reports on the
work on KReator and general relational probabilistic frameworks are due
to Christoph Beierle, Marc Finthammer, Gabriele Kern-Isberner, Sebastian
Loh, and myself (Finthammer et al., 2009; Thimm et al., 2010; Beierle et al.,
2010a; Loh et al., 2010; Finthammer and Thimm, 2011; Thimm et al., 2011a).
Some discussions in this thesis are influenced by those works.

1 http://www.fernuni-hagen.de/wbs/research/kreate/
2 http://kreator.cs.tu-dortmund.de/

v

http://www.fernuni-hagen.de/wbs/research/kreate/
http://kreator.cs.tu-dortmund.de/

A C K N O W L E D G M E N T S

There are many people to whom I am very grateful for their support during
the past few years. First of all, I want to thank Gabriele Kern-Isberner for
being my advisor and guiding me around the various obstacles of scientific
research. In particular, I appreciate the freedom she gave me in conducting
research and the opportunities to present my work on various conferences.
I also like to thank Christoph Beierle for being my second reviewer and our
various discussions in Hagen and Dortmund. Furthermore, I thank Joachim
Biskup and Christoph Schubert for agreeing to be part of my dissertation
committee.

Special thanks go to Patrick Krümpelmann for enduring both my distrac-
tion attempts and my bad taste in tea and coffee. Our discussions were an
inspiration for me and our joint trips around the globe have been fun and
entertaining.

My working environment has always been wonderful and I thank everyone
who took a part in that. Among others I thank the people of chairs 1 and 6

in Dortmund, the people of the chair “Wissenbasierte Systeme” in Hagen,
and the people from the LIDIA lab in Bahía Blanca. Additionally, I thank
Patrick Krümpelmann, Marc Finthammer, and Thomas Zeume for proof-
reading preliminary versions of this thesis, Christian Eichhorn for help
with several figures and tables, and Adam Chachaj for his work on the
implementations for reasoning in relational probabilistic conditional logic.

I thank Lora Encheva Asenova for all her support and love, especially
during the final months of writing this thesis.

Although not explicitly being included in this thesis I also want to acknowl-
edge the contributions of my co-authors in some other works as some ideas
or formalizations in this thesis might be influenced by them. Those other
works contain research on argumentation, more specifically, research at
the intersection of formal models of argumentation and multi-agent sys-
tems which has been started in my diploma thesis (Thimm, 2008) and in
(Thimm, 2010), further pursued by Gabriele Kern-Isberner and myself in
(Thimm and Kern-Isberner, 2008b,a) and by Alejandro J. García, Gabriele
Kern-Isberner, Guillermo R. Simari and myself in (Thimm et al., 2008). An-
other strain of argumentation related research is on analysis of defeasible
argumentation (Thimm and Kern-Isberner, 2008d,c) and is joint work with
Gabriele Kern-Isberner. Research on strategical issues of argumentation is
due to Alejandro J. García and myself (Thimm and García, 2010). Works
on argumentation and law are joint work with Christoph Beierle, Bernhard
Freund, and Gabriele Kern-Isberner (Beierle et al., 2010c,b). Recent works
on the combination of argumentation and belief revision is due to Diego R.

vii

García, Sebastián Gottifredi, Patrick Krümpelmann, Gabriele Kern-Isberner,
Marcelo A. Falappa, Alejandro J. García, and myself (García et al., 2011).

Work on reasoning in multi-agent systems is mostly joint work with
Patrick Krümpelmann (Thimm and Krümpelmann, 2009b,a; Krümpelmann
and Thimm, 2010) but also joint work with Gabriele Kern-Isberner and
Manuela Ritterskamp (Krümpelmann et al., 2008). This work has also been
extended within the student project group Intelligent Cowbots, resulting in
the publication (Hölzgen et al., 2011) which is joint work with Daniel Hölz-
gen, Thomas Vengels, Patrick Krümpelmann, and Gabriele Kern-Isberner.
Research on confidentiality issues in multi-agent systems is joint work with
Joachim Biskup and Gabriele Kern-Isberner (Biskup et al., 2008).

Finally, research on qualitative knowledge discovery and data mining is
joint work with Gabriele Kern-Isberner, Marc Finthammer, and Jens Fisseler
(Kern-Isberner et al., 2008, 2009).

viii

C O N T E N T S

1 introduction 1

1.1 Context and Motivation . 1

1.2 Research Questions and Contributions 3

1.2.1 Measuring Inconsistency in Probabilistic Conditional
Logic . 5

1.2.2 Solving Inconsistencies 5

1.2.3 Novel Semantical Approaches to Relational Proba-
bilistic Conditional Logic 5

1.2.4 Inference in Relational Probabilistic Conditional Logic 5

1.2.5 Lifted Inference in Relational Probabilistic Condi-
tional Logic . 6

1.3 Outline . 6

2 logical background and probabilistic reasoning 9

2.1 Classical Logic . 9

2.1.1 Propositional Logic . 9

2.1.2 First-Order Logic . 12

2.1.3 Beyond Classical Logics 18

2.2 Probability Theory and Probabilistic Networks 19

2.2.1 Foundations of Probability Theory 19

2.2.2 Bayesian Networks . 22

2.2.3 Markov Nets . 24

2.3 Probabilistic Conditional Logic and Maximum Entropy . . . 26

2.4 Relational Probabilistic Reasoning 32

2.4.1 Bayesian Logic Programs 33

2.4.2 Markov Logic Networks 38

2.5 Summary . 41

3 measuring inconsistency 43

3.1 Inconsistencies in Probabilistic Conditional Logic 44

3.2 Desirable Properties for an Inconsistency Measure 46

3.3 Traditional Approaches for Measuring Inconsistency 53

3.4 Measuring Inconsistency by Distance Minimization 60

3.4.1 The General Approach 60

3.4.2 Approximating Distance Minimization 68

3.4.3 Extensions . 73

3.5 Related Work . 77

3.5.1 η-Consistency . 78

3.5.2 An Inconsistency Measure based on Generalized Di-
vergence . 80

3.5.3 Candidacy Degrees of Best Candidates 83

3.6 Summary and Discussion . 86

ix

x Contents

4 solving conflicts using inconsistency measures 89

4.1 Culpability Measures . 91

4.1.1 Shapley Culpability Measure 93

4.1.2 Mean Distance Culpability Measure 98

4.2 Principled Consistency Restoring 101

4.3 Solving Conflicts by Penalizing Culpabilities 107

4.3.1 Unbiased Creeping . 108

4.3.2 Penalized Creeping . 111

4.3.3 Smoothed Penalized Creeping 115

4.4 Solving Conflicts by Balanced Distance Minimization 119

4.5 Related Work . 122

4.5.1 Culpabilities and Candidacy degrees 122

4.5.2 Qualitative Modification and Generalized Divergence 124

4.5.3 Heureka . 125

4.6 Summary and Discussion . 126

5 relational probabilistic conditional logic 129

5.1 Relational Probabilistic Models and NMR 130

5.2 Syntax of RPCL . 133

5.3 Semantics of RPCL . 134

5.3.1 Averaging Semantics 136

5.3.2 Aggregating Semantics 140

5.4 Properties and Analysis . 143

5.5 Related Work . 146

5.5.1 Grounding Semantics for RPCL 146

5.5.2 First-order Probabilistic Logic 151

5.6 Summary and Discussion . 157

6 reasoning at maximum entropy in rpcl 159

6.1 Probabilistic Reasoning and Desirable Properties 160

6.2 Probabilistic Inference by Maximizing Entropy 168

6.2.1 Averaging Inference . 169

6.2.2 Aggregating Inference 173

6.3 Analysis and Comparison . 176

6.4 Related Work . 180

6.4.1 Grounding Semantics and Maximum Entropy 181

6.4.2 First-order Probabilistic Logic and Random Worlds . 184

6.4.3 Statistical Relational Learning 188

6.5 Summary and Discussion . 190

7 lifted inference in rpcl 193

7.1 Lifted Inference . 194

7.1.1 Condensed Probability Functions 197

7.1.2 Lifted Inference and Maximum Entropy 205

7.2 Analysis . 209

7.3 Generalizing Lifted Inference 212

contents xi

7.4 Related Work . 215

7.5 Summary and Discussion . 217

8 summary and final remarks 219

8.1 Summary . 219

8.2 Further and Future Work . 220

8.3 Conclusion . 222

a proofs of technical results 225

c examples – pcl 253

List of Figures 265

List of Tables 266

Bibliography 269

Notations 285

Index 291

1I N T R O D U C T I O N

In this chapter we introduce the topic of this thesis and give an overview
on the research field where it is located. Further, we motivate the work
conducted in this thesis and pose a series of research questions that are
addressed. We enumerate the contributions to answer these questions and
give an outline on the structure.

1.1 context and motivation

Knowledge representation (Brachman and Levesque, 2004) is one of the
major subfields of artificial intelligence (Russell and Norvig, 2009). This
field is concerned with formal representations of knowledge and how these
formalizations can be used for reasoning, i. e., how new information can be
automatically inferred using a formal system. There are many real-world
applications for knowledge representation, the most common application
being the expert systems (Jackson, 1998; Beierle and Kern-Isberner, 2008).
An expert system is a piece of software that allows for representation of
and reasoning with knowledge of some domain in order to support and
guide the user in his or her tasks. For example, one of the earliest expert
systems MYCIN (Shortliffe and Buchanan, 1975) was designed to be used
in medical diagnosis, i. e., given some information on a patient’s symptoms
the system would identify infections such as meningitis and recommend
a treatment. MYCIN performed well in laboratory experiments but was
never used in practice, mainly due to acceptance problems and ethical
issues (Beierle and Kern-Isberner, 2008). Nowadays, expert systems are
rapidly gaining attention in many fields such as accounting (Vasarhelyi et
al., 2005), chemistry (Judson, 2009), and law (Popple, 1996). Furthermore,
modern multi-purpose systems such as Drools1 or Jess2 are able to cross
domain borders and allow for application in arbitrary fields. Another
strain of applications for knowledge representation lies in the semantic web
(Davies et al., 2003). In the futuristic vision of the internet agents search
the web, link contents, and perform time-consuming tasks on behalf of
humans. Although we are far away from a purely semantic web there are
already many systems available that make use of semantical information
on a very low level like the recommendation system of Amazon3 or the
DBPedia project4 which allows for a structured access to the contents of
Wikipedia5. Formal knowledge representation formalisms, that allow for

1 http://www.jboss.org/drools/
2 http://www.jessrules.com/
3 http://www.amazon.com
4 http://dbpedia.org
5 http://www.wikipedia.org

1

http://www.jboss.org/drools/
http://www.jessrules.com/
http://www.amazon.com
http://dbpedia.org
http://www.wikipedia.org

2 introduction

a uniform method to exchange information, lie at the core of the semantic
web. For those, research in the field of description logics (Baader et al., 2003)
and ontologies (Baader et al., 2005) is applied in technologies like RDF and
XML (Geroimenko, 2004).

One of the big issues in knowledge representation is accuracy. Usually,
the term “knowledge” is used to describe strict or objective knowledge that
is considered to be absolutely true in the given frame of reference, i. e. the
real world. The counterpart, denoted by “subjective knowledge” or “beliefs”, is
used to describe knowledge that is assumed to be true by the individual un-
der consideration. As some terms like knowledge base have been established
in the literature we adapt those conventions in this thesis. Consequently, we
use the terms “knowledge” and “beliefs” interchangeably but always assume
that information represented in some formalism to be subjective.

Besides being incorrect with respect to the real world, the beliefs of a sin-
gle human being (and a computer system as well) can be incomplete, uncer-
tain, or inconsistent. That is, some piece of information I might be unknown
(incompleteness), might be believed only to a certain degree (uncertainty),
or might be in conflict with another piece of information I′ (inconsistency).
Note that inconsistency of two pieces of information I and I′ implies that
at least one of them is incorrect. However, even without the possibility to
compare I and I′ with the state of the real world, an inconsistency can be
detected by a being capable of reasoning, which is not necessarily true for
incorrect information in general. These issues also apply to the beliefs of
an expert in a field, and when feeding information into an expert system
the system has to take these issues into account when inferring new infor-
mation. Within the field of knowledge representation and reasoning there
are several subfields that deal with (some of) these issues like defeasible rea-
soning (Kyburg et al., 1990), argumentation (Bench-Capon and Dunne, 2007;
Rahwan and Simari, 2009), or possibilistic and fuzzy reasoning (Siler and Buck-
ley, 2005). Among the most established logical frameworks for dealing with
uncertainty is probability theory (Paris, 1994; Pearl, 1998). There have been
numerous works on combining probability theory with knowledge repre-
sentation like Bayesian networks and Markov nets that allow for derivation
of uncertain beliefs from other uncertain beliefs. Especially in application
areas such as medical diagnosis, where the user has to rely crucially on
the certainty of individual recommendations, reasoning using probabilistic
models of knowledge serves well (Parmigiani, 2002). Probability theory—
or, more precisely, information theory—also provides for a nice solution
to the problem of incomplete information. Using the principle of maximum
entropy (Paris, 1994) one can complete uncertain and incomplete informa-
tion in order to gain new information that was unspecified before, see also
(Kern-Isberner, 2001). The expert system SPIRIT (Rödder and Meyer, 1996)
is a working system that employs reasoning based on the principle of maxi-
mum entropy and has been applied to various fields of operations research
such as project risk management (Ahuja and Rödder, 2002) and portfolio
selection (Rödder et al., 2009). Though reasoning based on the principle of

1.2 research questions and contributions 3

maximum entropy allows for dealing with both incomplete and uncertain
information it is not suitable for reasoning with inconsistent information.
But inconsistency is a ubiquitous matter human beings have to deal with
all the time: “Ask five economists and you’ll get five different answers – six if one
went to Harvard.”6. Of course, this phenomenon appears not only in eco-
nomics but everywhere. This issue becomes most apparent when multiple
experts try to build up a common knowledge base which happens regularly
in knowledge engineering and expert system design. However, this issue
has been dealt with in the literature only little so far, cf. (Rödder and Xu,
2001; Finthammer et al., 2007; Daniel, 2009).

Another issue in knowledge representation is expressivity. Most tradi-
tional probabilistic methods for reasoning use propositional logic which
is not suitable to express most real-world scenarios. Many applications
demand for the ability to express relational information such as relational
databases, social network modeling, or genetics. The relatively young re-
search fields of probabilistic inductive logic programming and statistical rela-
tional learning aim at extending statistical learning and probabilistic reason-
ing to relational settings (Getoor and Taskar, 2007; De Raedt et al., 2008).
The focus of the research in those areas lies in knowledge discovery and
data mining problems, i. e., they address the issue of given a (large) set
of data samples, how to find “rules” that describe the data? There are
also some works that aim at extending reasoning based on the principle of
maximum entropy to the relational case and focus on the problem of infer-
ence, cf. e. g. (Kern-Isberner and Lukasiewicz, 2004; Fisseler, 2010; Loh et
al., 2010). However, inference in those frameworks treat relational formu-
las as schemas for their instances and base heavily on grounding relational
knowledge in order to get a propositional view on the information. How-
ever, straightforward extensions of propositional techniques suffer greatly
from conflicting pieces of information that arise in the process of ground-
ing and, until now, there have been no works on principled foundations
for relational probabilistic reasoning that consider alternative semantical
notions.

1.2 research questions and contributions

The general research question that underlies the work in this thesis can be
phrased as follows:

How to infer knowledge from incomplete, uncertain, and possibly
inconsistent information?

We handle this question using the framework of probabilistic conditional logic
(Benferhat et al., 1999; Rödder, 2000; Kern-Isberner, 2001), a general prob-
abilistic framework that allows for a declarative knowledge representation

6 Quote by Edgar R. Fiedler, an American economist who served as assistant secretary of
the treasury for economic policy from 1971 to 1975.

4 introduction

based on conditionals (if-then-rules). In this framework, by employing the
principle of maximum entropy one can already reason with both incom-
plete and uncertain information, cf. e. g. (Paris, 1994). Here, we also address
the problem of inconsistency. As understanding inconsistencies is a prereq-
uisite for resolving them we start this investigation by posing the following
research question:

How to analyze inconsistencies in probabilistic conditional logic and
how to measure their severities?

Understanding both the causes of inconsistencies and their implications
also helps in gaining more insight into the semantics of the logic under
consideration. There are only few works that consider the problem of
analyzing inconsistencies in probabilistic conditional logic (Rödder and Xu,
2001; Finthammer et al., 2007) or generalizations thereof (Daniel, 2009) and
we investigate this topic in-depth. The goal of this investigation is to lead
to techniques that resolve inconsistencies.

How to restore consistency in inconsistent probabilistic knowledge?

Restoring consistency is a major topic in many fields of artificial intelli-
gence like belief revision (Hansson, 1999) and information fusion (Bloch
and Hunter, 2001), and there have been only few works that consider this
problem for probabilistic frameworks, see (Finthammer et al., 2007) and
(Rödder and Xu, 2001) for some exceptions. By developing techniques that
deal with inconsistency in propositional probabilistic conditional logic we
reach a position where we are able to reason with uncertain, incomplete,
and inconsistent information at the same time. But as discussed before,
propositional logic is not expressive enough to represent most real-world
scenarios. Consequently, we switch to the more expressive first-order logic
and discuss the semantical consequences of this extension. As the combi-
nation of relational concepts and probabilistic conditional logic is novel we
have to start by laying solid syntactical and semantical foundations first.
Therefore, our first issue lies in answering the following research question:

How to express relational knowledge in probabilistic conditional logic
and what is a meaningful interpretation of relational conditionals?

Previous approaches that aim in answering this question and base on sche-
matic interpretation of relational conditionals can be found in e. g. (Kern-
Isberner and Lukasiewicz, 2004; Fisseler, 2010; Loh et al., 2010). Having
defined relational probabilistic conditional logic on a firm basis we are in-
terested in reasoning. As for the propositional case we demand a reasoning
mechanism that allows for handling incomplete, uncertain, and possibly
inconsistent information. Therefore, the generic research question can be
phrased as follows:

How to infer knowledge from relational probabilistic conditionals?

1.2 research questions and contributions 5

Although this question has been phrased rather vaguely it is also intended
to address the issues of principled and efficient reasoning. Previous work
in this direction can be found in (Kern-Isberner and Lukasiewicz, 2004;
Fisseler, 2010; Loh et al., 2010).

In the following, we list the contributions of this thesis that aim at an-
swering the questions raised above.

1.2.1 Measuring Inconsistency in Probabilistic Conditional Logic

Building on results that have been previously published in (Thimm, 2009a)
we investigate the problem of analyzing and measuring inconsistencies in
probabilistic conditional logic. We do this in a principled way by devel-
oping a series of rationality postulates. We extend existing inconsistency
measures for classical logics to the probabilistic setting and investigate their
properties. As those measures lack adhering to several peculiarities of the
probabilistic setting we develop a novel inconsistency measure, compare it
to the classical measures, and investigate its properties.

1.2.2 Solving Inconsistencies

We present culpability measures (Daniel, 2009) as a generalization of incon-
sistency measures that show how inconsistency is distributed across the in-
dividual pieces of information. We develop two culpability measures and
employ those for consistency restoration. We also propose a series of ratio-
nality postulates for solving inconsistencies and adapt properties from both
social choice theory and belief merging which address similar questions.

1.2.3 Novel Semantical Approaches to Relational Probabilistic Conditional Logic

We extend the formalism of probabilistic conditional logic to a relational
setting by introducing first-order concepts into the syntax of conditionals.
We do this by building on previous work (Thimm, 2009b; Kern-Isberner and
Thimm, 2010) and propose novel semantical approaches for the interpreta-
tion of relational conditionals. We analyze and compare these semantics
and discuss their properties.

1.2.4 Inference in Relational Probabilistic Conditional Logic

By employing the novel semantical approaches we discuss the problem of
inductive inference for relational conditionals and continue previous work
(Thimm, 2009b; Kern-Isberner and Thimm, 2010). We propose several ratio-
nality postulates for inference and make use of the principle of maximum
entropy to define an inference mechanism that allows for a flexible reason-
ing behavior.

6 introduction

1.2.5 Lifted Inference in Relational Probabilistic Conditional Logic

We circumvent computational problems for reasoning in relational proba-
bilistic conditional logic by exploiting structural similarities of probability
functions that have been obtained by applying the principle of maximum
entropy. We develop a reasoning mechanism that is tractable for unary
languages and analyze its properties.

1.3 outline

This thesis is organized as follows. In Chapter 2 we give the necessary pre-
liminaries for this thesis. These preliminaries consist of classical logic and
probabilistic knowledge representation and reasoning. More precisely, we
give an introduction to both propositional and first-order logic by formal-
izing their syntax and semantics. We continue by giving a brief overview
on probability theory and probabilistic networks. Afterwards we introduce
probabilistic conditional logic and illustrate reasoning based on the princi-
ple of maximum entropy. We conclude Chapter 2 with a brief overview on
statistical relational learning in general and the two formalisms of Bayesian
logic programs and Markov logic networks in particular. The notations
introduced in Chapter 2 are used throughout this thesis and a necessary
requirement for understanding the rest of this thesis. However, after Chap-
ter 2 we depart in two different but related research strains: while in Chap-
ters 3 and 4 we elaborate on the problem of inconsistencies in propositional
probabilistic conditional logic, in Chapters 5, 6, and 7 we investigate rela-
tional probabilistic conditional logic.

In particular, Chapter 3 investigates the problem of measuring inconsis-
tency in propositional probabilistic conditional logic. We develop a prin-
cipled approach for measuring inconsistency and discuss both established
approaches for measuring inconsistency from classical logic and novel ap-
proaches. In Chapter 4 we discuss the issue of restoring consistency in in-
consistent knowledge bases by presenting culpability measures as a means
for finding the culprits for creating inconsistencies. We continue by propos-
ing several different approaches for restoring consistency and compare
these approaches with respect to their properties and by means of examples.
In Chapter 5 we start by discussing the problem of relational probabilistic
reasoning and laying the syntactical and semantical foundations of a rela-
tional probabilistic conditional logic. We propose different semantics for
this new logic and discuss their relationships. In Chapter 6 we discuss the
problem of inductive reasoning in relational probabilistic conditional logic
using several rationality postulates. Afterwards we introduce probabilistic
reasoning based on the principle of maximum entropy for the relational set-
ting and investigate the implications with respect to the different semantics.
Chapter 7 develops a novel technique to enhance computational efficiency
for reasoning with maximum entropy. We introduce condensed probability
functions as compact representations for probability functions and discuss

1.3 outline 7

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

1

Figure 1: Outline of the thesis

reasoning based on these representations. Finally, in Chapter 8 we bring
together the two different strains by summarizing the contributions of this
thesis and making some final remarks. Figure 1 gives an overview on the
outline of this thesis with respect to the two different logics employed for
knowledge representation.

Proofs of statements that are too technical or not relevant for discussion
within the main text of this thesis can be found in Appendix A. We give
a hint whenever a proof can be found there. Appendix C contains further
examples of the techniques developed in Chapters 3 and 4.

2L O G I C A L B A C K G R O U N D A N D P R O B A B I L I S T I C
R E A S O N I N G

In this chapter we give background information needed for this thesis. This
comprises a basic overview on classical logic, including propositional as
well as first-order logic, and probabilistic reasoning. In particular, we give
a brief introduction to probability theory as far as needed for probabilistic
knowledge representation and reasoning. We review existing frameworks
for probabilistic reasoning in propositional settings, such as Bayesian net-
works and Markov nets as representatives for graphical probabilistic mod-
els and probabilistic conditional logic with inference based on the principle
of maximum entropy as a non-graphical model. Finally, we discuss the
field of statistical relational learning which investigates probabilistic models
for first-order logics.

2.1 classical logic

Classical logics are the most widely used representations for formalizing
reasoning. A classical logic is defined by a syntax that is used to model
statements, and a semantics that is used to describe relations between state-
ments and give meaning to statements, cf. (Beierle and Kern-Isberner, 2008).
The syntax of a classical logic declares the set of symbols and some set of
building rules that are used to form complex formulas of the language. The
semantics of a classical logic defines interpretations and describes when an
interpretation satisfies a formula. When all interpretations that satisfy some
formula φ also satisfy another formula ψ then we say that ψ semantically fol-
lows from φ. Usually, classical logics come with a syntactical calculus that can
be used for testing whether a formula semantically follows from another
one without considering all interpretations of the language. For classical
logics, these calculi are based on deductive reasoning and the inference rule
modus ponens which is defined as: If “φ” and “ψ follows from φ” then derive
“ψ” (Peirce, 1972). In order to implement deduction for a syntactical calcu-
lus properly, a set of derivation rules such as the law of excluded middle or the
De Morgan’s laws (Gabbay, 1994) can be derived.

We go on by discussing the two most important forms of classical logic:
propositional logic and first-order logic.

2.1.1 Propositional Logic

Propositional logic (Fitch, 1952; Mendelson, 1997) is one of the first formal
systems for logical reasoning and goes back to Aristotle (384–322 BC), cf.

9

10 logical background and probabilistic reasoning

(Bocheński, 1961). It is equivalent to Boolean algebra (Boole, 2009) and deals
with logical relations between propositional statements. Even nowadays it
is broadly used in fields of artificial intelligence like knowledge representa-
tion (Brachman and Levesque, 2004) and belief revision (Alchourrón et al.,
1985; Hansson, 1999).

Syntax

The syntax of propositional logic is defined by a propositional signature
which consists of a set of atomic statements called propositions.

Definition 2.1 (Propositional signature, atom, proposition). A propositional
signature At is a finite set of identifiers, called atoms or propositions.

Using a propositional signature the language of propositional logic is gen-
erated using the connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 2.2 (Propositional language). Let At be a propositional signature.
The propositional language L(At) for At is the minimal set L satisfying

1. At ⊆ L,

2. >,⊥∈ L (tautology and contradiction), and

3. for every φ, ψ ∈ L it holds that

a) φ ∧ ψ ∈ L (conjunction),

b) φ ∨ ψ ∈ L (disjunction), and

c) ¬φ ∈ L (negation).

The special symbols > and ⊥ are used to denote tautology (a statement that
is always true) and contradiction (a statement that is never true), respectively.
An element φ ∈ L(At) is called a formula or sentence of the propositional
language L(At). A literal is an atom or a negated atom of a propositional
signature At. Thus, the set of literals, denoted by Lit(At), is defined by
Lit(At) = {a,¬a | a ∈ At}.

We abbreviate ¬φ ∨ ψ by φ ⇒ ψ and (φ ⇒ ψ) ∧ (ψ ⇒ φ) by φ ⇔ ψ.
We also use over-lining to denote the complement, i. e. it is φ = ¬φ, and
abbreviate conjunctions φ ∧ ψ simple by φψ. For a set Φ = {φ1, . . . , φn} ⊆
L(At) we abbreviate∨

Φ =def φ1 ∨ . . . ∨ φ2
∧

Φ =def φ1 ∧ . . . ∧ φ2 .

If Φ = ∅ we define∨
Φ =def⊥

∧
Φ =def > .

The syntax of a propositional language restricts the set of words that can
be phrased. The actual meaning of a word is defined by a semantics.

2.1 classical logic 11

Semantics

Semantics to a propositional language is given by interpretations. An inter-
pretation describes a specific world by assigning to each atom a truth value.

Definition 2.3 (Propositional interpretation). Let At be a propositional sig-
nature. A propositional interpretation I on At is a function

I : At→ {true, false} .

Let Int(At) denote the set of all propositional interpretations for At.

We denote a propositional interpretation simply by “interpretation” if its
type is clear from context. An interpretation can also be written as a com-
plete conjunction enumerating all literals that are true in the given interpre-
tation.

Example 2.1. Consider a propositional signature At = {a, b, c}. The inter-
pretation I1 of At given by

I1(a) =def true I1(b) =def false I1(c) =def true

can be fully described by the complete conjunction abc.

A complete conjunction is also referred to as a possible world. Let Ω(At)
denote the set of all possible worlds with respect to the signature At. An
interpretation I satisfies an atom a ∈ At, denoted by I |=P a, if and only
if I(a) = true. An interpretation I falsifies an atom a ∈ At, denoted by
I 6|=P a, if and only if I(a) = false. The satisfaction relation |=P is extended
to arbitrary sentences recursively as follows. Let φ, ψ ∈ L(At) be some
sentences.

• I |=P φ ∨ ψ if and only if I |=P φ or I |=P ψ

• I |=P φ ∧ ψ if and only if I |=P φ and I |=P ψ

• I |=P ¬φ if and only if I 6|=P φ

Furthermore, for every interpretation I it holds that I |=P > and I 6|=P⊥.

Definition 2.4 (Propositional model). Let At be a propositional signature
and I ∈ Int(At) an interpretation on At. I is a propositional model of a
sentence φ ∈ L(At) if and only if I |=P φ.

In the following, we just use the term “model” to refer to a propositional
model if its type is clear from context. An interpretation I is a model of
a set of formula Φ ⊆ L(At) if and only if I is a model of every formula
in Φ, i. e., I |=P Φ if and only if for every φ ∈ Φ it holds that I |=P φ.
Let ModP(Φ) ⊆ Int(At) denote the set of all models of Φ ⊆ L(At). If

12 logical background and probabilistic reasoning

Φ consists of a single element, i. e. Φ = {φ}, we write ModP(φ) instead
of ModP({φ}). The satisfaction relation |=P can also be used to describe
semantical entailment between formulas. A set of formulas Φ2 semantically
follows from a set of formulas Φ1, denoted by Φ1 |=P Φ2, if and only if
ModP(Φ1) ⊆ ModP(Φ2). If Φ1 or Φ2 consist of a single element we omit
the curly brackets, e. g., we write φ1 |=P φ2 instead of {φ1} |=P {φ2} for
φ1, φ2 ∈ L(At). Note that if ωI is the possible world representing the
interpretation I it holds that ωI |=P Φ if and only if I |=P Φ. Due to
this property we use interpretations and possible worlds interchangeably.
Two formulas φ and ψ are equivalent, denoted by φ ≡P ψ, if and only if
φ |=P ψ and ψ |=P φ, i. e., if and only if ModP(φ) = ModP(ψ). Note that it
holds that ModP(>) = Int(At) and ModP(⊥) = ∅.

If a formula φ is contradictory, i. e., it holds that φ ≡P⊥, then every other
formula φ′ semantically follows from φ, i. e. φ |=P φ′ for every φ′ ∈ L(At),
as φ has no models. This phenomenon is referred to as ex falso quod libet (lat.
from falsehood follows everything) and is one of the major drawbacks of propo-
sitional logic and classical logics in general when considering commonsense
reasoning.

Checking whether a formula φ′ semantically follows from a formula φ,
i. e. whether φ |=P φ′ holds, is an NP-complete problem as it is equivalent to
the famous satisfiability problem SAT (Garey and Johnson, 1990). However,
there exist several syntactical calculi and practical algorithms for proposi-
tional logic such as the DPLL algorithm (Davis et al., 1962) that work well
for most real-world applications, see e. g. (Strichmann and Szeider, 2010)
for recent developments.

2.1.2 First-Order Logic

First-order logic (Hilbert and Ackermann, 1928; Neuhaus et al., 2004) ex-
tends propositional logic by introducing relations between objects, functions,
and quantification. It is strictly more expressive than propositional logic but
the problem of satisfaction is undecidable in general (Church, 1936; Tur-
ing, 1937). Nonetheless, it is widely used in e. g. automated theorem prov-
ing (Fitting, 1996) and knowledge representation (Brachman and Levesque,
2004) and is the foundation for description logics (Baader et al., 2003).

Syntax

In first-order logic, an object is referred to by a single constant, e. g. tweety,
and is a single entity describing a particular individual in the domain
under discourse. A predicate can be used to describe either an attribute of
a single object, e. g. flies(tweety), or a relation between two or more objects,
e. g. chases(sylvester, tweety). A functor is used to describe a functional
relationship from one or more objects to another object. For example, the
value of ownerOf (tweety) refers to the unique owner of Tweety that may be
equivalent to the individual described by the constant granny.

2.1 classical logic 13

Definition 2.5 (First-order signature). A first-order signature Σ is a tuple
Σ = (U, Pred, Func) with

• U is a set of constants,

• Pred is a set of predicates, and

• Func is a set of functors.

A first-order signature Σ = (U, Pred, Func) is finite if and only if U, Pred,
and Func are finite. We use the notation v/n to denote that the arity of
the predicate (or functor) v is n with n ∈ N. While the set of constants U
describes all known individuals in the scenario under discourse, first-order
logic also allows statements concerning all or a set of undetermined objects.
A variable is a descriptor for a specific but unknown or not determined
individual in the domain under discourse. To distinguish constants from
variables, we usually write the latter with a beginning upper-case letter and
the former with a beginning lower-case letter and vectors of these with ~X
and ~a, respectively. Constants, variables, and functional expressions are
subsumed by the notion of a term.

Definition 2.6 (Term). Let Σ = (U, Pred, Func) be a first-order signature
and V a set of variables. The set of terms Terms(Σ, V) for Σ and V is the
minimal set T satisfying

1. U ⊆ T,

2. V ⊆ T, and

3. for all f /n ∈ Func and t1, . . . , tn ∈ T it holds that f (t1, . . . , tn) ∈ T.

Every term describes a specific but possibly undetermined object. Using
terms and predicates one can construct atomic expressions of first-order
logic as follows.

Definition 2.7 (First-order atom). Let Σ be a first-order signature, V a set
of variables, p/n ∈ Pred an n-ary predicate, and t1, . . . , tn ∈ Terms(Σ, V).
The expression p(t1, . . . , tn) is called a first-order atom of Σ and V.

We denote a first-order atom simply by “atom” if its type is clear from
context. The important difference between a functional term f (t1, . . . , tn)
and an atom p(t1, . . . , tn) is its value. While the value of a functional term
describes an object, the value of an atom is either true or false and thus
describes whether the specified relation holds or not.

Definition 2.8 (First-order language). Let Σ be a first-order signature and
V a set of variables. The first-order language L(Σ, V) for Σ and V is the
minimal set L satisfying

1. for every atom p(t1, . . . , tn) of Σ and V it holds that p(t1, . . . , tn) ∈ L,

14 logical background and probabilistic reasoning

2. >,⊥∈ L (tautology and contradiction), and

3. for every φ, ψ ∈ L and X ∈ V it holds that

a) φ ∧ ψ ∈ L (conjunction),

b) φ ∨ ψ ∈ L (disjunction),

c) ¬φ ∈ L (negation),

d) ∀X : φ ∈ L (all-quantification), and

e) ∃X : φ ∈ L (existential-quantification).

An element φ ∈ L(Σ, V) is called a formula of the first-order language
L(Σ, V). A formula φ ∈ L(Σ, V) is ground if and only if no variable occurs
in φ. Let L/∀/∃(Σ, V) ⊆ L(Σ, V) denote the fragment of L(Σ, V) without
quantification. As in propositional logic, cf. Section 2.1.1, a literal of a first-
order signature Σ and a set of variables V is either an atom of Σ and V or a
negated atom. Let Lit(Σ, V) denote the set of all literals of Σ and V.

A variable X ∈ V can appear in a formula φ ∈ L(Σ, V) bound and/or
free. If X appears in sub-formulas of the form ∀X : φ′ or ∃X : φ′ of φ then
X is bound in φ. If X appears in φ without a corresponding quantifier then
X is free in φ. In order to simplify matters, we assume that all variables
in a formula φ are either bound or free in φ, but not both. This can be
achieved easily by appropriately renaming bound occurrences of a variable.
A formula φ ∈ L(Σ, V) is called a sentence if and only if all variables in φ

are bound in φ. In particular, every ground formula is a sentence.
As for propositional logic we abbreviate

φ⇒ ψ =def ¬φ ∨ ψ φ⇔ ψ =def (φ⇒ ψ) ∧ (ψ⇒ φ)

φ =def ¬φ φψ =def φ ∧ ψ∨
Φ =def φ1 ∨ . . . ∨ φn

∨
∅ =def⊥∧

Φ =def φ1 ∧ . . . ∧ φn
∧

∅ =def >

for φ, ψ ∈ L(Σ, V) and Φ = {φ1, . . . , φn} ⊆ L(Σ, V). If {X1, . . . ,Xn} is the
set of free (and not bound) variables of a formula φ we also write φ as
φ(~X) with ~X = (X1, . . . ,Xn) (we assume some arbitrary total order on the
free and not bound variables of a formula as given). If ~a = (a1, . . . , an) is
a vector of constants of the same length we denote by φ(~a) the formula φ′

that is the same as φ but every free occurrence of Xi is replaced by ai for
i = 1, . . . , n.

An important syntactic restriction of first-order logic is Horn logic (Horn,
1951). A Horn clause is a disjunction of negated atoms and at most one
not-negated atom, i. e., a formula of the form p ∨ ¬q1 ∨ . . . ∨ ¬qn with
atoms p, q1, . . . , qn. A Horn clause of this form can also be written as an
implication p⇐ q1 ∧ . . . ∧ qn which explains the interest in these clauses as
they can be used to model rule-like knowledge. In fact, Horn logic is the
foundation for logic programming languages such as Prolog (Covington

2.1 classical logic 15

et al., 1996) and answer set programming (Gelfond and Lifschitz, 1991),
see also (Gelfond and Leone, 2002). For a Horn clause φ of the form
φ = p ⇐ q1 ∧ . . . ∧ qn we abbreviate head(φ) = p (the head or conclusion
of the clause) and body(φ) = {q1, . . . , qn} (the body or premise of the clause).

Semantics

Semantics is given to a first-order language L(Σ, V) by means of interpreta-
tions and variable assignments.

Definition 2.9 (First-order interpretation). Let Σ = (U, Pred, Func) be a first-
order signature. A first-order interpretation I on Σ is a tuple I = (UI , f U

I ,
PredI , FuncI) with

1. a non-empty set of objects UI (the universe),

2. a function f U
I : U → UI ,

3. a set PredI of relations PredI = {pI ⊆ Un
I | p/n ∈ Pred}, and

4. a set FuncI of functions FuncI = { f I : Un
I → UI | f /n ∈ Func}.

An element cI ∈ UI is called an interpretation of c ∈ U if and only if
cI = f U

I (c). Similarly, an element pI ∈ PredI (f I ∈ FuncI) is also called an
interpretation of its corresponding p ∈ Pred (f ∈ Func). Let Int(Σ) denote
the set of all first-order interpretations for Σ.

We denote a first-order interpretation simply by “interpretation” if its type
is clear from context.

Definition 2.10 (Variable assignment). Let I = (UI , f U
I , PredI , FuncI) be a

first-order interpretation on Σ = (U, Pred, Func) and V a set of variables. A
variable assignment VA on V is a function VA : V → UI .

A variable assignment VA can be extended to terms with respect to an
interpretation I = (UI , f U

I , PredI , FuncI) as follows. If c ∈ Terms(Σ, V) is a
constant, i. e. c ∈ U, then VA(c) =def f U

I (c). If f (t1, . . . , tn) ∈ Terms(Σ, V)
with f ∈ Func then VA(f (t1, . . . , tn)) =def f I(VA(t1), . . . , VA(tn)).

An interpretation I = (UI , f U
I , PredI , FuncI) on Σ together with a vari-

able assignment VA satisfies an atom p(t1, . . . , tn) of Σ and V, denoted
by I, VA |=F p(t1, . . . , tn), if and only if (VA(t1), . . . , VA(tn)) ∈ pI where
pI ∈ PredI is the interpretation of p in I. The interpretation I and the vari-
able assignment VA falsify p(t1, . . . , tn), denoted by I, VA 6|=F p(t1, . . . , tn),
if and only if (VA(t1), . . . , VA(tn)) /∈ pI . The satisfaction relation |=F is ex-
tended to arbitrary formulas recursively as follows. Let φ, ψ ∈ L(Σ, V) be
some formulas.

• I, VA |=F φ ∨ ψ if and only if I, VA |=F φ or I, VA |=F ψ

• I, VA |=F φ ∧ ψ if and only if I, VA |=F φ and I, VA |=F ψ

16 logical background and probabilistic reasoning

• I, VA |=F ¬φ if and only if I, VA 6|=F φ

• I, VA |=F ∀X : φ if and only if for every variable assignment VA′

that is the same as VA but possibly VA′(X) 6= VA(X) it holds that
I, VA′ |=F φ

• I, VA |=F ∃X : φ if and only if for some variable assignment VA′

that is the same as VA but possibly VA′(X) 6= VA(X) it holds that
I, VA′ |=F φ

Furthermore, for every interpretation I and every variable assignment VA
it holds that I, VA |=F > and I, VA 6|=P⊥. An interpretation I satisfies a
formula φ ∈ L(Σ, V), denoted by I |=F φ, if and only if for every variable
assignment VA on V it holds that I, VA |=F φ.

Definition 2.11 (First-order model). Let Σ = (U, Pred, Func) be a first-order
signature, V be some set of variables, and I an interpretation on Σ. I is a
first-order model of a formula F ∈ L(Σ, V) if and only if I |=F F.

A first-order model I is simply referred to as a model if its type is clear from
context. An interpretation I is a model of a set of formulas Φ ⊆ L(Σ, V)
if and only if I is a model of every formula in Φ, i. e., I |=F Φ if and only
if for every φ ∈ Φ it holds that I |=F φ. Let ModF(Φ) denote the set of all
models of Φ ⊆ L(Σ, V). If Φ consists of a single element, i. e. Φ = {φ}, we
write ModF(φ) instead of ModF({φ}). As for propositional logic we define
semantical entailment between sets of formulas Φ1, Φ2 via Φ1 |=F Φ2 if and
only if ModF(Φ1) ⊆ ModF(Φ2). Two formulas φ1 and φ2 are equivalent,
denoted by φ1 ≡F φ2, if and only if φ1 |=F φ2 and φ2 |=F φ1, i. e., if
ModF(φ1) = ModF(φ2). Note that ModF(>) = Int(Σ) and ModF(⊥) = ∅.

Replacements

We need some further notation that is used throughout this thesis.

Definition 2.12 (Replacement). Let Σ = (U, Pred, Func) be a first-order
signature and V a set of variables. A function θ : U ∪ V → U ∪ V with
θ(x) 6= x only for a finite number of x ∈ U ∪V is called a replacement for Σ
and V. Let Γ(Σ, V) denote the set of all replacements for Σ and V.

Note that replacements are a similar concept like substitutions, see e. g. (Rus-
sell and Norvig, 2009). The main difference between substitutions and re-
placements is that the former do not allow the substitution of constants
while the latter do not allow for the insertion of functional terms. Replace-
ments are extended to first-order formulas in a straightforward fashion,
i. e., if φ ∈ L(Σ, V) and θ ∈ Γ(Σ, V) then θ(φ) is the same as φ except
that every occurrence of x ∈ U is substituted by θ(x) and every free oc-
currence of x ∈ V is substituted by θ(x). Let Im f denote the image of
a function f . Then a replacement θ is called a grounding replacement if

2.1 classical logic 17

and only if Im θ ⊆ U and for every a ∈ U it holds that θ(a) = a. Let
Γgnd(Σ, V) ⊆ Γ(Σ, V) be the set of all grounding replacements. Note that
for a grounding replacement θ ∈ Γgnd(Σ, V) and a formula φ that contains
a quantifier the formula θ(φ) is not ground. However, for every formula
φ and grounding replacement θ ∈ Γgnd(Σ, V) it follows that θ(φ) is a sen-
tence.

For an inline definition of a replacement we use the operator [·]. If
x1, . . . , xn, y1, . . . , yn ∈ U ∪ V with xi 6= xj for i, j = 1, . . . , n and i 6= j
and φ ∈ L(Σ, V) then the expression φ[y1/x1, . . . , yn/xn] is defined via

φ[y1/x1, . . . , yn/xn] =def θ(φ)

with θ ∈ Γ(Σ, V) and θ(x) =def x for all x ∈ U ∪ V except θ(xi) =def yi for
i = 1, . . . , n. If xi 6= xj and yi 6= yj for i, j = 1, . . . , n and i 6= j and also
xi 6= yj for i, j = 1, . . . , n then we abbreviate further

φ[y1 ↔ x1, . . . , yn ↔ xn] =def φ[y1/x1, x1/y1, . . . , xn/yn, yn/xn] .

For a formula φ ∈ L(Σ, V) let Const(φ) denote the set of constants appear-
ing in φ. For a set Φ of first-order formulas define Const(Φ) to be the union
of Const(φ) for φ ∈ Φ. For a formula φ ∈ L/∀/∃(Σ, V) that contains no quan-
tification and a set D ⊆ U of constants with Const(φ) ⊆ D we define the
set of ground instances gndD(φ) of φ with respect to D via

gndD(φ) =def {θ(φ) | θ ∈ Γgnd(Σ, V) and Im θ ⊆ D} .

That is, gndD(φ) contains all sentences φ′ that arise from φ by substituting
every variable with some constant in D.

Herbrand Interpretations

In this thesis we are mainly working with a special kind of interpretations
for first-order languages, the so-called Herbrand interpretations. With Her-
brand interpretations the semantics is handled in a very simple manner as
constants are interpreted by themselves. So Herbrand interpretations inter-
pret the language on an almost syntactical level without the need of a se-
mantical overload and hence are the first-order equivalent of propositional
possible worlds, cf. page 11. If the first-order signature under discourse con-
tains no functors the use of Herbrand interpretations is more intuitive than
the use of ordinary first-order interpretations. The formalism of Herbrand
interpretation is based on the notion of the Herbrand base.

Definition 2.13 (Herbrand base). Let Σ be a first-order signature. The
Herbrand base At(Σ) is the set of all ground atoms of L(Σ, ∅).

Let P(S) denote the power set of a set S.

18 logical background and probabilistic reasoning

Definition 2.14 (Herbrand interpretation). A Herbrand interpretation ω for a
first-order signature Σ is any set ω ⊆ At(Σ). Let Ω(Σ) denote the set of all
Herbrand interpretations, i. e. Ω(Σ) =def P(At(Σ)).

A Herbrand interpretation ω satisfies a ground atom a ∈ At(Σ), also writ-
ten as ω |=F a, if and only if a ∈ ω. Everything said before on the relation
|=F (that is defined for general first-order interpretations) applies in the
same way to Herbrand interpretations.

For the rest of this thesis let L denote any of L(At) or L(Σ, V) for some
appropriate signature.

2.1.3 Beyond Classical Logics

A major drawback of classical logics for their use in commonsense reason-
ing is their monotonicity. Monotonicity of a logic ensures that derivations
prevail no matter what new information may bring. Classical formulas are
strict in the sense that no exceptions are allowed.

Example 2.2. Consider the set of first-order sentences Φw given by

Φw = { bird(tweety),

∀X : bird(X)⇒ ¬speaks(X) } .

The sentences in Φw describe a scenario where we have some general beliefs
on birds, i. e., birds do not speak, as well as the observation of an actual
bird tweety. From Φw we can infer that tweety does not speak, i. e. Φw |=F

¬speak(tweety). However, suppose that tweety is an exceptional bird that
can indeed speak. Considering the extended knowledge base Φ′w given by

Φ′w = { bird(tweety),

speaks(tweety),

∀X : bird(X)⇒ ¬speaks(X) } .

From Φ′w we can still infer ¬speaks(tweety) because Φ′w is, as a matter
of fact, inconsistent, so it holds that Φ′w |=F φ for any formula φ of the
corresponding language.

There are many non-classical frameworks that try to capture this and other
properties of commonsense reasoning, both qualitative ones and quantita-
tive ones. Among the qualitative frameworks the most widespread ones
are paraconsistent logics (Belnap, 1976, 1977; Béziau et al., 2007), defeasible
logics (Nute, 1994), default logics (Reiter, 1980; Antoniou, 1999), argumen-
tation frameworks (Bench-Capon and Dunne, 2007; Rahwan and Simari,
2009), and answer set programming (Gelfond and Lifschitz, 1991; Gelfond

2.2 probability theory and probabilistic networks 19

and Leone, 2002). The most common quantitative frameworks are prob-
ability theory (Pearl, 1998; Jaynes, 2003), fuzzy logic (Gerla, 2001), and
Dempster-Shafer theory (Shafer, 1976), see also (Paris, 1994). In this the-
sis we focus on logics that base on probability theory.

2.2 probability theory and probabilistic networks

Probability theory is the oldest formalism for dealing with uncertainty in
a quantified manner, the first recorded publication being “De ratiociniis in
ludo aleae” (“On Reasoning in Games of Chance”) by Christiaan Huygens
from the year 1657 (Gullberg, 1997). However, the influential works by
Kolmogorov (Kolmogorov, 1933) have mainly shaped todays formal treat-
ment of probability and his axioms of probability are the foundation of
reasoning with probabilities in artificial intelligence and knowledge repre-
sentation (Paris, 1994; Pearl, 1998; Jaynes, 2003). In the following we give
a short introduction to the basic concepts of probability theory and illus-
trate its application in knowledge representation using the formalisms of
Bayesian Networks and Markov Nets.

2.2.1 Foundations of Probability Theory

In this thesis we are dealing with discrete probability functions, i. e., proba-
bility functions that are defined on countable sample spaces. In general, a
sample space is a set of mutual exclusive events whose uncertain occur-
rence is to be measured by the probability function. For example, the set
Xdice = {1, 2, 3, 4, 5, 6} can be regarded as the set of possible events occur-
ring as outcomes when throwing a dice. A probability function on X then
assigns to each of the sides of the dice the “probability” that this side turns
up when throwing the dice.

Definition 2.15 (Probability function). Let X be some countable set. A
probability function P on X is a function P : P(X)→ [0, 1] that satisfies

1. P(X) = 1 and

2. P(X1 ∪ X2) = P(X1) + P(X2) for X1, X2 ⊆ X and X1 ∩ X2 = ∅.

For notational convenience we write P(x) instead of P({x}) for x ∈ X.
Conditions 1. and 2. in Definition 2.15 are also referred to as Kolmogorov
axioms of probability (Jaynes, 2003). A probability function P0 that assigns
the same probability to each x ∈ X is called a uniform probability function,
i. e., it holds that P0(x) = 1/|X| for each x ∈ X (for finite X). For example,
considering the probability function Pfair_dice of a fair dice, the probability
of each x ∈ Xdice for the example above is defined as Pfair_dice(x) =def 1/6,
i. e. Pfair_dice is a uniform probability function on Xdice.

Some immediate observations on properties of a probability function P
can be made.

20 logical background and probabilistic reasoning

Proposition 2.1. Let X1, X2 ⊆ X. Then it holds that

1. P(X1) = ∑x∈X1
P(x),

2. P(X1 ∪ X2) = P(X1) + P(X2)− P(X1 ∩ X2), and

3. P(X \ X1) = 1− P(X1).

The proof of Proposition 2.1 can be found in Appendix A on page 225. Due
to property 1.) of the above proposition we often write P : X → [0, 1]
instead of P : P(X)→ [0, 1] as only the probabilities for each x ∈ X have to
be defined.

In knowledge representation and reasoning (Paris, 1994; Pearl, 1998) we
are mostly interested in probability functions on possible worlds of an un-
derlying logical language L. For what follows we assume a propositional
language L(At) for some propositional signature At and consider probabil-
ity functions of the form P : Ω(At) → [0, 1]. Let PP(At) denote the set of
all these probability functions.

Example 2.3. Consider At = {a, b, c}. The set of all interpretations Int(At)
of At is given by Int(At) = {I1, . . . , I8} with

I1(a) = true I1(b) = true I1(c) = true

I2(a) = true I2(b) = true I2(c) = false

I3(a) = true I3(b) = false I3(c) = true

I4(a) = true I4(b) = false I4(c) = false

I5(a) = false I5(b) = true I5(c) = true

I6(a) = false I6(b) = true I6(c) = false

I7(a) = false I7(b) = false I7(c) = true

I8(a) = false I8(b) = false I8(c) = false

or equivalently with the set Ω(At) = {ωI1 , . . . , ωI8} of possible worlds with

ωI1 = abc ωI2 = abc ωI3 = abc ωI4 = abc

ωI5 = abc ωI6 = abc ωI7 = abc ωI8 = abc .

A probability function P1 : Ω(At)→ [0, 1] on Ω(At) can be given via

P1(ωI1) =def 0.1 P1(ωI5) =def 0.15

P1(ωI2) =def 0.2 P1(ωI6) =def 0.25

P1(ωI3) =def 0.2 P1(ωI7) =def 0.02

P1(ωI4) =def 0.05 P1(ωI8) =def 0.03 .

Due to property 1.) of Proposition 2.1 the above assignments completely de-
scribe a probability function P1 as e. g. P1({ωI1 ωI2}) = P1(ωI1) + P1(ωI2) =
0.3.

2.2 probability theory and probabilistic networks 21

A probability function P on a set of possible worlds Ω(At) can be extended
to the whole language L(At) via

P(φ) =def ∑
ω|=Pφ, ω∈Ω(At)

P(ω) (2.1)

for φ ∈ L(At) (Beierle and Kern-Isberner, 2008). This means, that the
probability of a formula φ is defined to be the sum of the probabilities of the
models of φ. If Φ ⊆ L(At) is a finite set of formulas with Φ = {φ1, . . . , φn}
we abbreviate P(Φ) =def P(φ1 ∧ . . . ∧ φn).

Example 2.4. We continue Example 2.3 and consider the formula φ1 =def
a ∧ b. The probability of φ1 given P1 can be computed as

P1(φ1) = P1(ωI1) + P1(ωI2) = 0.3

as ωI1 |=P φ1 and ωI2 |=P φ1 and these are the only models of φ1.

Some simple properties of probability functions on propositional languages
are as follows.

Proposition 2.2. Let P be a probability function on L(At) and φ, ψ ∈ L(At).

1. If φ |=P⊥ then P(φ) = 0.

2. If > |=P φ then P(φ) = 1.

3. If φ ≡P ψ then P(φ) = P(ψ).

4. If φ ∧ ψ |=P⊥ then P(φ ∨ ψ) = P(φ) + P(ψ).

5. It holds that P(¬φ) = 1− P(ψ).

6. If φ |=P ψ then P(φ) ≤ P(ψ).

The proof of Proposition 2.2 can be found in Appendix A on page 226.
One of the most interesting properties of relationships between proposi-

tions in a probabilistic framework is probabilistic independence.

Definition 2.16 (Probabilistic independence). Let P be probability function
on L(At) and A1, A2 ⊆ At sets of atoms. Then A1 and A2 are probabilistically
independent with respect to P, denoted by A1 ⊥⊥P A2, if and only if for all
ω1 ∈ Ω(A1), ω2 ∈ Ω(A2) it holds that P(ω1 ∧ω2) = P(ω1)P(ω2).

Probabilistic independence allows, among other things, for a compact rep-
resentation of a probability function as only marginal distributions of prob-
abilistic independent sets of atoms have to be stored instead of the whole
function. Note that ⊥⊥P is a symmetric relation, i. e., it holds that A1 ⊥⊥P A2
if and only if A2 ⊥⊥P A1.

An important concept of probability theory and especially of knowledge
representation is the conditional probability.

22 logical background and probabilistic reasoning

Definition 2.17 (Conditional probability). Let P be a probability function
on L(At) and φ, ψ ∈ L(At) with P(φ) > 0. Then the conditional probability
of ψ given φ, written as P(ψ | φ), is defined as

P(ψ | φ) =def
P(φ ∧ ψ)

P(φ)

The expression P(ψ | φ) describes the probability that ψ is true when φ is
already known to be true. If Φ1, Φ2 ⊆ L(At) are finite sets of formulas with
Φ1 = {φ1

1, . . . , φ1
n} and Φ2 = {φ2

1, . . . , φ2
m} we abbreviate

P(Φ1 |Φ2) =def P(φ1
1 ∧ . . . ∧ φ1

n | φ2
1 ∧ . . . ∧ φ2

m) .

If Φ2 = ∅ we define P(Φ1 |Φ2) = P(Φ1). For conditional probabilities the
concept of probabilistic independence can be generalized as follows.

Definition 2.18 (Conditional independence). Let P be probability function
on L(At) and A1, A2, A3 ⊆ At sets of atoms. Then A1 and A2 are condi-
tionally independent given A3 with respect to P, denoted by A1 ⊥⊥P A2 | A3,
if and only if for all ω1 ∈ Ω(A1), ω2 ∈ Ω(A2), ω3 ∈ Ω(A3) it holds that
P(ω1 ∧ω2 |ω3) = P(ω1 |ω3)P(ω2 |ω3).

Note that standard probabilistic independence is equivalent to conditional
independence given the empty set. Similar to probabilistic independence
conditional independence allows for a decomposition of a probability func-
tion into manageable conditional probability functions, cf. (Pearl, 1998). Con-
ditional independence is symmetric in its first two arguments, i. e., it holds
that A1 ⊥⊥P A2 | A3 if and only if A2 ⊥⊥P A1 | A3.

Conditional probabilities are often used in knowledge representation
to describe causal or diagnostic dependencies (Pearl, 1998). Well-known
frameworks which rely heavily on the notions of conditional probability
and conditional independence are Bayesian Networks and Markov Nets
which we present now.

2.2.2 Bayesian Networks

A Bayesian network (Pearl, 1998) is a convenient method to represent a
special type of probability functions in a compact way. Bayesian networks
have been used for the representation of and reasoning with uncertain
beliefs for quite some time as they allow for efficient inference methods
(Lauritzen and Spiegelhalter, 1988). Structurally, a Bayesian network is a
directed graph on propositions that models probabilistic (in-)dependencies
of some underlying probability function.

For a directed graph (V, E) and a node v ∈ V let pa(v) denote the set of
parents of v, i. e nodes v′ ∈ V such that there is a directed edge (v′, v) ∈ E. A
directed path p from a node v1 ∈ V to a node vn ∈ V is a sequence of nodes
p = (v1, . . . , vn) such that (vi, vi+1) ∈ E for i = 1, . . . , n− 1. Furthermore,

2.2 probability theory and probabilistic networks 23

let nd(v) denote the set of non-descendants of v, i. e. nodes v′ ∈ V \ pa(v)
such that there is no directed path from v to v′.

Definition 2.19 (Bayesian network). Let At be a set of propositions. A
Bayesian network BN for At is a tuple BN = (At, E, P) such that (At, E)
is a directed acyclic graph and P is a probability function that obeys

{a} ⊥⊥P nd(a) | pa(a) (for every a ∈ At) . (2.2)

Condition (2.2) is also called the local Markov property. Due to this property,
the probability function P can be decomposed into conditional probability
functions for each node a ∈ At. That is, for a ∈ At with pa(a) = {b1, . . . , bn}
it is sufficient to store the conditional probabilities P(a | ḃ1 ∧ . . . ∧ ḃn) for
each ḃi ∈ {bi, bi} for i = 1, . . . , n. Then, the probability of a possible world
ω ∈ Ω(At) can be computed via

P(ω) = ∏
l∈Lit(At), ω|=Pl

P(l |
∧
{l′ ∈ Lit(At) | ω |=P l′ and

l′ ∈ pa(l) or l′ ∈ pa(l)}) (2.3)

due to the conditional independence of each atom to their non-descendants
given their parents, cf. (Pearl, 1998). Furthermore, the computation of a for-
mula’s probability can be simplified as, in general, not the whole Bayesian
network has to be considered but only a small portion, see (Lauritzen and
Spiegelhalter, 1988; Pearl, 1998) for details.

Example 2.5. We adapt an example on medical diagnosis from (Beierle
and Kern-Isberner, 2008), see also (Pearl, 1998). Consider the propositions
At = {a, b, c, d, e} with the informal interpretations cancer (a), elevated serum
calcium level (b), brain tumor (c), coma (d), and headache (e). Let BNmed =
(At, E, P) with (At, E) be the Bayesian network depicted in Figure 2. It
follows that P has to adhere to the conditional independence {b} ⊥⊥P
{c} | {a} (among others). Moreover, due to Equation (2.3) the probability of
a possible world such as abcde ∈ Ω(At) can be written as

P(abcde) = P(e | c) · P(d | bc) · P(c | a) · P(b | a) · P(a) .

Therefore P can be completely described by e. g. the following assign-
ments1:

P(a) =def 0.20

P(b | a) =def 0.80 P(b | a) =def 0.20

P(c | a) =def 0.20 P(c | a) =def 0.05

P(e | c) =def 0.80 P(e | c) =def 0.60

1 The numbers have been arbitrarily chosen and may not describe the real world.

24 logical background and probabilistic reasoning

P(d | b ∧ c) =def 0.80 P(d | b ∧ c) =def 0.90

P(d | b ∧ c) =def 0.70 P(d | b ∧ c) =def 0.05

Note that the probabilities of negated variables derive from the above equa-
tions via e. g. P(e | c) = 1− P(e | c). By only defining the above conditional
probabilities the function P can be compactly stored. While by exploiting
Equation (2.3) one only needs to specify the above eleven assignments, a
full description of P needs |Ω(At)| = 32 assignments.

a

b c

d e

1

Figure 2: The graph (At, E) from Example 2.5

2.2.3 Markov Nets

While Bayesian networks employ directed graphs for modeling conditional
(in-)dependencies, Markov nets (Pearl, 1998) build on undirected graphs.
The central notion for defining a Markov net is the graph separation. Remem-
ber that for an undirected graph (V, E) a path p from a node v1 ∈ V to a
node vn ∈ V is a sequence of nodes p = (v1, . . . , vn) such that {vi, vi+1} ∈ E
for i = 1, . . . , n− 1. If p = (v1, . . . , vn) is a path let p† =def {v1, . . . , vn} de-
note the set of all nodes contained in the path.

Definition 2.20 (Graph separation). Let G = (V, E) be an undirected graph
and let A1, A2, A3 ⊆ V be pairwise disjoint. Then A3 separates A1 and A2
in G, denoted by A1 ⊥⊥G A2 | A3, if and only if for every a1 ∈ A1 and every
a2 ∈ A2 and every path p from a1 to a2 it holds that p† ∩ A3 6= ∅.

The concept of graph separation aims at representing conditional indepen-
dencies in a graphical manner. Ideally, we want to characterize conditional
independence by graph separation, i. e., we want to have

A1 ⊥⊥G A2 | A3 iff A1 ⊥⊥P A2 | A3 (2.4)

2.2 probability theory and probabilistic networks 25

for every A1, A2, A3 ⊆ At. However, the condition represented by Equa-
tion (2.4) is not achievable in general as conditional independence is more
expressive than graph separation (Beierle and Kern-Isberner, 2008). For
defining Markov nets we demand only a weaker condition to hold.

Definition 2.21 (Independence map). Let At be a propositional signature,
G = (At, E) an undirected graph, and P a probability function on Ω(At).
Then G is an independence map for P if and only if for every A1, A2, A3 ⊆
At it holds that

if A1 ⊥⊥G A2 | A3 then A1 ⊥⊥P A2 | A3 . (2.5)

Equation (2.5) is called the global Markov property.

Definition 2.22 (Markov net). Let At be a propositional signature, G =
(At, E) an undirected graph, and P a probability function on Ω(At). Then
G is a Markov net for P if and only if G is a minimal independence map for
P, i. e., if and only if no G = (At, E′) with E′ (E is an independence map
for P.

Example 2.6. Let At = {a, b, c, d} be a set of propositions and consider
the graph G = (At, E) in Figure 3. Then G is an independence map for a
probability function P if it holds that

{a} ⊥⊥P {d} | {b, c} and {b} ⊥⊥P {c} | {a, d} .

Furthermore, G is a Markov net for P if none of the following independen-
cies hold

{a} ⊥⊥P {b} | S with S ⊆ {c, d}
{a} ⊥⊥P {c} | S with S ⊆ {b, d}
{a} ⊥⊥P {d} | S with S ∈ {{b}, {c}, ∅}

{b} ⊥⊥P {c} | S with S ∈ {{a}, {d}, ∅}
{b} ⊥⊥P {d} | S with S ⊆ {a, c}

{c} ⊥⊥P {d} | S with S ⊆ {a, b} .

Having a Markov net G for a probability function P allows for a compact
representation of P as P factorizes over the cliques cl(G) of G. This means,
for each clique C of G a function φC : C → [0, 1], also referred to as clique
potential, can be determined such that

P(ω) = ∏
C∈cl(G)

φC(ωC)

26 logical background and probabilistic reasoning

a

b c

d

1

Figure 3: The graph G = (At, E) from Example 2.6

with ω ∈ Ω(At) and ωC is the projection of ω on C, e. g. abcd{a,b} =def ab.
For a more throughout discussion on this topic see e. g. (Pearl, 1998; Beierle
and Kern-Isberner, 2008).

As Example 2.6 shows, Markov nets allow for cyclic dependencies of
propositions, in contrast to Bayesian networks. However, Markov nets
cannot represent induced dependencies like Bayesian networks, cf. (Pearl,
1998).

Both Bayesian networks and Markov nets heavily rely on assumptions
regarding conditional independences that can be hardly fulfilled in real-
world scenarios. In the following section we describe probabilistic con-
ditional logic as an alternative to these frameworks that makes no such
assumptions whatsoever.

2.3 probabilistic conditional logic and maximum entropy

Conditional logic (Nute and Cross, 2002) is a knowledge representation for-
malism that concentrates on the role of conditionals or if-then-rules. A con-
ditional of the form (ψ | φ) connects some detached pieces of information
φ, ψ and represents a rule “If φ then (usually, probably) ψ”. For the upcoming
presentation of the syntactical constructs of probabilistic conditional logic
let L be one of L(At) or L(Σ, V).

Definition 2.23 (Conditional). Let φ, ψ ∈ L. A conditional is an expression
of the form (ψ | φ). Let (L | L) denote the set of all conditionals of L.

In this thesis we consider probabilistic conditionals (Benferhat et al., 1999;
Rödder, 2000; Kern-Isberner, 2001), i. e. rules that are weighted by some
probability.

Definition 2.24 (Probabilistic conditional). Let φ, ψ ∈ L be finite2, and
d ∈ [0, 1]. A probabilistic conditional is an expression of the form (ψ | φ)[d].
Let (L | L)pr denote the language of all probabilistic conditionals of L.

2 A formula φ ∈ L is finite if and only if it has finite length.

2.3 probabilistic conditional logic and maximum entropy 27

If φ ≡P > or φ ≡F > we abbreviate (ψ | φ)[d] simply by (ψ)[d]. Such a
probabilistic conditional is also called a probabilistic fact.

Note that we restrain our attention to “logical” variables, i. e. variables
that represent atoms of the logical language. Probabilistic conditional logic
also allows for multi-valued variables that take different values than the
classical {true, false}. Extending probabilistic conditional logic with multi-
valued variables is straightforward (Kern-Isberner, 2001) but those are not
needed in this thesis.

Definition 2.25 (Knowledge base). A knowledge baseR on L is a finite subset
of (L | L)pr.

Note that in general the term knowledge base simply refers to a collection
of formulas represented in some knowledge representation formalism. As
we are only dealing with knowledge bases of probabilistic conditionals we
simply use the term knowledge base for collections of those. For technical
reasons we assume the existence of an arbitrary total order <R on the
probabilistic conditionals of a knowledge base R and denote by 〈R〉 the
vector representation of R with respect to <R. More precisely, if R =
{r1, . . . , rn} and ri <R rj if and only if i < j (for all i, j = 1, . . . , n) then
〈R〉 = (r1, . . . , rn). The order <R is meant to have no special meaning and
is only used to enumerate the elements of R in an unambiguous way. For
any set X let Pord(X) denote the set of all vectors with elements of X. Then
for every knowledge base R it holds that 〈R〉 ∈ Pord((L | L)pr).

Example 2.7. The omnipresent penguin example—see e. g. (Beierle and
Kern-Isberner, 2008)—can be represented as a knowledge base Rpenguins
with Rpenguins =def {r1, r2, r3} on L =def L({b, p, f }) with

r1 =def (b | p)[1.0] r2 =def (f | b)[0.9] r3 =def (f | p)[0.01] .

In Rpenguins the rule r1 denotes that every penguin (p) is a bird (b), rule
r2 denotes that “most” birds fly (f), and rule r3 denotes that “almost no”
penguins fly (the probabilities are arbitrary and just for presentation).

The replacement operator [·] is extended on first-order (probabilistic) con-
ditionals and knowledge bases in the usual way, e. g., it holds that

(ψ | φ)[d][x/y] = (ψ[x/y] | φ[x/y])[d] and

{r1, . . . , rn}[x/y] = {r1[x/y], . . . , rn[x/y]} .

Semantics are given to propositional probabilistic conditionals using condi-
tional probabilities. Giving semantics to first-order probabilistic condition-
als is an issue that has not been dealt with in the literature yet, with few
exceptions, cf. e. g. (Kern-Isberner and Lukasiewicz, 2004; Fisseler, 2010;
Loh et al., 2010). This is one of the major topics of this thesis and is dis-
cussed in Chapter 5. For the rest of this section we assume L to be a

28 logical background and probabilistic reasoning

propositional language L(At) for some propositional signature At. Every
probability function P on L(At) is an interpretation for a probabilistic con-
ditional of L(At). A probability function P on L(At) is a probabilistic model
(or just model) for a probabilistic conditional (ψ | φ)[d] ∈ (L(At) | L(At))pr,
written P |=pr (ψ | φ)[d], if and only if

P(ψ | φ) = d or P(φ) = 0 . (2.6)

Note that the above definition differs from the usual definition used for
probabilistic satisfiability—see e. g. (Kern-Isberner, 2001)—which is

P |=pr (ψ | φ)[d] if and only if P(ψ | φ) = d and P(φ) > 0 . (2.7)

For this thesis we choose the definition via Equation (2.6) as this can con-
cisely be characterized by P(φ ∧ ψ) = d · P(φ) without any case differenti-
ation for P(φ) = 0. Note that this approach has also been taken in other
works on probabilistic reasoning such as (Paris, 1994). It follows, that this
definition allows for the knowledge base R = {(b | a)[d], (a)[0]} to be satis-
fiable for any value of d ∈ [0, 1]. It is arguable whether this is meaningful
or not but we stick to this definition and give a remark when this choice
has a crucial effect.

Let ModPr(r) be the set of models of a probabilistic conditional r, i. e.
ModPr(r) = {P | P |=pr r}. A probabilistic conditional (ψ | φ)[d] is self-
consistent if there exists a probability function P with P |=pr (ψ | φ)[d],
i. e., if ModPr((ψ | φ)[d]) 6= ∅. For example, the conditional (⊥)[d] is self-
consistent for d = 0 and not self-consistent for d ∈ (0, 1]. A probabilistic
conditional (ψ | φ)[d] is tautological if for all probability functions P on L(At)
it holds that P |=pr (ψ | φ)[d]. For example, the conditional (⊥)[0] is tau-
tological, as well as (φ′ | φ)[1] for every φ′, φ ∈ L(At) with φ |=P φ′. Note
that if (ψ | φ)[d] is tautological then (ψ | φ)[d′] is not self-consistent for every
d′ 6= d. For the rest of this thesis, as a technical convenience we consider
only self-consistent and non-tautological probabilistic conditionals.

A probability function P is a model of a knowledge baseR on L(At), writ-
ten P |=pr R, if and only if P is a model for every probabilistic conditional
r ∈ R. Let ModPr(R) be the set of models of R.

Example 2.8. We continue Example 2.7. Consider the probability function
P1 given in Table 1. In P1 the following holds

P1(p) = 0.05 P1(p ∧ b) = 0.05

P1(b) = 0.55 P1(b ∧ f) = 0.495

P1(p ∧ f) = 0.005 .

It follows that P1(b | p) = 1.0, P1(f | b) = 0.9, and P1(f | p) = 0.01. Therefore
it holds that P1 |=pr Rpenguins.

2.3 probabilistic conditional logic and maximum entropy 29

Ω({b, p, f }) P1 Ω({b, p, f }) P1
bp f 0.005 bp f 0.0
bp f 0.045 bp f 0.0
bp f 0.49 bp f 0.2
bp f 0.01 bp f 0.25

Table 1: The probability function P1 for Rpenguins

A knowledge base R is consistent if there is at least one probability function
P with P |=pr R, otherwise R is inconsistent. Two probabilistic conditionals
r1 and r2 are equivalent, denoted by r1 ≡pr r2, if and only if for every
probability function P it holds that P |=pr r1 whenever P |=pr r2, i. e.,
if and only if ModPr(r1) = ModPr(r2). The equivalence of probabilistic
conditionals can be characterized as follows.

Proposition 2.3. Let (ψ | φ)[d] and (ψ′ | φ′)[d′] be some probabilistic condition-
als. It holds that (ψ | φ)[d] ≡pr (ψ′ | φ′)[d′] if and only if either

1. φ ≡P φ′ and ψ ∧ φ ≡P ψ′ ∧ φ′ and d = d′ or

2. φ ≡P φ′ and ψ ∧ φ ≡P ψ′ ∧ φ′ and d = 1− d′ or

3. both (ψ | φ)[d] and (ψ′ | φ′)[d′] are not self-consistent or

4. both (ψ | φ)[d] and (ψ′ | φ′)[d′] are tautological.

The proof of Proposition 2.3 can be found in Appendix A on page 226.
Two knowledge bases R1 and R2 are kb-equivalent, denoted by R1 ≡kb

R2, if and only if for every probability function P it holds that P |=pr R1
whenever P |=pr R2, i. e., if and only if ModPr(R1) = ModPr(R2). Due
to its symmetric definition ≡kb is obviously an equivalence relation, i. e. it
is reflexive (R ≡kb R), symmetric (R1 ≡kb R2 implies R2 ≡kb R1) and
transitive (R1 ≡kb R2 and R2 ≡kb R3 implies R1 ≡kb R3). It is also quite
clear that all inconsistent knowledge bases lie in the same equivalence class
because it holds that ModPr(R) = ∅ for inconsistent R.

Proposition 2.4. For inconsistent R1 and R2 it holds that R1 ≡kb R2.

In order to distinguish different types of inconsistent knowledge bases we
introduce an alternative concept of equivalence. Two knowledge bases R1
and R2 are cond-equivalent, denoted by R1 ≡cond R2, if and only if for
every r1 ∈ R1 there is an r2 ∈ R2 such that r1 ≡pr r2 and for every
r2 ∈ R2 there is an r1 ∈ R1 such that r1 ≡pr r2. Note that ≡cond is
indeed an equivalence relation. It also holds that neither kb-equivalence
nor cond-equivalence implies R1 and R2 to have the same cardinality. For
example, the two knowledge bases R1 = {(¬a ∨ b)[0.2], (a ∧ ¬b)[0.8]} and
R2 = {(a ⇒ b)[0.2]} are both kb- and cond-equivalent. These concepts of
equivalence are related as follows.

30 logical background and probabilistic reasoning

Lemma 2.1. If ModPr(R1) = ∅ and R1 ≡cond R2 then ModPr(R2) = ∅.

Proof. Assume ModPr(R2) 6= ∅ and let P ∈ ModPr(R2). Then P |=pr r for
every r ∈ R1 as there exists a r′ ∈ R2 with r ≡pr r′ and P |=pr r′. It follows
P |=pr R1 contradicting ModPr(R1) = ∅.

Proposition 2.5. If R1 ≡cond R2 then R1 ≡kb R2.

Proof. Let P be a probability function with P |=pr R1 and let r ∈ R2.
Due to R1 ≡cond R2 there is an r′ ∈ R1 with r ≡pr r′. As P |=pr R1 it
follows that P |=pr r′ and therefore P |=pr r. As this is true for all r ∈ R2
it follows P |=pr R2. Hence, for every P with P |=pr R1 it holds that
P |=pr R2 and with the same argumentation for every P with P |=pr R2 it
holds that P |=pr R1. It follows that R1 ≡kb R2. If ModPr(R1) = ∅ then
ModPr(R2) = ∅ as well due to Lemma 2.1 and therefore R1 ≡kb R2 due to
Proposition 2.4.

The other direction is not true as the following example shows.

Example 2.9. Consider the two knowledge bases

R1 =def {(a)[0.7], (a)[0.4]} and R2 =def {(b)[0.8], (b)[0.3]} .

Both R1 and R2 are inconsistent and therefore R1 ≡kb R2. But it holds
that R1 6≡cond R2 as e. g. both (a)[0.7] 6≡pr (b)[0.8] and (a)[0.7] 6≡pr (b)[0.3].

Even if both R1 and R2 are consistent the other direction is not true.

Example 2.10. Consider the two knowledge bases

R1 =def {(b | a)[1.0], (a)[1.0]} and R2 =def {(a ∧ b)[1.0]} .

It holds that R1 6≡cond R2 but R1 ≡kb R2.

In this thesis we are especially interested in inconsistent knowledge bases.
Due to Proposition 2.4 the relation ≡kb is not an appropriate choice for
dealing with inconsistent knowledge bases, so we use ≡cond instead. We
come back to this issue in Chapters 3 and 4.

Usually, one is interested in using a (consistent) knowledge base for rea-
soning. A simple inference relation |=pr

int for probabilistic conditional logic
can be given by computing lower and upper bounds for queries with re-
spect to the whole set of models (Lukasiewicz, 1999). LetR be a knowledge
base. Then a bounded probabilistic conditional is an expression of the form
(ψ | φ)[l, u] with ψ, φ ∈ L(At) and l, u ∈ [0, 1] with l ≤ u. The interpretation
of a bounded probabilistic conditional (ψ | φ)[l, u] is that the probability of
ψ given φ lies in between l and u, i. e., a probability function P satisfies
(ψ | φ)[l, u], denoted by P |=pr (ψ | φ)[l, u], if and only if P(ψ | φ) ∈ [l, u]
or P(φ) = 0. Let (L | L)pr,pr be the language of all bounded probabilistic

2.3 probabilistic conditional logic and maximum entropy 31

conditionals. Then a bounded probabilistic conditional (ψ | φ)[l, u] can be
inferred from a knowledge base R for L(At), written R |=pr

int (ψ | φ)[l, u], if
and only if it holds that

l = inf{P(ψ | φ) | P |=pr R} and

u = sup{P(ψ | φ) | P |=pr R} .

Note that (L | L)pr,pr subsumes (L | L)pr as (ψ | φ)[d] ∈ (L | L)pr is seman-
tically equivalent to (ψ | φ)[d, d] ∈ (L | L)pr,pr, i. e., it holds that P |=pr

(ψ | φ)[d] if and only if P |=pr (ψ | φ)[d, d] for every probability function
P.

Given a consistent knowledge base R the set of models of R is usually
infinite and inference via |=pr

int is only of limited value.

Example 2.11. Consider the knowledge base R =def {r1, r2} given via

r1 =def (b | a)[d1] r2 =def (b | c)[d2]

for a propositional signature At = {a, b, c}. There are infinitely many
models of R and it holds that R |=pr

int (b | a ∧ c)[0, 1], cf. (Beierle and Kern-
Isberner, 2008).

One way to cope with the problem of infinitely many models is to perform
model-based inductive reasoning, i. e. to select one “suitable” representative
and rely on this one for reasoning. Guided by the principle of maximum
entropy a probability function with maximum entropy is such a “suitable”
representative (Paris, 1994).

Definition 2.26 (Entropy). Let P be a probability function on a set X. The
entropy H(P) of P is defined as

H(P) =def − ∑
x∈X

P(x)ld P(x)

with 0 · ld 0 =def 0.3

The entropy measures the amount of indeterminateness of a probability
function P. A probability function P1 that describes absolutely certain
knowledge, i. e. P1(x) = 1 for some x ∈ X and P1(x′) = 0 for every x′ ∈ X

with x′ 6= x, yields minimal entropy H(P1) = 0. The uniform probability
function P0 with P0(x) = 1/|X| for every x ∈ X (with finite X) yields maximal
entropy H(P0) = −ld 1/|X|.

By selecting a model of a knowledge base R that has maximal entropy
one gets a probability function that both satisfies all conditionals in R and
adds as less additional information (in the information-theoretic sense) as
possible.

3 ld is the binary logarithm.

32 logical background and probabilistic reasoning

Definition 2.27 (Maximum entropy model). Let R be a consistent knowl-
edge base on L(At). A maximum entropy model P∗ of R is a probability
function on L that satisfies

P∗ = arg max
P|=prR

H(P) (2.8)

For a consistent knowledge base R ⊆ (L(At) | L(At))pr the maximum
entropy model P∗ is uniquely determined, cf. (Shore and Johnson, 1980;
Goldszmidt et al., 1993; Kern-Isberner, 2001). Therefore, for the rest of this
work we refer to the unique maximum entropy model P∗ of R by ME(R).

Reasoning with ME(R) satisfies several commonsense properties for in-
ference (Kern-Isberner, 2001). In (Shore and Johnson, 1980) it has been
shown that the maximum entropy model is characterized by four simple
properties for probabilistic reasoning like uniqueness and irrelevance of syn-
tax. A similar but constructive characterization has been made in (Kern-
Isberner, 2001) where the principle of minimum cross-entropy (a generaliza-
tion of the principle of maximum entropy) has been characterized by four
simple properties as well: the principle of conditional preservation, functional
concept, the principle of logical coherence, and the principle of representation in-
variance. Reasoning using the principle of maximum entropy also satisfies
the system P properties which are regarded as the minimal requirement any
reasonable default reasoning machinery should meet (Makinson, 1989), see
(Kern-Isberner, 2001) for details.

2.4 relational probabilistic reasoning

Propositional logic has been employed for probabilistic reasoning for dec-
ades and many reasonable and practical approaches have been developed
so far, see e. g. the previous section and (Paris, 1994; Pearl, 1998). But propo-
sitional logic fails to model more complex scenarios that involve reasoning
about individuals or reasoning about relationships of individuals. First-
order logic extends propositional logic and compensates for this lack of
expressivity, cf. Section 2.1.2. When considering probabilistic reasoning the
need for a more expressive (object-level) language is present as well. Con-
sider the following example taken from (Friedman et al., 1999).

Example 2.12. The blood type of a person probabilistically depends on the
blood types of his or her parents. For example, if the mother has blood type
AB and the father has blood type 0 then the person’s blood type is either
A or B where the distribution is a probabilistic one. If one is interested
in representing the probabilistic dependencies of blood types of persons
given some pedigree, propositional approaches to probabilistic reasoning

2.4 relational probabilistic reasoning 33

are hardly apt for this task. While it is possible to represent a single such
dependency in e. g. probabilistic conditional logic via4

(bloodtype_john_is_A | bloodtype_carl_is_0∧ bloodtype_mary_is_AB)[0.7]

the generalization to a whole pedigree is cumbersome and results in many
similar looking conditionals. However, in this example we are concerned
with individuals in some domain that are related via binary relations
(mother and father) and in whose attributes (e. g. bloodtype) we are inter-
ested. This motivates the need for combining probabilistic reasoning and
first-order logic.

Frameworks that combine probabilistic reasoning with full first-order logic
are rare due to the computational complexity of inference, see (Grove et al.,
1996a) for some discussion. In order to avoid confusion we use the term “re-
lational probabilistic framework” to denote frameworks that use first-order
elements for probabilistic reasoning. During the past few years the fields
of probabilistic inductive logic programming and statistical relational learning
have put forth a lot of proposals that deal with combining traditional prob-
abilistic models of belief like Bayesian networks or Markov nets (see above)
with first-order logic, cf. (Getoor and Taskar, 2007; De Raedt et al., 2008).
The relational structure of many real-world application domains such as
telecommunication networks, citation analysis, human sciences, bioinfor-
matics, and logistics as well as the presence of uncertainty in these domains
demand sophisticated reasoning and learning methods employing both
these concepts, see e. g. (Lodhi and Muggleton, 2004; Cocura et al., 2006)
for some applications. Two of the most prominent approaches for extend-
ing propositional approaches to the relational case are Bayesian logic pro-
grams (Kersting and Raedt, 2007) and Markov logic networks (Richardson
and Domingos, 2006; Domingos and Richardson, 2007), extending Bayesian
networks and Markov nets, respectively.

In the following, we give a brief introduction to both Bayesian logic
programs and Markov logic networks.

2.4.1 Bayesian Logic Programs

Bayesian logic programming (Kersting and Raedt, 2007) is an approach that
combines logic programming (Gelfond and Lifschitz, 1991; Gelfond and
Leone, 2002) and Bayesian networks. Bayesian logic programs (BLPs) use
a standard logic programming language and attach to each logical (Horn)
clause a set of probabilities that define a conditional probability distribution
of the head of the clause given specific instantiations of the body of the
clause.

In contrast to first-order logic, the general framework of Bayesian logic
programming employs an extended form of predicates and atoms. In BLPs,

4 The probability in this example is just arbitrary.

34 logical background and probabilistic reasoning

Bayesian predicates are predicates that feature an arbitrary set as possible
states, i. e. not necessarily the Boolean values {true, false}. However, as
for probabilistic conditional logic (see Section 2.3) we focus on “logical”
predicates and atoms in this thesis. For the rest of this section let Σ =
(U, Pred, ∅) be a first-order signature with finite U and without functors
and let V be a set of variables.

The basic structure for knowledge representation in Bayesian logic pro-
grams are Bayesian clauses which model probabilistic dependencies between
Bayesian atoms. Let B = {true, false} denote the Boolean truth values.

Definition 2.28 (Bayesian clause). A Bayesian clause c is an expression c =
(h | b1, . . . , bn) with atoms h, b1, . . . , bn of Σ and V.

Note that Bayesian clauses use the conditional pipe operator “ | ” instead
of a logical implication “⇐” to highlight the probabilistic interpretation of
the clause. As for Horn logic, for a Bayesian clause c = (h | b1, . . . , bn) we
abbreviate head(c) = h (the head or conclusion of the clause) and body(c) =
{b1, . . . , bn} (the body or premise of the clause).

Definition 2.29 (Conditional probability distribution). Let c be a Bayesian
clause of the form c = (h | b1, . . . , bn). A conditional probability distribution
cpdc for c is a function

cpdc : Bn+1 → [0, 1]

that satisfies

cpdc(true, x1, . . . , xn) + cpdc(false, x1, . . . , xn) = 1 . (2.9)

for every (x1, . . . , xn) ∈ Bn. Let CPDp denote the set of all conditional
probability distributions for atoms of predicate p, i. e., it holds that

CPDp =def {cpdh | b1,...,bn | h is an atom of p} .

For a Bayesian clause c = (h | b1, . . . , bn) and a conditional probability dis-
tribution cpdc the expression cpdc(y, x1, . . . , xn) = d is to be read as “the
probability of h being y is d given that bi is xi for i = 1, . . . , n”. Equation (2.9) is
a normalization constraint that ensures that a conditional probability distri-
bution can be used to propagate probabilities in the sense of Kolmogorov,
see Definition 2.15 on page 19.

As usual, if the body of a Bayesian clause c is empty we write c as (h)
instead of (h |) and call c a Bayesian fact. A function cpdc for c expresses the
conditional probability distribution P(head(c) | body(c)) and thus partially
describes an underlying probability function P.

The following example is adapted from (Pearl, 1998) and can also be
found in (Kersting and De Raedt, 2000).

2.4 relational probabilistic reasoning 35

Example 2.13. We consider a scenario where our protagonist James is on
the road and gets a call from his neighbor saying that the alarm of James’
house is ringing. James has some uncertain beliefs about the relationships
between burglaries, types of neighborhoods, natural disasters, and alarms.
For example, he knows that if there is a tornado warning for his home
place, then the probability of a tornado triggering the alarm of his house
is 0.9. He also knows that if a burglary attempt takes place, the alarm
will ring with probability 0.9. Further he knows that if you live in a bad
neighborhood, then there is 0.6 probability of a burglary, whereas in an
average neighborhood, there is 0.4 probability, and in a good neighborhood
there is merely a 0.3 probability. We represent this scenario using the
predicates {alarm/1, burglary/1, tornado/1, lives_in/2, neighborhood/2} with
informal interpretations

alarm(X) The alarm at X’s house is ringing

burglary(X) A burglary attempt takes place at the X’s house

tornado(Y) There is a tornado warning for city Y

lives_in(X,Y) Person X lives in city Y

neighborhood(X,Z) The neighborhood of X is in condition Z

and define a set {c1, c2, c3, c4, c5} of Bayesian clauses via

c1 =def (alarm(X) | burglary(X))

c2 =def (alarm(X) | lives_in(X,Y), tornado(Y))

c3 =def (burglary(X) | neighborhood(X, good))

c4 =def (burglary(X) | neighborhood(X, average))

c5 =def (burglary(X) | neighborhood(X, bad))

For each Bayesian clause ci, we define a function cpdci
that expresses our

subjective beliefs (notice that the probabilities stated in the right column
are redundant due to Equation (2.9)):

cpdc1
(true, true) =def 0.9 cpdc1

(false, true) =def 0.1

cpdc1
(true, false) =def 0 cpdc1

(false, false) =def 1

cpdc2
(true, true, true) =def 0.9 cpdc2

(false, true, true) =def 0.1

cpdc2
(true, false, true) =def 0 cpdc2

(false, false, true) =def 1

cpdc2
(true, true, false) =def 0.01 cpdc2

(false, true, false) =def 0.99

cpdc2
(true, false, false) =def 0 cpdc2

(false, false, false) =def 1

cpdc3
(true, true) =def 0.3 cpdc3

(false, true) =def 0.7

cpdc3
(true, false) =def 0.7 cpdc3

(false, false) =def 0.3

36 logical background and probabilistic reasoning

cpdc4
(true, true) =def 0.4 cpdc4

(false, true) =def 0.6

cpdc4
(true, false) =def 0.5 cpdc4

(false, false) =def 0.5

cpdc5
(true, true) =def 0.6 cpdc5

(false, true) =def 0.4

cpdc5
(true, false) =def 0.4 cpdc5

(false, false) =def 0.6

For example, cpdc2
expresses that our subjective belief on the probability

that the alarm of a person X will go on given that we know that X lives
in town Y and there is currently a tornado in Y is 0.9. Furthermore, we
believe that the probability that the alarm of X will trigger if we know that
X lives in Y and that there is no tornado in Y is 0.01.

Considering clauses c1 and c2 in Example 2.13 one can see that it is possible
to have multiple clauses with the same head. This means that there may
be multiple causes for some effect or multiple explanations for some ob-
servation. In order to represent these kinds of scenarios the probabilities of
causes or explanations have to be aggregated. BLPs facilitate combining rules
in order to aggregate probabilities that arise from applications of different
Bayesian clauses. A combining rule crp for a predicate p/n is a function
crp : P(CPDp)→ CPDp that assigns to the conditional probability distribu-
tions of a set of Bayesian clauses a new conditional probability distribution
that represents the joint conditional probability distribution obtained from
aggregating the given clauses. Appropriate choices for such functions are
average or noisy-or, cf. (Kersting and Raedt, 2007). For example, the noisy-or
combination of two values a, b ∈ [0, 1] is defined as 1− (1− a)(1− b) and
represents a quantified extension of a disjunctive combination.

Example 2.14. We continue Example 2.13. Suppose noisy-or to be the com-
bining rule for alarm. Then the joint conditional probability distribution
cpdc′ for

c′ =def (alarm(X) | burglary(X), lives_in(X,Y), tornado(Y))

can be computed via

cpdc′(true, t1, t2, t3) = 1− (1− cpdc1
(true, t1))(1− cpdc2

(true, t2, t3))

cpdc′(false, t1, t2, t3) = 1− cpdc′(true, t1, t2, t3)

for any t1, t2, t3 ∈ {true, false}.

A combining rule is a heuristic for estimating the probability of an event e
given two causes z1 and z2 (Pearl, 1998). It has to be noted that combining
probabilities in this manner might remove the probabilistic interpretation
of the resulting values as specific relationships between the causes have to
be assumed. For example, using the noisy-or combining rule assumes ac-

2.4 relational probabilistic reasoning 37

countability and exception independence of z1 and z2, cf. (Pearl, 1998). If the
presumed relationships do not hold the results might be unexpected and
even unwanted. Consider an extension of the BLP defined in Examples 2.13

and 2.14 with the Bayesian clause c6 =def (alarm(X) | power_failure(X)).
Imagine that the conditional probability distribution of c6 assigns a proba-
bility of 0.001 to alarm(X) if there is a power failure. Given the evidences of
both a tornado and a power failure the probability of an alarm should be
determined only by considering clause c6 and not by combining c2 and c6.
We refer to (Pearl, 1998) for a deeper discussion on this topic.

Now we are able to define Bayesian logic programs as follows.

Definition 2.30 (Bayesian logic program). A Bayesian logic program B is a
tuple B = (C, D, R) with a finite set of Bayesian clauses C = {c1, . . . , cn}, a
set of conditional probability distributions D = {cpdc1

, . . . , cpdcn} (one for
each clause in C), and a set of combining rules R = {crp1 , . . . , crpm} (one for
each predicate appearing in C) .

Semantics are given to Bayesian logic programs via transformation into the
propositional case, i. e. into Bayesian networks, cf. Section 2.2.2. Using the
constants in U a Bayesian network BN can be constructed by introducing
a node for every grounded atom in B. Using the conditional probability
distributions of the grounded clauses and the combining rules of B a (joint)
conditional probability distribution can be specified for any node in BN. If
BN is acyclic, this transformation uniquely determines a probability func-
tion P on the grounded Bayesian atoms of B that permits inference, i. e. P
can be used to answer queries.

Example 2.15. Let B be the Bayesian logic program described in Exam-
ple 2.13 and Example 2.14. Let Q = (alarm(james) | E) with

E =def { lives_in(james, yorkshire), tornado(yorkshire),

neighborhood(james, average) }

be a query to B that asks for the probability of an alarm in James’ house
given that he lives in an average neighborhood in Yorkshire and there is
currently a tornado warning for Yorkshire. Therefore, the universe under
discourse consists of the constants james and yorkshire. By instantiating
properly and combining the conditional probability distributions of c1 and
c2 yielding the function cpdc′ from Example 2.14 and summing over the al-
ternatives true and false for the uncertain event burglary(james), in applying
c4 we get

P(Q) = cpdc4
(true, true)cpdc′(true, true, true, true)+

cpdc4
(false, true)cpdc′(true, false, true, true) (2.10)

= 0.936 .

38 logical background and probabilistic reasoning

alarm(james)

c1 c2

tornado(yorkshire)

lives in(james, yorkshire)

tornado(yorkshire)burglary(james)

c4

neighborhood (james, average)

1

Figure 4: The derivation for the query Q in Example 2.15

Figure 4 illustrates the derivation of the query Q given evidence E. By
omitting nodes representing clauses the derivation tree in Figure 4 can be
directly transformed into a Bayesian network that can be used to calculate
the answer above.

A detailed description of the above declarative semantics and an equivalent
procedural semantics which is based on SLD resolution is given in (Kersting
and Raedt, 2007).

2.4.2 Markov Logic Networks

While Bayesian logic programs extend Bayesian networks to the first-order
case Markov logic networks (Richardson and Domingos, 2006; Domingos
and Richardson, 2007) extend Markov nets, cf. Section 2.2.3. Another differ-
ence is that while BLPs use the syntax of Bayesian networks and incorporate
logic programming aspects into it, Markov logic networks use the syntax
of first-order logic and incorporate weights.

Definition 2.31 (Markov logic network). Let Σ be a finite first-order signa-
ture without functors and let V be a set of variables. A Markov logic network
(MLN) L on L/∀/∃(Σ, V) is a finite set of tuples L = {(φ1, g1), . . . , (φn, gn)}
with φ1, . . . , φn ∈ L/∀/∃(Σ, V) and g1, . . . , gn ∈ R.

Note that Markov logic networks only consider the quantifier-free fragment
of first-order logic. The weights of an MLN L have no obvious probabilistic
interpretation and are interpreted relative to each other when defining the
joint probability function for L (see below).

Example 2.16. We represent the scenario from Example 2.13 on page 35

using Markov logic networks. In order to do so, the weights of formulas

2.4 relational probabilistic reasoning 39

have to be determined. In (Richardson and Domingos, 2006) it is suggested
that weights of formulas have to be learned from data. Nonetheless, in
(Richardson and Domingos, 2006; Fisseler, 2008) a heuristic is discussed
that determines weights of formulas from probabilities. There, an interpre-
tation of the weight g of a formula φ is provided as the log-odd between
a world where φ is true and a world where φ is false, other things being
equal. Considering this interpretation one might choose g =def ln p/(1− p)

(ln x is the natural logarithm of x), see (Fisseler, 2008) for a discussion.

The signature for the Markov logic network Lalarm is the same as for the
BLP given in Example 2.13 on page 35, i. e., the informal interpretation of
the predicates {alarm/1, burglary/1, tornado/1, lives_in/2, neighborhood/2} is
the same. We define Lalarm = {c1, c2, c3, c4, c5} via5

c1 =def (burglary(X)⇒ alarm(X) , 2.2)

c2 =def (lives_in(X,Y) ∧ tornado(Y)⇒ alarm(X) , 2.2)

c3 =def (neighborhood(X, bad)⇒ burglary(X) , 0.4)

c4 =def (neighborhood(X, average)⇒ burglary(X) ,−0.4)

c5 =def (neighborhood(X, good)⇒ burglary(X) ,−0.8)

with the heuristically determined weights

2.2 = ln
0.9
0.1

0.4 = ln
0.6
0.4

−0.4 = ln
0.4
0.6

−0.8 = ln
0.3
0.7

where the probabilities have been taken from the informal description of
the scenario in Example 2.13 on page 35.

Note that the way the scenario of Example 2.13 from page 35 is represented
with a Markov logic network in Example 2.16, stems from a direct repre-
sentation of the informal description and not from transforming the BLP
into an MLN. The aim of this representation is to illustrate the formalism of
Markov logic networks and not to describe the same underlying probabilis-
tic model.

Semantics are given to an MLN L by grounding L appropriately in order
to build a Markov net, similar to the approach used for BLPs. For simplicity
of presentation we only consider the resulting probability function P :
Ω(Σ) → [0, 1] on Herbrand interpretations that can be used to answer
queries to L. To this end we need the following notation. Let Σ =def

(U, Pred, ∅), φ ∈ L/∀/∃(Σ, V) and ω ∈ Ω(Σ). Define

nφ(ω) =def |{φ′ ∈ gndU(φ) | ω |=F φ′ }| .

5 Note that while it is custom in Markov logic networks to denote variables with a beginning
lower-case letter and constants with a beginning upper-case letter, we stick to the notation
used throughout this thesis and denote variables with a beginning upper-case letter and
constants with a beginning lower-case letter.

40 logical background and probabilistic reasoning

The term nφ(ω) denotes the number of instances of φ that are satisfied in
ω. Then the probability function PLΩ(Σ)→ [0, 1] is defined as

PL(ω) =def
1
Z

exp

 ∑
(φ,g)∈L

nφ(ω)g

 (2.11)

with

Z =def ∑
ω∈Ω(Σ)

exp

 ∑
(φ,g)∈L

nφ(ω)g


being a normalization constant and exp(x) = ex is the exponential function
with base e. By defining PL in this way, worlds that violate fewer instances
of formulas are more probable than worlds that violate more instances (de-
pending on the weights of the different formulas). Hence, the fundamental
idea for Markov logic networks is that first-order formulas are not handled
as hard constraints. Instead, each formula is more or less softened depend-
ing on its weight. Hence, a possible world may violate a formula without
necessarily receiving a zero probability. A formula’s weight specifies how
strong the formula is, i. e. how much the formula influences the probability
of a satisfying world versus a violating world. This way, the weights of all
formulas influence the determination of a possible world’s probability in a
complex manner. One clear advantage of this approach is that Markov logic
networks can directly handle contradictions in a knowledge base, since the
(contradictory) formulas are weighted against each other.

The probability function PL can be extended to sentences (ground formu-
las) of L/∀/∃(Σ, V) in the same way as in propositional probabilistic condi-
tional logic via

P(φ) =def ∑
ω|=Fφ

P(ω) (2.12)

for ground φ ∈ L/∀/∃(Σ, V).
Determining the probability of a sentence φ using Equations (2.11) and

(2.12) is merely manageable for very small sets of constants, but intractable
for domains of a more realistic size. While P(φ) can be approximated using
Markov chain Monte-Carlo methods (MCMC methods) performance might
still be too slow in practice (Richardson and Domingos, 2006). There are
more sophisticated and efficient methods to perform approximated infer-
ence if φ is a conjunction of ground literals, cf. (Richardson and Domingos,
2006). As a side note, for the MLN Lalarm from Example 2.16 the probability
of the query Q =def (alarm(james) | E) with

E =def { lives_in(james, yorkshire), tornado(yorkshire),

neighborhood(james, average) }

2.5 summary 41

from Example 2.15 on page 37 computes to approximately 0.930957 when
using the Alchemy system (Kok et al., 2008) with MC-SAT inference algo-
rithm and a maximum of 1000 MCMC sampling steps.

MLNs can handle conflicts between default and specific beliefs quite
well, but the determination of appropriate weights is crucial for adequate
knowledge representation and inference (Finthammer and Thimm, 2011).
It has been noted that MLNs do not allow to express if-then-rules in terms
of conditional probabilities (Fisseler, 2008). So the rule-like beliefs in the
previous example has to be modeled using material implications. This can
be a major drawback, because probabilities of material implications may
differ significantly from conditional probabilities and are known to be quite
unintuitive in certain cases.

2.5 summary

In this chapter we gave an overview on both logic and probabilistic rea-
soning. We presented syntax and semantics for propositional and first-
order logic which can be regarded as the foundation for most languages
for knowledge representation. Besides classical logical languages we also
covered probabilistic ones that allow for the representation of quantified
uncertainty. We gave a brief presentation on foundations of probability
theory and on the two most prominent representatives of probabilistic net-
works: Bayesian networks and Markov nets. While probabilistic reason-
ing is computationally complex in general, probabilistic networks make di-
verse assumptions regarding probabilistic independencies that render them
tractable and allow for an intuitive knowledge representation and high ex-
pressivity. However, these assumptions are not justified in many cases and
we also presented probabilistic conditional logic which allows for a more
declarative knowledge representation of both uncertain and incomplete be-
liefs. Moreover, probabilistic reasoning using the principle of maximum
entropy is well-founded on information-theoretic principles and satisfies
several properties for commonsense reasoning. We also briefly covered the
field of relational probabilistic reasoning and presented Bayesian logic pro-
grams and Markov logic networks. The fields of probabilistic inductive
logic programming and statistical relational learning combine probabilistic
reasoning with first-order logic (or subsets thereof) in order to be able to
reason with uncertainty on relational domains.

In the following two chapters, we continue investigating (propositional)
probabilistic conditional logic. While reasoning on consistent knowledge
bases has been looked into for quite some time we discuss the problem of
inconsistencies from both an analytical and a practical perspective. We pick
up on the problem of relational probabilistic reasoning in Chapter 5.

3M E A S U R I N G I N C O N S I S T E N C Y

Inconsistencies arise easily when experts share their beliefs in order to build
a joint knowledge base. Although these inconsistencies often affect only a
little portion of the knowledge base or emerge from only little differences in
the experts’ beliefs, they cause severe damage. In particular, for knowledge
bases that use classical logic for knowledge representation, inconsistencies
render the whole knowledge base useless, due to the well-known principle
ex falso quod libet. Therefore reasoning under inconsistency is an important
field in artificial intelligence and there are many proposals to deal with
inconsistency in classical logic, e. g. (Rescher and Manor, 1970; Konieczny et
al., 2005), or in other logical frameworks, e. g. paraconsistent logics (Belnap,
1976, 1977; Béziau et al., 2007), default logics (Reiter, 1980; Antoniou, 1999),
defeasible logics (Nute, 1994), and argumentation theory (Bench-Capon and
Dunne, 2007; Rahwan and Simari, 2009). Furthermore, there are several
approaches to analyze and measure inconsistency in classical frameworks,
e. g. (Knight, 2001; Grant and Hunter, 2006; Hunter and Konieczny, 2010),
and some in quantitative frameworks (mainly possibilistic frameworks), e. g.
(Dubois et al., 1992).

In this and the next chapter we have a closer look on analyzing inconsis-
tencies in a probabilistic framework and in particular measuring inconsis-
tency in conditional probabilistic knowledge bases, cf. Section 2.3. There
are very few works on the treatment of inconsistencies in a conditional
probabilistic framework, cf. (Rödder and Xu, 2001; Finthammer et al., 2007;
Daniel, 2009). For example, the method described in (Finthammer et al.,
2007)—see also (Finthammer, 2008)—consists of a set of heuristics that are
used to restore consistency in a knowledge base. Although this method is
not based on a theoretical elaboration it works well in real-world examples
and has been applied successfully to improve fraud detection in manage-
ment. Other related work (Hansen and Jaumard, 1996; Andersen and Pre-
tolani, 2001) investigates inconsistencies in classical theories enriched with
probabilistic semantics but without treatment of conditional probabilities
as we do here.

This chapter is organized as follows. In Section 3.1 we begin by dis-
cussing the problem of inconsistencies in probabilistic conditional logic in
an abstract way in order to motivate the research conducted in the subse-
quent sections. In Section 3.2 we approach the problem of measuring incon-
sistency in a principled way by proposing and discussing a series of ratio-
nality postulates for inconsistency measures. In Section 3.3 we recall some
established approaches for measuring inconsistency in non-probabilistic
logics and discuss extensions of those to the probabilistic conditional frame-
work. It will turn out that these inconsistency measures do not allow for

43

44 measuring inconsistency

an in-depth analysis of inconsistencies in probabilistic settings due to the
quantitative nature of probability theory. Hence, in Section 3.4 we propose
a novel inconsistency measure for probabilistic conditional logic that bases
on the minimal distance to consistency. We give a complete computational
account for implementing the measure and discuss several approximations
and extensions. We continue in Section 3.5 with a discussion of some re-
lated work and conclude the topic of measuring inconsistency in Section 3.6
with a summary and some final remarks.

3.1 inconsistencies in probabilistic conditional logic

When specifying beliefs in some knowledge representation formalism one
is usually interested in using these beliefs to perform inference, i. e. to de-
rive new beliefs. In propositional probabilistic conditional logic beliefs
are specified with probabilistic conditionals of the form (ψ | φ)[d] with
φ, ψ ∈ L(At) and d ∈ [0, 1] being a probability. Reasoning on sets R of
probabilistic conditionals (knowledge bases) can be performed using the prin-
ciple of maximum entropy. As inference based on maximum entropy is
a model-based inference technique the existence of at least one model of
knowledge base is mandatory. If a knowledge base has no model, model-
based inference fails and no further beliefs can be obtained. In order to
deal with this problem the first task is to detect inconsistency. In classical
logics this problem can be solved using SAT tests, cf. Section 2.1. In prob-
abilistic logics the problem is even more challenging as inconsistencies can
appear on both a logical level and on the level of probabilities. Consider
the following example.

Example 3.1. Let R1 be a knowledge base on At = {a, b} given via

R1 =def {(a)[0.8], (a)[0.2]} .

The knowledge base R1 is inconsistent as there can be no probability func-
tion P with both P(a) = 0.8 and P(a) = 0.2. In R1 the inconsistency arises
due to a logical error in representing the beliefs on the probability of a.
Consider furthermore R2 given via

R2 =def {(b | a)[0.8], (a)[0.6], (b)[0.4]} .

The knowledge base R2 is inconsistent as well but this is quite harder to
recognize as for R1. By just considering (a)[0.6] and (b | a)[0.8] one can
derive that P(a ∧ b) = 0.48 for any P with P |=pr (a)[0.6] and P |=pr

(b | a)[0.8]. As for every P it holds that P(b) ≥ P(a ∧ b), there can be no
model for R2. Here, the inconsistency arises on the level of probabilities.

However, there is no clear distinction between logical inconsistencies and
inconsistencies on the level of probabilities as even in R1 the problem actu-
ally lies in the probabilities. And the larger the knowledge base the harder

3.1 inconsistencies in probabilistic conditional logic 45

it is even for an experienced knowledge engineer to ensure consistency.
Hence, for the rest of this section we give a simple computational account
for determining whether a given probabilistic conditional knowledge base
is consistent.

The problem of determining whether a knowledge base is consistent can
be reduced to a constraint satisfaction problem similar to the approaches
in (Hansen and Jaumard, 1996; Andersen and Pretolani, 2001) which con-
sider purely propositional knowledge bases without conditionals. Let R =
{r1, . . . , rn} with ri = (ψi | φi)[di] for i = 1, . . . , n be a knowledge base on
a propositional signature At. Remember that we require every r ∈ R to
be self-consistent and non-tautological. In order to verify that R is consis-
tent we have to find a probability function that satisfies R. For a proba-
bility function P : Ω(At) → [0, 1] to be a model of R, every ri imposes
P(ψiφi) = diP(φi) to hold (for i = 1, . . . , n). For every ω ∈ Ω(At) define
αω =def P(ω). If P satisfies ri this amounts to

∑
ω∈ModP(ψiφi)

αω = di · ∑
ω∈ModP(φi)

αω (3.1)

which is equivalent to

∑
ω∈ModP(ψiφi)

(1− di)αω − ∑
ω∈ModP(ψiφi)

diαω = 0 . (3.2)

Given a knowledge baseR the problem of checking whetherR is consistent
then reduces to finding values A = {αω ∈ [0, 1] | ω ∈ Ω(At)} that fulfill
Equation (3.2) for every conditional ri ∈ R. In order to ensure that A

represents a probability function the integrity constraints

∑
ω∈Ω(At)

αω = 1 and (3.3)

αω ≥ 0 for all ω ∈ Ω(At) (3.4)

have to be respected as well.

Taken together Equation (3.2) for i = 1, . . . , n and the equations (3.3)
and (3.4), this yields a constraint satisfaction problem Cons(R) on the
variables {αω | ω ∈ Ω(At)}. It is clear that every assignment of values
to the variables αω, that is legal with respect to the constraint satisfaction
problem Cons(R), directly corresponds to a probability function PCons(R)

with PCons(R)(ω) =def αω. Hence, if there is an assignment for all αω the
corresponding probability function PCons(R) is a model for all conditionals
ri ∈ R (i = 1, . . . , n) and therefore a model for R. Therefore, we have
proven the following statement.

Proposition 3.1. A knowledge base R is consistent if and only if Cons(R) has a
solution.

46 measuring inconsistency

As a side note we remark that the problem of deciding whether a given
knowledge base is consistent is NP-complete, cf. e. g. (Paris, 1994).

Looking at equations (3.2), (3.3), and (3.4) one also gains a geometrical
interpretation of the problem of consistency. Each probabilistic conditional
r can be interpreted as a hyperplane Hr in R|Ω(At)|, i. e. the hyperplane that
contains exactly the set of vectors of the form (αω1 , . . . , αωm) for Ω(At) =
{ω1, . . . , ωm} that satisfy Equation (3.2). Furthermore, the normalization
constraint (3.3) describes a hyperplane H0 as well, called the normalization
hyperplane. Then, if R+

0 is the set of non-negative real numbers and R =
{r1, . . . , rn} is a knowledge base the problem of deciding whether R is
consistent is equivalent to the problem of deciding whether Hr1 ∩ . . .∩Hrn ∩
H0∩ (R+

0)
|Ω(At)| 6= ∅, i. e., whether the intersection of all hyperplanes of the

probabilistic conditionals and the normalization hyperplane is non-empty
in (R+

0)
|Ω(At)|.

Just knowing that knowledge base R is inconsistent is—in general—not
sufficient for knowledge engineering and analyzing. In order to make an
inconsistent knowledge base usable it is necessary to remove the inconsis-
tencies, i. e. to modify the modeled beliefs appropriately. Modifying an
inconsistent knowledge base adheres for rationality postulates such as min-
imal change, cf. e. g. (Konieczny and Pino-Pérez, 1998; Hansson, 1999). Be-
fore coming to the actual issue of restoring consistency (see Chapter 4) we
first continue with an investigation on analyzing inconsistencies. There is
much work on analyzing inconsistency in qualitative frameworks, see e. g.
(Knight, 2001; Grant and Hunter, 2006; Hunter and Konieczny, 2010), but
there are only few works on analyzing inconsistency in quantitative frame-
works, especially in probabilistic frameworks as the one discussed here, cf.
(Rödder and Xu, 2001; Daniel, 2009).

We take a formal approach for the analysis of inconsistency by formaliz-
ing and developing inconsistency measures on probabilistic knowledge bases.
In a nutshell, an inconsistency measure is a function Inc that maps a knowl-
edge base R to a non-negative real number Inc(R) that quantifies the sever-
ity or amount of the inconsistency inR. We go on by stating some desirable
properties for inconsistency measures.

3.2 desirable properties for an inconsistency measure

In this thesis we take a principled approach for the discussion on incon-
sistency measures on probabilistic conditional knowledge bases. In the fol-
lowing, we propose several properties and argue that any reasonable incon-
sistency measure should fulfill these properties. Let At be a propositional
signature and Inc be a function

Inc : P((L(At) | L(At))pr)→ [0, ∞)

that maps a knowledge baseR ⊆ (L(At) | L(At))pr onto a non-negative real
number. We say that Inc is an inconsistency measure and the value Inc(R) for

3.2 desirable properties for an inconsistency measure 47

a knowledge base R is called the inconsistency value for R with respect to
Inc. When talking about inconsistency values we omit the reference to the
inconsistency measure when this is clear from context.

Some of the following properties are inspired by similar properties
demanded for inconsistency measures on classical knowledge bases and
have been modified to fit a probabilistic framework, see e. g. (Hunter
and Konieczny, 2006, 2008). Intuitively, we want Inc to be a function on
knowledge bases that is monotonically increasing with the inconsistency in
the knowledge base. If the knowledge base is consistent, Inc shall be min-
imal. For the upcoming definitions let R,R1,R2 ⊆ (L(At) | L(At))pr be
knowledge bases and r, r′ ∈ (L(At) | L(At))pr be probabilistic conditionals.

Our first property relates to the case of a consistent R. In this case Inc
should take the minimal value and not distinguish between different con-
sistent knowledge bases. This is essentially different to the basic property
of information measures which do not distinguish between different incon-
sistent knowledge bases, cf. (Cover and Thomas, 2006). Furthermore, for
every inconsistent knowledge base a strict-positive inconsistency value is
expected.

(Consistency) R is consistent if and only if Inc(R) = 0.

Another basic demand for an inconsistency measure is indifference to syn-
tactical variants.

(Irrelevance of Syntax) If R1 ≡cond R2 then Inc(R1) = Inc(R2).

Note that we used the relation ≡cond to define (Irrelevance of Syntax). As by
Proposition 2.4 on page 29 all inconsistent knowledge bases are equivalent
with respect to ≡kb demanding (Irrelevance of syntax) with respect to ≡kb

amounts to assigning the same degree of inconsistency to every inconsistent
knowledge base.

Next, we consider properties that describe how inconsistency values may
change when new information is added. For one, by adding a new piece of
information to a knowledge base the inconsistency should not decrease.

(Monotonicity) It holds that Inc(R) ≤ Inc(R∪ {r}).

A similar demand for a non-decreasing inconsistency measure derives from
joining disjoint knowledge bases.

(Super-Additivity) If R∩R′ = ∅ then Inc(R∪R′) ≥ Inc(R) + Inc(R′).

Note that (Super-Additivity) is the stronger property, as it can be easily
seen that (Super-Additivity) implies (Monotonicity).

Proposition 3.2. If Inc satisfies (Super-Additivity) then Inc satisfies (Monotonic-
ity).

48 measuring inconsistency

Proof. Let Inc satisfy (Super-Additivity). If r ∈ R then Inc(R) = Inc(R ∪
{r}). If r /∈ R then Inc(R ∪ {r}) ≥ Inc(R) + Inc({r}) ≥ Inc(R) due to
(Super-Additivity).

As mentioned before, we assume that every probabilistic conditional r is self-
consistent, i. e., for a probabilistic conditional r there is a probability function
P with P |=pr r, cf. Section 2.3. Considering a probabilistic conditional r
that is independent of the beliefs in R should not increase the inconsistency.
The simplest form of independence are disjoint languages. Let At(S) ⊆ At
denote the set of atoms appearing in a set S of probabilistic conditionals.

(Weak Independence) If At({r}) ∩ At(R) = ∅ then Inc(R) = Inc(R ∪
{r}).

The property (Weak Independence) can be generalized by not only consid-
ering different language biases but the actual part that probabilistic condi-
tionals play in creating inconsistencies.

Definition 3.1 (Minimal inconsistent subset). Let R be a knowledge base.
A minimal inconsistent subset M of R is a set M ⊆ R such that M is
inconsistent and everyM′ (M is consistent. Let MI(R) denote the set of
all minimal inconsistent subsets of R.

Definition 3.2 (Free conditional). A conditional r ∈ R is called a free condi-
tional in R if and only if for everyM ∈ MI(R) it holds that r /∈ M.

Free conditionals feature the following property regarding consistency.

Proposition 3.3. Let R be a knowledge base and let r /∈ R be a free conditional
in R∪ {r}. Then it holds that

R is consistent iff R∪ {r} is consistent .

Proof. If R is consistent and r is a free conditional in R∪ {r} then for every
minimal inconsistent subset M of R ∪ {r} it holds that r /∈ M. Then M
would also be a minimal inconsistent subset of R contradicting the premise
that R is consistent. The reverse direction holds as well as any subset of a
consistent knowledge base is consistent.

Using the notion of free conditionals we can strengthen the above property
as follows.

(Independence) If r is a free conditional in R ∪ {r}, then it holds that
Inc(R) = Inc(R∪ {r}).

Inconsistency measures that satisfy (Independence) feature the following
property.

3.2 desirable properties for an inconsistency measure 49

Proposition 3.4. Let R1,R2 be knowledge bases and let Inc be an inconsistency
measure that satisfies (Independence). If MI(R1) = MI(R2) then Inc(R1) =
Inc(R2).

Proof. Let R =def
⋃
M∈MI(R1)

M. It holds that Inc(R1) = Inc(R) due to
the facts that R1 \ R only contains free conditionals of R1 and that Inc
satisfies (Independence). As the same is true for R2 it follows Inc(R1) =
Inc(R2).

Hence, inconsistency measures satisfying (Independence) can be defined
solely on the set of minimal inconsistent subsets. This resembles the notion
of MinInc inconsistency values in (Hunter and Konieczny, 2008).

The set of minimal inconsistent subsets is monotonically increasing with
respect to larger knowledge bases.

Proposition 3.5. Let R and R′ be knowledge bases. If R ⊆ R′ then MI(R) ⊆
MI(R′).

Proof. LetM ∈ MI(R) be a minimal inconsistent subset ofR. Then it holds
that M ⊆ R ⊆ R′. Suppose M /∈ MI(R′) which is equivalent to stating
that eitherM is not minimal or not inconsistent. Both cases contradict the
assumptionM ∈ MI(R).

Satisfaction of (Independence) implies satisfaction of (Weak Independence)
as the following results show.

Lemma 3.1. Let R be a knowledge base and let r be a probabilistic conditional
with r /∈ R. If At({r}) ∩At(R) = ∅ then r is a free conditional in R∪ {r}.

The proof of Lemma 3.1 can be found in Appendix A on page 230.

Proposition 3.6. If Inc satisfies (Independence) then Inc satisfies (Weak Indepen-
dence).

Proof. Let Inc satisfy (Independence), R be a knowledge base, and let r be a
conditional with At({r})∩At(R) = ∅. As r is a free conditional in R∪ {r}
by Lemma 3.1 it follows Inc(R ∪ {r}) = Inc(R) by (Independence) and,
hence, Inc satisfies (Weak Independence).

The following property is from (Hunter and Konieczny, 2008).

(MinInc Separability) If MI(R1 ∪R2) = MI(R1) ∪MI(R2) and MI(R1) ∩
MI(R2) = ∅ then Inc(R1 ∪R2) = Inc(R1) + Inc(R2).

The above property states that the inconsistency value of some knowledge
base R1 ∪R2 is the sum of the inconsistency values of R1 and R2 if the set
of minimal inconsistent subsets of R1 ∪ R2 is partitioned among R1 and
R2. The property (MinInc Separability) is an even more general property
than (Independence).

50 measuring inconsistency

Proposition 3.7. If Inc satisfies (MinInc Separability) then Inc satisfies (Inde-
pendence).

Proof. Let Inc satisfy (MinInc Separability), letR be a knowledge base, and
let r be a free conditional in R∪ {r}. Note that it holds that MI({r}) = ∅
as r is self-consistent. Then it also holds that MI(R ∪ {r}) = MI(R) =
MI(R) ∪MI({r}) and MI(R) ∩MI({r}) = ∅. By (MinInc separability) it
follows that Inc(R∪ {r}) = Inc(R) + Inc({r}) = Inc(R).

The previous properties describe cases where the inconsistency of a knowl-
edge base should remain constant despite the addition of new informa-
tion. Conversely, the next property describes a case when the inconsistency
should increase.

(Penalty) If r /∈ R is not a free conditional in R ∪ {r} then Inc(R) <
Inc(R∪ {r}).

Similar to the motivation for (Independence) we state that if a conditional
r contributes to a minimal inconsistent subset of the knowledge base, then
the inconsistency must be strictly greater than in the knowledge base with-
out r. As for (Independence) alone we can state a similar property like
in Proposition 3.4 in terms of minimal inconsistent sets when the inconsis-
tency measure satisfies both (Independence) and (Penalty).

Proposition 3.8. Let R1 and R2 be knowledge bases and let Inc be an inconsis-
tency measure that satisfies (Independence) and (Penalty). If MI(R1) (MI(R2)
then Inc(R1) < Inc(R2).

Proof. Let R =def
⋃
M∈MI(R1)

M. It holds that Inc(R1) = Inc(R) due to
the facts that R1 \ R only contains free conditionals of R1 and that Inc
satisfies (Independence). As R (R2 due to MI(R1) (MI(R2) and R2 \R
contains at least one conditional r that is not free inR2—otherwise it would
be MI(R1) = MI(R2)— it follows that Inc(R2) > Inc(R) = Inc(R1) as Inc
satisfies (Penalty).

So far we have not taken into account that we are working in a probabilistic
framework. It is hard to grasp in what way the probabilities of the condi-
tionals influence the inconsistency of the whole knowledge base. Consider
a knowledge base R and a conditional (ψ | φ)[d] ∈ R. How should the in-
consistency measure Inc behave when increasing (or decreasing) the value
d? There is no definite answer to this question as, on the one hand, the
inconsistency may vanish because the conditional may become consistent
with the rest of the knowledge base, or, on the other hand, the inconsis-
tency may increase because the conditional may remove itself from a “con-
sistent state”. But one demand can be made: The change in the inconsis-
tency value should be continuous in d. If one does only slightly change a
given knowledge base, the resulting inconsistency value should have only
changed slightly as well. We formalize this intuition as follows.

3.2 desirable properties for an inconsistency measure 51

Definition 3.3 (Characteristic function). Let R be a knowledge base with
〈R〉 = (r1, . . . , rn) and ri = (ψi | φi)[di] for i = 1, . . . , n. The function

ΛR : [0, 1]|R| → P((L(At) | L(At))pr)

with ΛR(x1, . . . , xn) =def {(ψ1 | φ1)[x1], . . . , (ψn | φn)[xn]} and
〈ΛR(x1, . . . , xn)〉 =def ((ψ1 | φ1)[x1], . . . , (ψn | φn)[xn]) is called the
characteristic function of R.

Note that in the above definition we used the vector representation of
R in order to give a sound definition of the characteristic function, cf.
Definition 2.25 on page 27.

Definition 3.4 (Characteristic inconsistency function). Let Inc be an incon-
sistency measure and let R be a knowledge base. The function

θInc,R : [0, 1]|R| → [0, ∞)

with θInc,R =def Inc ◦ ΛR is called the characteristic inconsistency function of
Inc and R.

The above definitions allow us to state the next property in a concise way
as follows.

(Continuity) The characteristic inconsistency function θInc,R is continuous
on [0, 1]|R| (with respect to the standard topology on R|R|).

Our final property concerns normalization of the inconsistency measure.

(Normalization) For every R it holds that Inc(R) ∈ [0, 1].

The above property states that inconsistency values should be bounded
from above by one. On the one hand, this demand makes perfect sense
as this allows for comparing inconsistency values of different knowledge
base in a unified way. On the other hand, this demand is—in general—in
conflict with the demand for (Super-Additivity) as the following example
shows.

Example 3.2. Consider the probabilistic conditionals

rk
1 =def (ak)[0.6] rk

2 =def (ak)[0.4]

on a propositional signature Ati =def {a1, . . . , ai}. Obviously, the knowl-
edge base {r1

1, r1
2} on At1 is inconsistent and therefore some inconsistency

measure Inc satisfying (Consistency) assigns some degree of inconsistency
to {r1

1, r1
2}, i. e. Inc({r1

1, r1
2}) = x > 0. Furthermore, any knowledge base

{ri
1, ri

2} on {ai} is inconsistent as well and should be assigned the same
inconsistency value, i. e. Inc({ri

1, ri
2}) = x. It follows that, if Inc satisfies

52 measuring inconsistency

(Super-Additivity) and does not take the size of signature of a knowl-
edge base into account then there is a natural number n ∈ N such that
for Rn = {r1

1, r1
2, . . . , rn

1 , rn
2} it holds that Inc(Rn) ≥ Inc({r1

1, r1
2}) + . . . +

Inc({rn
1 , rn

2}) ≥ nx > 1. Thus, Inc cannot satisfy (Normalization).

The previous example showed that an inconsistency measure that does not
take (the size of) the signature into account cannot satisfy (Consistency),
(Super-Additivity), and (Normalization) at the same time. Furthermore,
taking (the size of) the signature into account may become unintuitive. As
for the case of Example 3.2, in order to allow Inc to satisfy (Consistency),
(Super-Additivity), and (Normalization) it has to hold that for R =def

{r1
1, r1

1} defined on At1 and R′ =def {r1
1, r1

1} defined on At2 it follows that
Inc(R) 6= Inc(R′). As R = R′ this result is obviously very unintuitive.
Due to this discrepancy, for each approach for measuring inconsistency we
discuss variants that satisfy (Normalization) and variants that do not.

To conclude this section, Table 2 gives an overview on the properties of
inconsistency measures that have been discussed above. In the next sec-
tion we continue with investigating traditional approaches for measuring
inconsistency in non-probabilistic frameworks and their applicability for
probabilistic conditional logic.

Property Description

(Consistency) R consistent iff Inc(R) = 0
(Irrelevance of Syntax) R1 ≡cond R2 implies Inc(R1) = Inc(R2)

(Monotonicity) Inc(R) ≤ Inc(R∪ {r})
(Super-Additivity) If R∩R′ 6= ∅ then

Inc(R∪R′) ≥ Inc(R) + Inc(R′)
(Weak Independence) If At({r}) ∩At(R) 6= ∅

then Inc(R) = Inc(R∪ {r})
(Independence) If r free in R∪ {r} then Inc(R) = Inc(R∪ {r})
(MinInc Separability) If MI(R1 ∪R2) = MI(R1) ∪MI(R2)

and MI(R1) ∩MI(R2) = ∅
then Inc(R1 ∪R2) = Inc(R1) + Inc(R2)

(Penalty) If r /∈ R not free in R∪ {r}
then Inc(R) < Inc(R∪ {r})

(Continuity) θInc,R is continuous
(Normalization) Inc(R) ∈ [0, 1]

Table 2: Properties of inconsistency measures

3.3 traditional approaches for measuring inconsistency 53

3.3 traditional approaches for measuring inconsistency

In this section we review some existing approaches to measuring inconsis-
tencies in classical theories and adapt them to fit our probabilistic frame-
work.

The simplest approach for an inconsistency measure is the drastic incon-
sistency measure, cf. (Hunter and Konieczny, 2010).

Definition 3.5 (Drastic inconsistency measure). Let Incd be the function
Incd : P((L(At) | L(At))pr)→ [0, ∞) defined as

Incd(R) =def

{
0 if R is consistent
1 if R is inconsistent

.

Incd is called the drastic inconsistency measure.

The drastic inconsistency measure allows only for a binary decision on
inconsistencies and does not quantify the severity of inconsistencies. Al-
though being a very simple inconsistency measure Incd still satisfies several
basic properties as the next proposition shows.

Proposition 3.9. The function Incd satisfies (Consistency), (Irrelevance of Syn-
tax), (Monotonicity), (Weak Independence), (Independence), and (Normalization).

The proof of Proposition 3.9 can be found in Appendix A on page 231.
Notice, that Incd satisfies neither (Super-Additivity), (Penalty), (MinInc

Separability), nor (Continuity).

Example 3.3. Consider the knowledge bases R1 =def {r1, r2} and R2 =def
{r3, r4} given via

r1 =def (a)[0.4] r2 =def (a)[0.6] r3 =def (b)[0.4] r4 =def (b)[0.6] .

It follows that Incd(R1) = Incd(R2) = 1 but

Incd(R1 ∪R2) = 1 6= Incd(R1) + Incd(R2) ,

therefore violating both (Super-Additivity) and (MinInc Separability). Fur-
thermore, r4 is not a free conditional inR1 ∪R2 but Incd(R1 ∪R2 \ {r4}) =
Incd(R1 ∪R2) violating (Penalty). Also, Incd fails to satisfy (Continuity) as
Im Incd = {0, 1}.

One thing to note is that Incd is the upper bound for any inconsistency
measure that satisfies (Consistency) and (Normalization).

Proposition 3.10. If Inc satisfies (Consistency) and (Normalization) then for ev-
ery R it holds that Inc(R) ≤ Incd(R).

54 measuring inconsistency

Proof. If R is consistent it holds that Inc(R) = Incd(R) = 0 as both Inc and
Incd satisfy (Consistency). If R is inconsistent then Inc(R) ∈ (0, 1] as Inc
satisfies (Normalization) and therefore Inc(R) ≤ 1 = Incd(R).

The next inconsistency measure employs the set of minimal inconsistent
subsets of R in a simple manner, cf. (Hunter and Konieczny, 2010).

Definition 3.6 (MI inconsistency measure). Let IncMI be the function IncMI :
P((L(At) | L(At))pr)→ [0, ∞) defined via

IncMI(R) =def |MI(R) | .

IncMI is called the MI inconsistency measure.

The MI inconsistency measure assesses severity of inconsistencies by consid-
ering the number of minimal inconsistent subsets. It follows the intuition
that the more minimal inconsistent subsets the greater the inconsistency.

Proposition 3.11. The function IncMI satisfies (Consistency), (Monotonicity),
(Super-Additivity), (Weak Independence), (Independence), (MinInc separability),
and (Penalty).

The proof of Proposition 3.11 can be found in Appendix A on page 231.
Notice, that IncMI satisfies neither (Irrelevance of Syntax), (Continuity)

nor (Normalization).

Example 3.4. Consider again R1 and R2 from Example 3.3 on page 53. It
holds that IncMI(R1 ∪R2) = 2 violating (Normalization). Also, IncMI fails
to satisfy (Continuity) as Im IncMI = N0. Consider the knowledge bases
R =def {r1, r2} and R′ =def {r1, r2, r3} given via

r1 =def (a)[0.3] r2 =def (a)[0.7] r3 =def (¬a)[0.3] .

Then R ≡cond R′ but IncMI(R1) = 1 6= 2 = IncMI(R2). Hence, IncMI fails to
satisfy (Irrelevance of syntax).

A normalized MI inconsistency measure can be defined using the following
technical lemma.

Lemma 3.2. Let M be a set and let S ⊆ P(M) such that for all M1, M2 ∈ S with
M1 6= M2 it holds that M1 * M2. Then

|S| ≤
(
|M|⌈
|M|

2

⌉) . (3.5)

Proof. Let |M| be even and let S = {M1, . . . , Mn} ⊆ P(M) such that for
all Mi, Mj ∈ S with i 6= j it holds that Mj * Mj and let S be maximal

3.3 traditional approaches for measuring inconsistency 55

(with respect to cardinality) with this property. The maximal cardinality of
S is achieved when all Mi ∈ S have the same cardinality as the problem is
symmetric in all Mi. If the cardinality of all Mi is m, then

n =

(
|M|
m

)
. (3.6)

The above term is maximal for m = |M|/2. For M with odd |M| both m =
b|M|/2c and m = d|M|/2e maximize (3.6), so (3.5) captures both cases.

Corollary 3.1. Let R be a knowledge base. Then

|MI(R)| ≤ γR =def

(
|R|⌈
|R|

2

⌉)

Proof. For any two distinct M1, M2 ∈ MI(R) it holds that M1 * M2 and
M2 * M1 by definition. Then Lemma 3.2 is applicable proving the claim.

Using the result from Corollary 3.1 we can define a normalized MI inconsis-
tency measure as follows.

Definition 3.7 (Normalized MI inconsistency measure). Let IncMI
0 be the

function IncMI
0 : P((L(At) | L(At))pr)→ [0, 1] defined as

IncMI
0 (R) =def

{
0 if γR = 0
IncMI(R)

γR
otherwise

.

IncMI
0 is called the normalized MI inconsistency measure.

By construction, IncMI
0 satisfies (Normalization) but fails to satisfy several

other properties.

Proposition 3.12. The function IncMI
0 satisfies (Consistency) and (Normaliza-

tion).

The proof of Proposition 3.12 can be found in Appendix A on page 232.

IncMI
0 fails to satisfy (Monotonicity), (Super-Additivity), (Weak Indepen-

dence), (Independence), (MinInc Separability), and (Penalty) as the follow-
ing example shows.

Example 3.5. Consider the knowledge base R =def {r1, r2} given via

r1 =def (a)[0.4] r2 =def (a)[0.6] .

56 measuring inconsistency

It follows that

IncMI
0 (R) = IncMI(R)

γR
=

1(
|R′|⌈
|R′|

2

⌉) =
1
2

.

Now consider r3 =def (b)[0.5] and R′ =def R∪ {r3}. Notice that r3 is a free
conditional in R and does not mention any atom appearing in R. But it
follows that

IncMI
0 (R′) = IncMI(R′)

γR′
=

1(
|R′|⌈
|R′|

2

⌉) =
1
3

.

As one can see IncMI
0 violates both (Monotonicity) and (Weak Indepen-

dence). Due to Propositions 3.2 on page 47, 3.6 on page 49, and 3.7
on page 50 the function IncMI

0 cannot satisfy (Super-Additivity), (Indepen-
dence), and (MinInc Separability) as well. Now consider r4 =def (b)[0.4]
and R′′ =def R′ ∪ {r4}. Note that r4 is not a free conditional in R′′. It
follows that

IncMI
0 (R′′) = IncMI(R′′)

γR′′
=

2(
|R′′|⌈
|R′′|

2

⌉) =
2
6
=

1
3

.

As IncMI
0 (R′) = IncMI

0 (R′′) it follows that IncMI
0 violates (Penalty). IncMI

0 also
fails to satisfy (Irrelevance of Syntax) and (Continuity) as IncMI already fails
to satisfy (Irrelevance of Syntax) and (Continuity).

Only considering the number of minimal inconsistent subsets is a too sim-
ple approach for assessing inconsistencies. Another indicator for the sever-
ity of inconsistencies is the size of minimal inconsistent subsets. A large
minimal inconsistent subset means that the inconsistency is distributed over
a large number of conditionals. The more conditionals involved in an in-
consistency the less severe the inconsistency can be seen. Furthermore, a
small minimal inconsistent subset means that the participating conditionals
strongly represent contradictory information. Consider the following ex-
ample for classical logic that can be found in e. g. (Hunter and Konieczny,
2008).

Example 3.6. In a lottery there are n lottery tickets and only one of them
is the winner ticket. If wi denotes the proposition that ticket i will win the
lottery then the (classical) formula φ =def w1 ∨ . . . ∨ wn can be regarded
as true. Furthermore, the belief of each ticket buyer i is that he will not
win the lottery, i. e., the formula φi =def ¬wi is regarded to be true for
each i = 1, . . . , n. Obviously the merged knowledge base {φ, φ1, . . . , φn} is

3.3 traditional approaches for measuring inconsistency 57

inconsistent as φ demands that one ticket has to win and, hence, one ticket
owner k is wrong in assuming ¬wk. However, with increasing number of
available tickets the inconsistency becomes negligible and each ticket owner
is justified in believing that he will not win.

Although the previous example has been formulated for classical logic the
argument stands for probabilistic logics as well. The following inconsis-
tency measure is inspired by (Hunter and Konieczny, 2008) and aims at
differentiating between minimal inconsistent sets of different size.

Definition 3.8 (MIC inconsistency measure). Let IncMI
C be the function IncMI

C :
P((L(At) | L(At))pr)→ [0, ∞) defined as

IncMI
C (R) =def ∑

M∈MI(R)

1
|M | .

IncMI
C is called the MIC inconsistency measure.

The MIC inconsistency measure sums over the reciprocal of the sizes of all
minimal inconsistent subsets. In that way, a large minimal inconsistent
subset contributes less to the inconsistency value than a small minimal
inconsistent subset. As the MI inconsistency measure the MIC inconsistency
measure behaves well with respect to most desirable properties.

Proposition 3.13. The function IncMI
C satisfies (Consistency), (Monotonicity),

(Super-Additivity), (Weak Independence), (Independence), (MinInc Separability),
and (Penalty).

The proof of Proposition 3.13 can be found in Appendix A on page 232.
Note that IncMI

C satisfies neither (Irrelevance of Syntax), (Continuity) nor
(Normalization).

Example 3.7. Consider the knowledge base R =def {r1, . . . , r6} given via

r1 =def (a)[0.4] r2 =def (a)[0.6]

r3 =def (b)[0.4] r4 =def (b)[0.6]

r5 =def (c)[0.4] r6 =def (c)[0.6] .

It follows that IncMI
C (R) = 1.5 thus violating (Normalization). IncMI

C also
fails to satisfy (Continuity) as Im IncMI

C = Q+
0 . Consider the knowledge

bases R′ =def {r′1, r′2} and R′′ =def {r′1, r′2, r′3} given via

r′1 =def (a)[0.3] r′2 =def (a)[0.7] r′3 =def (¬a)[0.3] .

ThenR′ ≡cond R′′ but IncMI
C (R′) = 1/2 6= 1 = 1/2+ 1/2 = IncMI(R′′). Hence,

IncMI
C fails to satisfy (Irrelevance of Syntax).

58 measuring inconsistency

As before we can define a normalized MIC inconsistency measure by ex-
ploiting the following observation.

Proposition 3.14. Let R be a knowledge base. Then

IncMI
C (R) ≤ 1/2γR .

Proof. As we only consider self-consistent conditionals the minimal size of a
minimal inconsistent subset is 2. As γR is an upper bound for the number
of minimal inconsistent subsets of R (see Corollary 3.1 on page 55) the
claim follows.

Definition 3.9 (Normalized MIC inconsistency measure). Let IncMI
C,0 be the

function IncMI
C,0 : P((L(At) | L(At))pr)→ [0, 1] defined as

IncMI
C,0(R) =def

 0 if γR = 0
IncMI

C (R)
1
2 γR

otherwise
.

IncMI
C,0 is called the normalized MIC inconsistency measure.

Proposition 3.15. The function IncMI
C,0 satisfies (Consistency) and (Normaliza-

tion).

The proof of Proposition 3.15 can be found in Appendix A on page 233.

Example 3.8. We continue Example 3.5 from page 55. As for IncMI
0 , it holds

that

IncMI
C,0(R) = 1/2 and IncMI

C,0(R′) = 1/3

and therefore IncMI
C,0 fails to satisfy (Monotonicity) and (Super-Additivity),

as well as (Weak Independence), (Independence), and (MinInc Separabil-
ity). It also holds that IncMI

C,0(R′′) = 1/3 violating (Penalty). IncMI
C,0 also fails

to satisfy (Irrelevance of Syntax) and (Continuity) as IncMI
C already fails to

satisfy (Irrelevance of Syntax) and (Continuity).

Comparing IncMI
0 and IncMI

C,0 we can make the following observation.

Proposition 3.16. It holds that IncMI
C,0(R) ≤ IncMI

0 (R) for every knowledge base
R.

Proof. For γR = 0 it clearly holds that IncMI
C,0(R) = IncMI

0 (R) = 0. Let
γR > 0 then it holds that

IncMI
C,0(R) =

IncMI
C (R)
1
2 γR

=
∑M∈MI(R)

1
|M |

1
2 γR

3.3 traditional approaches for measuring inconsistency 59

≤
|MI(R)| 12

1
2 γR

=
|MI(R)|

γR
= IncMI

0 (R)

There are other more sophisticated inconsistency measures for classical
theories but most of these cannot be applied to a probabilistic setting in
a meaningful manner. Nonetheless, we review the particularly interesting
approach of η-consistency (Knight, 2001, 2002) in Section 3.5.

The inconsistency measures Incd, IncMI, and IncMI
C were initially devel-

oped for inconsistency measurement in classical theories and therefore al-
low only for a “discrete” measurement. Hence, all of the above discussed
inconsistency measures do not satisfy (Continuity). But satisfaction of (Con-
tinuity) is crucial for an inconsistency measure in probabilistic conditional
logic in order to assess inconsistencies in a meaningful manner. Consider
the following example.

Example 3.9. Consider again the knowledge base R2 = {r1, r2, r3} from
Example 3.1 on page 44 given via

r1 = (b | a)[0.8] r2 = (a)[0.6] r3 = (b)[0.4] .

As pointed out in Example 3.1 the knowledge base is inconsistent and the
set of minimal inconsistent subsets is given by MI(R2) = {{r1, r2, r3}}. It
follows that

Incd(R2) = 1 IncMI(R2) = 1 IncMI
C (R2) =

1
3

.

Consider a slight modification R′2 =def {r′1, r′2, r′3} of R2 given via

r′1 =def (b | a)[0.8] r2′ =def (a)[0.6] r′3 =def (b)[0.479] .

The knowledge base R′2 is still inconsistent and it holds that Inc(R′2) =

Inc(R2) for Inc ∈ {Incd, IncMI, IncMI
C }. Now consider the knowledge base

R′′2 =def {r′′1 , r′′2 , r′′3 } given via

r′′1 =def (b | a)[0.8] r′2′ =def (a)[0.6] r′′3 =def (b)[0.48] .

The knowledge base R′′2 is consistent and it follows that Incd(R′′2) =

IncMI(R′′2) = IncMI
C (R′′2) = 0. By comparing R′2 and R′′2 one can discover

only a minor difference of the modeled knowledge. Whereas in R′′2 the
proposition b is assigned a probability of 0.48 in R′2 it is assigned a prob-
ability of 0.479. From a practical point of view this difference may be of
no relevance and whether b has probability 0.48 or 0.479 may not matter
for the intended application. Still, a knowledge engineer may not grasp
the harmlessness of the inconsistency in R′2 as R2 has the same degree of
inconsistency with respect to Incd, IncMI, and IncMI

C .

60 measuring inconsistency

The above example motivates the need for a more graded approach to
measure the inconsistencies inR2,R′2, andR′′2 . This measure should assign
R′2 a much lower inconsistency value than to R2 in order to distinguish
their severities. In the next section, we continue with the development of
an inconsistency measure that aims to satisfy those needs by taking the
actual probabilities into account.

3.4 measuring inconsistency by distance minimization

In this section we develop an inconsistency measure that bases on the
minimal distance of an inconsistent knowledge base to a consistent one.
We show that this measure is a meaningful inconsistency measure and
fulfills many of the desirable properties discussed above. We continue
with giving upper and lower bounds for this inconsistency measure that
can be efficiently computed and discuss extensions of the measure to more
expressive frameworks.

3.4.1 The General Approach

The problem of applying traditional approaches to inconsistency measure-
ment for probabilistic knowledge bases lies in the crucial role of proba-
bilities, as discussed at the end of the previous section. As we only con-
sider self-consistent conditionals, inconsistencies can only occur because of
“wrong” probabilities. Consider the following proposition.

Proposition 3.17. Let R = {(ψ1 | φ1), . . . , (ψn | φn)} ⊆ (L(At) | L(At))
be a set of conditionals. Then there are d1, . . . , dn ∈ [0, 1] such that
{(ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]} is consistent.

Proof. Consider the uniform probability function P0 on L(At). For i =
1, . . . , n, if φi 6≡⊥ then P0(φi) > 0 and assign di =def P0(ψi | φi). If
φi ≡⊥ then P0(φi) = P0(ψiφi) = 0 and di ∈ [0, 1] can be arbitrarily
chosen and P0 |=pr (ψi | φi)[di] is satisfied in any case. It follows that
P0 |=pr {(ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]} and hence the claim.

Bearing this observation in mind we define the MinDev inconsistency mea-
sure as follows.

Definition 3.10 (MinDev inconsistency measure). Let R be a knowledge
base with 〈R〉 = (r1, . . . , rn) and ri = (ψi | φi)[di] for i = 1, . . . , n. Let Inc∗

be the function Inc∗ : P((L(At) | L(At))pr)→ [0, ∞) defined via

Inc∗(R) =def min{|d1 − x1|+ . . . + |dn − xn| |
ΛR(x1, . . . , xn) is consistent} . (3.7)

Inc∗ is called the MinDev inconsistency measure (minimal deviation).

3.4 measuring inconsistency by distance minimization 61

The above definition presupposes that the minimum in Equation (3.7) exists.
In the following, we show that this is indeed the case.

Probability functions can be identified with points in [0, 1]|Ω(At)|,
i e., assuming some arbitrary total order on the elements in Ω(At),
{ω1, . . . , ωm} = Ω(At), a probability function P ∈ PP(At) is uniquely
determined by (P(ω1), . . . , P(ωm)) ∈ [0, 1]|Ω(At)|. Therefore, properties
relating to convergence behavior in PP(At) are interpreted using the
standard norm on [0, 1]|Ω(At)|.

Lemma 3.3. The set PP(At) is closed.

Proof. Let Pi ∈ PP(At) for i ∈ N be a sequence of probability functions
such that limi→∞ Pi exists. In particular, each Pi satisfies

∑
ω∈Ω(At)

Pi(ω) = 1 .

Let now Q = limi→∞ Pi, i. e., it holds that Q(ω) = limi→∞ Pi(ω) for every
ω ∈ Ω(ω) (point-wise convergence). Then it follows

∑
ω∈Ω(At)

Q(ω) = ∑
ω∈Ω(At)

lim
i→∞

Pi(ω)

= lim
i→∞

∑
ω∈Ω(At)

Pi(ω)

= lim
i→∞

1

= 1

Therefore, it holds that Q ∈ PP(At) and PP(At) is a closed set.

It also holds that PP(At) is bounded by [0, 1]|Ω(At)| and therefore PP(At) is
compact.

Proposition 3.18. The function Inc∗ is well-defined.

Proof. Let R be a knowledge base with 〈R〉 = (r1, . . . , rn) and
ri = (ψi | φi)[di] for i = 1, . . . , n. Consider the set PR ⊆ PP(At) × [0, 1]n

defined via

PR =def {(P, (x1, . . . , xn)) ∈ PP(At)× [0, 1]n | P |=pr ΛR(x1, . . . , xn)}

We prove now that PR is closed. Let (Pi, (xi
1, . . . , xi

n)) ∈ PR for i ∈ N be
such that limi→∞(Pi, (xi

1, . . . , xi
n)) exists and define

(Q, (y1, . . . , yn)) =def lim
i→∞

(Pi, (xi
1, . . . , xi

n))

In particular, it holds that limi→∞ Pi = Q and by Lemma 3.3 it follows
Q ∈ PP(At). For j = 1, . . . , n, if Q(φj) > 0 then there is some k ∈ N such

62 measuring inconsistency

that for all i > k it holds that Pi(φj) > 0 as well. Therefore, for i > k it holds
that Pi(ψj | φj) = xi

j and

Q(ψj | φj) =
Q(ψjφj)

Q(φj)
=

limi→∞ Pi(ψjφj)

limi→∞ Pi(φj)

= lim
i→∞

Pi(ψjφj)

Pi(φj)
= lim

i→∞
Pi(ψj | φj)

= lim
i→∞

xi
j = yj

which implies Q |=pr (ψj | φj)[yj]. If Q(φj) = 0 (for j = 1, . . . , n) then
trivially Q |=pr (ψj | φj)[yj] due to our definition of probabilistic satisfaction.
It follows that (Q, (y1, . . . , yn)) |=pr ΛR(y1, . . . , yn) and therefore Q ∈ PR,
i. e., PR is closed. Consider now the projection ρ : PR → [0, 1]n defined
via ρ((P, (x1, . . . , xn))) = (x1, . . . , xn) for (P, (x1, . . . , xn)) ∈ PR. As PP(At)
is compact it follows that ρ is a closed map, cf. the Tube Lemma1 (Munkres,
1999). Therefore, ρ maps closed sets to closed sets and it follows that

ρ(PR) = {(x1, . . . , xn) ∈ [0, 1]n | ∃P : (P, (x1, . . . , xn)) ∈ PR}
= {(x1, . . . , xn) ∈ [0, 1]n | ΛR(x1, . . . , xn) is consistent}

is a closed set. We can write Inc∗(R) as

Inc∗(R) = min{|d1 − x1|+ . . . + |dn − xn| | (x1, . . . , xn) ∈ ρ(PR)} .

As ρ(PR) is a closed set (and also compact as it is bounded due to ρ(PR) ⊆
[0, 1]n) and the mapping (x1, . . . , xn) 7→ |d1 − x1|+ . . . + |dn − xn| is contin-
uous the set

NR =def {|d1 − x1|+ . . . + |dn − xn| | (x1, . . . , xn) ∈ ρ(PR)}

is closed as well. As ρ(PR) and therefore NR are non-empty due to Propo-
sition 3.17 it follows that Inc∗(R) = min NR is well-defined.

Determining Inc∗(R) amounts to finding (x1, . . . , xn) such that ΛR(x1,
. . . , xn) is consistent and (x1, . . . , xn) is closest to (d1, . . . , dn) with respect to
the 1-norm distance (or manhattan distance), cf. (Bourbaki, 1987). Using the
1-norm distance is not mandatory and a whole family of inconsistency mea-
sures can be defined by considering other distance measures on [0, 1]n, cf.
(Picado-Muiño, 2011). Nonetheless, in this thesis we restrain our attention
to the MinDev inconsistency measure employing the 1-norm distance.

Let MD(R) ⊆ [0, 1]|R| be the set of arguments for ΛR that yield a

1 An equivalent formalization of the Tube Lemma is “If X is Hausdorff and Y is Hausdorff
and compact then p : X × Y → X with p(x, y) = x is a closed map”. Note, that all spaces
above are Hausdorff as they are subsets of Euclidean spaces.

3.4 measuring inconsistency by distance minimization 63

consistent knowledge base and minimize the 1-norm distance to R, i. e.,
for R with 〈R〉 = (r1, . . . , rn) with (ψi | φi)[di] for i = 1, . . . , n we define

MD(R) =def {(x1, . . . , xn) ∈ [0, 1]|R| |
|d1 − x1|+ . . . + |dn − xn| = Inc∗(R) and

ΛR(x1, . . . , xn) consistent} .

We also define the set of probability functions that satisfy a nearest consis-
tent knowledge base via

PMD(R) =def {P ∈ PP(At) | P |=pr ΛR(x1, . . . , xn)

for some (x1, . . . , xn) ∈MD(R)} .

Example 3.10. Let R be a knowledge base with 〈R〉 =def {r1, r2, r3} given
via

r1 =def (b | a)[1] r2 =def (a)[1] r3 =def (b)[0] .

Note that it holds that Inc∗(R) = 1 and that all three ΛR(1, 1, 1), ΛR(1, 0, 0),
and ΛR(0, 1, 0) are consistent, i. e. (1, 1, 1), (1, 0, 0), (0, 1, 0) ∈MD(R).

Before discussing formal properties of Inc∗ we first have a look at the
computational issue of determining Inc∗(R) that will be useful for proving
some technical results. We do so by extending the constraint satisfaction
problem from Section 3.1 and setting up an optimization problem such that
the solution of the problem is the value of Inc∗(R) for some knowledge base
R. Let R be a knowledge base with 〈R〉 = (r1, . . . , rn) and (ψi | φi)[di] for
i = 1, . . . , n. For every i = 1, . . . , n we introduce a variable ηi ∈ [−1, 1] that
measures the minimal deviation of the value of the probabilistic conditional
(ψi | φi)[di]. In order to realize Inc∗ we have to modify the probabilistic
conditionals in R in a minimal way, such that the knowledge base R′
with the modified probabilistic conditionals is consistent, i. e., there is a
probability function P that is a model for R′. As before, let αω denote the
probability of a complete conjunction ω ∈ Ω(At). For every conditional
(ψi | φi)[di] for i = 1, . . . , n we write

∑
ω∈ModP(ψiφi)

αω = (di + ηi) · ∑
ω∈ModP(φi)

αω (3.8)

or equivalently

∑
ω∈ModP(ψiφi)

(1− di − ηi)αω − ∑
ω∈ModP(ψiφi)

(di + ηi)αω = 0 (3.9)

to comprehend for the fact that the modified conditional (ψi | φi)[di + ηi]

64 measuring inconsistency

imposes P(ψi | φi) = di + ηi. To ensure well-formed conditionals we also
have to consider the following normalization constraints

0 ≤ d1 + η1 ≤ 1, . . . , 0 ≤ dn + ηn ≤ 1 (3.10)

and as before

∑
ω∈Ω(At)

αω = 1 and (3.11)

αω ≥ 0 for all ω ∈ Ω(At) (3.12)

We denote with DevCons(R) the set of constraints (3.9), (3.10), (3.11), and
(3.12) for a knowledge base R. In order to determine the minimal neces-
sary deviation of R from a consistent knowledge base, we formulate an
optimization problem by minimizing the function

fInc∗(η1, . . . , ηn) =def |η1|+ · · ·+ |ηn|

and obeying DevCons(R). As DevCons(R) and fInc∗ have been defined to
characterize Inc∗ we obtain the following result.

Proposition 3.19. If η∗1 , . . . , η∗n minimizes fInc∗ and obeys DevCons(R) then
Inc∗(R) = fInc∗(η∗1 , . . . , η∗n).

Note that minimizing fInc∗ with respect to DevCons(R) is a non-convex
optimization problem as Equation (3.9) is non-convex.

Example 3.11. Let R be a knowledge base with 〈R〉 =def (r1, r2, r3, r4) and

r1 =def (b | a)[0.8] r2 =def (b | a)[0.6]

r3 =def (a)[0.5] r4 =def (b)[0.2] .

Here, we have Inc∗(R) = 0.5 and some η∗i (i = 1, . . . , 4) that minimize fInc∗
can be determined as

η∗1 = η∗2 = η∗3 = 0 η∗4 = 0.5 .

Therefore, the fourth conditional (b)[0.2] has to be adjusted to (b)[0.7] in
order to restore consistency (this is just one possible adjustment).

If a knowledge base features multiple minimal inconsistent subsets it may
not always be just a single conditional, that has to be modified in order to
restore consistency.

3.4 measuring inconsistency by distance minimization 65

Example 3.12. Consider the knowledge base R with 〈R〉 =def
(r1, r2, r3, r4, r5) and

r1 =def (a | c)[0.7] r2 =def (b | c)[0.8] r3 =def (a)[0.2]

r4 =def (b)[0.3] r5 =def (c)[0.5] .

Here, we have Inc∗(R2) = 0.25 and

η∗1 = 0 η∗2 = 0 η∗3 = 0.15

η∗4 = 0.1 η∗5 = 0

minimizes fInc∗ and obeys DevCons(R).
Note also, that there is no other minimal adjustment. Consider the

minimal inconsistent subset M1 = {r1, r3, r5} of R and let M(x, y, z) =
{(a | c)[x], (a)[y], (c)[z]} for x, y, z ∈ [0, 1]. As one can see M(x, y, z) is
consistent if xz ≤ y as (a | c)[x] and (c)[z] together imply that a has to hold
with at least a probability of xz. In order to restore consistency in M1 in a
minimal way we have to find x′, y′, z′ such that (0.7− x′)(0.5− z′) ≤ 0.2− y′

is true and |x′| + |y′| + |z′| is minimal. Due to the product on the left-
hand side of this inequality the only minimal modification is setting x′ = 0,
y′ = −0.15, and z′ = 0. A similar argumentation holds for the minimal
inconsistent subset M2 = {r2, r4, r5}. Consequently, η∗1 , . . . , η∗5 represent the
only minimal adjustment.

We now turn to formal properties of Inc∗.

Theorem 3.1. Inc∗ satisfies (Consistency), (Monotonicity), (Super-Additivity),
(Weak Independence), (Independence), and (Continuity).

The proof of Theorem 3.1 can be found in Appendix A on page 233. More-
over, the examples below and in Appendix C suggest that Inc∗ satisfies
(MinInc Separability). However, no formal proof has been found yet.

Conjecture 3.1. Inc∗ satisfies (MinInc Separability).

Observe also that Inc∗ does satisfy neither (Irrelevance of syntax) nor
(Penalty). The latter one has been mistakenly claimed in (Thimm, 2009a).
Consider the following counterexample.

Example 3.13. Consider the knowledge base R =def {r1, r2} given via

r1 =def (a)[0.7] r2 =def (a)[0.3]

and the probabilistic conditional r3 = (a)[0.5]. Then r3 is not free in
R′ =def R∪{r3} as MI(R′) = {{r1, r2}, {r1, r3}, {r2, r3}}. However, it holds

66 measuring inconsistency

that Inc∗(R) = Inc∗(R′) = 0.4 and therefore violating (Penalty). Consider
also the knowledge base R′′ =def {r1, r2, r4, r5} with r1 and r2 as above and

r4 =def (¬a)[0.3] r5 =def (¬a)[0.7] .

Note that it holds that R ≡cond R′′. However, it also holds that Inc∗(R′′) =
0.8 6= 0.4 = Inc∗(R) and therefore Inc∗ violates (Irrelevance of syntax).

Note also that Inc∗ does not satisfy (Normalization).

Example 3.14. Consider the knowledge base R =def {r1, . . . , r6} given via

r1 =def (a)[0.0] r2 =def (a)[1.0] r3 =def (b)[0.0]

r4 =def (b)[1.0] r5 =def (c)[0.0] r6 =def (c)[1.0] .

It follows that Inc∗(R) = 1.5 thus violating (Normalization).

However, the following observation can be made regarding an upper bound
of the value of Inc∗(R) for a knowledge base R.

Proposition 3.20. It holds that Inc∗(R) ≤ |R| for every knowledge base R.

Proof. Let R be a knowledge base with 〈R〉 = (r1, . . . , rn) and
ri = (ψi | φi)[di] for i = 1, . . . , n. Due to Proposition 3.17 on page 60

there are d′1, . . . , d′n ∈ [0, 1] such that {(ψ1 | φ1)[d′1], . . . , (ψn | φn)[d′n]} is
consistent. Therefore

Inc∗(R) ≤ |d1 − d′1|+ . . . + |dn − d′n| ≤ n = |R|

as |x− y| ≤ 1 for x, y ∈ [0, 1].

For a specific knowledge base R Proposition 3.20 states that the value of
Inc∗(R) is bounded above by the number of conditionals in R. By exploit-
ing this observation one can define a normalized inconsistency measure as
follows.

Definition 3.11 (Normalized MinDev inconsistency measure). Let Inc∗0 be
the function Inc∗0 : P((L(At) | L(At))pr)→ [0, 1] defined as

Inc∗0(R) =def

{
0 if R = ∅
Inc∗(R)
| R | otherwise

with a knowledge baseR. Inc∗0 is called the normalized MinDev inconsistency
measure.

Proposition 3.21. The function Inc∗0 satisfies (Consistency), (Continuity), and
(Normalization).

3.4 measuring inconsistency by distance minimization 67

The proof of Proposition 3.21 can be found in Appendix A on page 236.

Example 3.15. Consider the knowledge base R =def {r1, r2} given via

r1 =def (a)[0.7] r2 =def (a)[0.3] .

It holds that Inc∗0(R) = Inc∗(R)/2 = 0.2. Consider now the knowledge base
R′ =def R∪ {(b)[0.5]}. It holds that

Inc∗0(R′) =
Inc∗(R′)

3
= 0.13

and it follows that Inc∗0 violates (Monotonicity) and therefore (Super-Addi-
tivity) (by contraposition of the statement of Proposition 3.2 on page 47).
Notice also that r3 does not mention any atom inR but Inc∗0(R′) 6= Inc∗0(R).
Hence, Inc∗0 also violates (Weak Independence) and by contraposition of the
statements of Propositions 3.6 on page 49 and 3.7 on page 50, Inc∗0 violates
(Independence) and (MinInc Separability). Inc∗0 also fails to satisfy (Penalty)
as Inc∗ already fails to satisfy (Penalty). Consider the knowledge bases
R′ =def {r′1, r′2} and R′′ =def {r′1, r′2, r′3} given via

r′1 =def (a)[0.3] r′2 =def (a)[0.7] r′3 =def (¬a)[0.3] .

Then R′ ≡cond R′′ and Inc∗(R′) = 0.4 = Inc∗(R′′) but Inc∗0(R′) = 0.2 6=
0.4/3 = Inc∗0(R′′). Hence, Inc∗0 fails to satisfy (Irrelevance of Syntax).

One last thing to discuss is what changes in the above elaboration when
defining P |=pr (ψ | φ)[d] if and only if P(ψ | φ) = d and P(φ) > 0 in-
stead of P |=pr (ψ | φ)[d] if and only if P(ψ ∧ φ) = d · P(φ), cf. Section 2.3.
Consider the knowledge base R given by R = {(b | a)[0.8], (a)[0]}. When
using the definition of probabilistic satisfaction employed in this thesis we
get Inc∗(R) = 0. But by using the alternative definition of probabilistic
satisfaction we get that R is inconsistent. An appropriate value for this in-
consistency that respects our idea of distance as elaborated before would be
an infinitesimal value. This approach is followed in (Picado-Muiño, 2011)
where the distinction between consistent knowledge bases and inconsis-
tent ones with an infinitesimal inconsistency value is made explicit. In
(Picado-Muiño, 2011) our approach of measuring inconsistency is extended
by this notion and also a whole family of inconsistency measures is pre-
sented based on different p-norms. However, the focus of the discussion of
these inconsistency measures in (Picado-Muiño, 2011) is complementary to
our discussion. In particular, in (Picado-Muiño, 2011) no investigation on
rationality postulates as those presented in Section 3.2 is undertaken.

Determining the value of Inc∗(R) and Inc∗0(R) using non-convex optimiza-
tion techniques is—in general—a computationally demanding task due to
1.) the exponential many interpretations that have to be considered when

68 measuring inconsistency

setting up the optimization problem DevCons(R) and 2.) the lack of effi-
cient and reliable solvers for general non-convex optimization problems. As
the problem of determining the consistency of a knowledge is NP-complete
and a sub-problem of determining Inc∗(R) we cannot expect feasibility and
avoidance of 1.) above. However, in the following section we are going to
address the second issue by developing approximations for Inc∗(R) that
avoid the need for non-convex optimization.

3.4.2 Approximating Distance Minimization

One of the culprits of the high computational complexity of determining
the minimal distance to a consistent knowledge base is the non-convex
nature of the constraint set DevCons(R). In the following, we discuss
two simplifications of DevCons(R) to a set of linear equations in order to
benefit from the computational advantages of solving a linear optimization
problem, cf. (Boyd and Vandenberghe, 2004).

Consider again Equation (3.8) from page 63

∑
ω∈ModP(ψiφi)

αω = (di + ηi) · ∑
ω∈ModP(φi)

αω

which can also be written as

∑
ω∈ModP(ψiφi)

αω = di · ∑
ω∈ModP(φi)

αω + ηi · ∑
ω∈ModP(φi)

αω (3.13)

Obviously, the sole reason of DevCons(R) being non-linear is the second
term on the right-hand side of the above equation. We introduce new
variables µ1, . . . , µn and substitute the non-linear terms with these variables,
i. e., we define µi =def ηi ·∑ω∈ModP(φi)

αω for i = 1, . . . , n and write

∑
ω∈ModP(ψiφi)

αω = di · ∑
ω∈ModP(φi))

αω + µi (3.14)

The above term is linear in αω for ω ∈ Ω(At) and µi for i = 1, . . . , n.
Consider furthermore the constraints

− di ∑
ω∈ModP(φi)

αω ≤ µi ≤ (1− di) ∑
ω∈ModP(φi)

αω (3.15)

for all i = 1, . . . , n which as well are linear in αω for ω ∈ Ω(At) and µi for
i = 1, . . . , n. Equation 3.15 derives directly from Equation (3.10) on page 64

by replacing ηi with µi/∑ω∈ModP(φi)
αω. Let now DevConsLin(R) denote the set

of constraints (3.11) on page 64, (3.12) on page 64, (3.14), and (3.15) for a
knowledge base R and consider minimizing the function

g(µ1, . . . , µn) =def |µ1|+ . . . + |µn|

3.4 measuring inconsistency by distance minimization 69

with respect to DevConsLin(R). Note that minimizing g with respect to
DevConsLin(R) is a linear optimization problem. The following theorem
links solutions of this problem to solutions of the original problem.

Proposition 3.22. Let µ∗1 , . . . , µ∗n, α∗ω1
, . . . , α∗ωm satisfy DevConsLin(R). Then

η∗1 , . . . , η∗n, α∗ω1
, . . . , α∗ωm with

η∗i =def
µ∗i

∑ωk∈ModP(ai)
α∗ωk

(3.16)

for i = 1, . . . , n satisfy DevCons(R) (with 0/0 =def 0).

Proof. Let µ∗1 , . . . , µ∗n, α∗ω1
, . . . , α∗ωm satisfy DevConsLin(R) and define η∗1 , . . . ,

η∗n via (3.16) for i = 1, . . . , n. We have to show that η∗1 , . . . , η∗n, α∗ω1
, . . . , α∗ωm

satisfy Equations (3.8), (3.10), (3.11), and (3.12) on page 63. Equations (3.11)
and (3.12) are satisfied as they are already contained in DevConsLin(R). For
Equation (3.10) it holds that

0 ≤ di + η∗i ≤ 1

iff 0 ≤ di +
µ∗i

∑ωk∈ModP(ai)
α∗ωk

≤ 1

iff − di ∑
ω∈ModP(φi)

α∗ω ≤ µ∗i ≤ (1− di) ∑
ω∈ModP(φi)

α∗ω

which is the same as Equation (3.15) and therefore satisfied. For Equa-
tion (3.8) it holds that

∑
ω∈ModP(ψiφi)

α∗ω = (di + η∗i) · ∑
ω∈ModP(φi)

α∗ω

iff ∑
ω∈ModP(ψiφi)

α∗ω =

(
di +

µ∗i
∑ωk∈ModP(ai)

α∗ωk

)
∑

ω∈ModP(φi)

α∗ω

iff ∑
ω∈ModP(ψiφi)

α∗ω = di · ∑
ω∈ModP(φi))

α∗ω + µ∗i

which is the same as Equation (3.14) and therefore satisfied.

Note that in the definition of η∗i in Equation (3.16) it cannot be the case that
the denominator is zero while the numerator is not zero. This is due to the
fact that from P(a) = 0 it follows P(ab) = 0 as well. So Equation (3.14)
becomes 0 = di · 0 + µi and can only be satisfied if µi = 0 as well.

Proposition 3.23. Let η∗1 , . . . , η∗n, α∗ω1
, . . . , α∗ωm satisfy DevCons(R). Then µ∗1 ,

. . . , µ∗n, α∗ω1
, . . . , α∗ωm with

µ∗i =def η∗i · ∑
ωk∈Mod(φi)

α∗ωk
(3.17)

70 measuring inconsistency

for i = 1, . . . , n satisfy DevConsLin(R).

Proof. The proof that µ∗1 , . . . , µ∗n, α∗ω1
, . . . , α∗ωm satisfy DevConsLin(R) is anal-

ogous to the the proof of Proposition 3.22 and involves only replacing µ∗i
with its above definition.

The observations from Proposition 3.22 and Proposition 3.23 together imply
that both sets of constraints DevCons(R) and DevConsLin(R) are equivalent.
However, the equivalence of the constraint sets does not imply that the
optimization problems are equivalent as minimizing g differs (in general)
from minimizing fInc∗ .

Example 3.16. We continue Example 3.10 from page 63 and consider the
knowledge base R = {r1, r2, r3} with

r1 = (b | a)[1] r2 = (a)[1] r3 = (b)[0] .

Let ω1 =def ab, ω2 =def ab, ω3 =def ab, ω4 =def ab and abbreviate αωi by αi
for i = 1, . . . , 4. Then Equation (3.14) becomes (for i = 1, 2, 3)

α1 = α1 + α2 + µ1

α1 + α2 = 1 + µ2

α1 + α3 = µ3

Setting

µ1 =def 0 µ2 =def 0 µ3 =def 1

α1 =def 1 α2 =def 0 α3 =def 0 α4 =def 0

fulfills these constraints and the other constraints in DevConsLin(R) as well.
Furthermore, the assignment

µ′1 =def −
1
3

µ′2 =def −
1
3

µ′3 =def
1
3

α′1 =def
1
3

α′2 =def
1
3

α′3 =def 0 α′4 =def
1
3

also fulfills these constraints and the other constraints in DevConsLin(R)
as well. Both assignments minimize g with function value 1. However,
the values from the first assignment yield η∗1 = η∗2 = 0 and η∗3 = 1
(thus minimizing fInc∗) while the values from the second assignment yield
η∗1 = −1/2, η∗2 = −1/3, and η∗3 = 1/3 with a function value of 7/6 for fInc∗ .

Nonetheless, by exploiting Proposition 3.23 we obtain some relationship
between the solutions of these problems. Let V(R) be the set of vectors
(µ1, . . . , µn) such that µ1, . . . , µn satisfy DevConsLin(R). Then consider

3.4 measuring inconsistency by distance minimization 71

I≤(R) =def min
(µ1,...,µn)∈V(R)

g(µ1, . . . , µn) . (3.18)

By defining I≤ in this manner we obtain a lower approximation for the
value of Inc∗(R).

Proposition 3.24. It holds that I≤(R) ≤ Inc∗(R).

Proof. Let η∗1 , . . . , η∗n, α∗ω1
, . . . , α∗ωm minimize fInc∗ with respect to the con-

straints in DevCons(R). Define µ∗1 , . . . , µ∗n according to Equation (3.17).
By Proposition 3.23 if follows that µ∗1 , . . . , µ∗n, α∗ω1

, . . . , α∗ωm satisfy the con-
straints in DevConsLin(R) as well. Bearing in mind that it holds that

∑
ωk∈Mod(φi)

α∗ωk
≤ 1

for every i = 1, . . . , n it follows for µ∗∗1 , . . . , µ∗∗n , α∗∗ω1
, . . . , α∗∗ωm that minimize

g with respect to DevConsLin(R) that

Inc∗(R) = |η∗1 |+ . . . + |η∗n|

=

∣∣∣∣∣ µ∗1
∑ωk∈Mod(φ1)

α∗ωk

∣∣∣∣∣+ . . . +

∣∣∣∣∣ µ∗n
∑ωk∈Mod(φn) α∗ωk

∣∣∣∣∣
≥ |µ∗1 |+ . . . + |µ∗n|
≥ |µ∗∗1 |+ . . . + |µ∗∗n |
= I≤(R)

For a knowledge base R, determining the value of I≤(R) is computation-
ally easier as determining the value of Inc∗(R) as the former only needs to
solve a linear optimization problem. Nonetheless, the exponential blow-up
for setting up the optimization problem itself remains.

By exploiting Proposition 3.22 we also gain an upper approximation for
Inc∗(R). Consider the function gH defined via

gH(µ1, . . . , µn, αω1 , . . . , αωm) =def |µ1|ld |µ1|+ . . . + |µn|ld |µn|+
αω1 ld αω1 + . . . + αωm ld αωm

and let VH(R) denote the set of vectors (µ1, . . . , µn, αω1 , . . . , αωm) such that
µ1, . . . , µn, αω1 , . . . , αωm minimize gH with respect to DevConsLin(R).

Proposition 3.25. It holds that |VH(R)| = 1 for every knowledge base R.

Proof. Each constraint in DevConsLin(R) is linear and therefore con-
vex. As the function h(µ1, . . . , µn, αω1 , . . . , αωm) = −|µ1|ld |µ1| − . . . −
|µn|ld |µn| − αω1 ld αω1 − . . . − αωm ld αωm is the same as the entropy of
(µ1, . . . , µn, αω1 , . . . , αωm)—which is strictly concave—it follows that the

72 measuring inconsistency

function gH = −h(µ1, . . . , µn, αω1 , . . . , αωm) is strictly convex. Minimizing a
strictly convex function over a convex set has a unique solution (Boyd and
Vandenberghe, 2004).

Now consider

I≥(R) =def |η∗1 |+ . . . + |η∗n| (3.19)

for η∗1 , . . . , η∗n stemming from the application of Equation (3.16) for some
µ∗1 , . . . , µ∗n, α∗ω1

, . . . , α∗ωm that minimize gH with respect to DevConsLin(R).
This definition is sound as µ∗1 , . . . , µ∗n, αω1 , . . . , αωm are uniquely determined
due to Proposition 3.25.

Note that we could have defined I≥ using another strictly convex func-
tion than gH . We choose to use the negative entropy only as an example.

Corollary 3.2. It holds that I≥(R) ≥ Inc∗(R).

Proof. Let µ∗1 , . . . , µ∗n, α∗ω1
, . . . , α∗ωm minimize gH with respect to the set of

constraints DevConsLin(R). Define η∗1 , . . . , η∗n according to Equation (3.16).
By Proposition 3.22 it follows that η∗1 , . . . , η∗n, α∗ω1

, . . . , α∗ωm satisfy the set of
constraints DevCons(R) as well. Therefore, for η∗∗1 , . . . , η∗∗n , α∗∗ω1

, . . . , α∗∗ωm
minimizing fInc∗ it holds that

Inc∗(R) = |η∗∗1 |+ . . . + |η∗∗n | ≤ |η∗1 |+ . . . + |η∗n| = I≥(R)

Determining the value of I≥(R) is computationally easier as determining
the value of Inc∗(R) due to the same reasons as for I≤. By defining

I≤0 (R) =def

{
0 if R = ∅
I≤(R)
| R | otherwise

I≥0 (R) =def

{
0 if R = ∅
I≥(R)
| R | otherwise

we also obtain approximations for Inc∗0 .

Proposition 3.26. For every knowledge base R it holds that I≤0 (R) ≤ Inc∗0 ≤
I≥0 (R).

By replacing I≤0 , Inc∗0 , and I≥0 with their definitions based on I≤, Inc∗, and
I≥, respectively, the proof for the above proposition is easy to see.

The general approximation quality of both I≤0 and I≥0 is hard to as-
sess and depends heavily on the actual knowledge base. Appendix C on
page 253ff. contains some examples that illustrate the approximation qual-
ity of I≤ and I≥. As one can see, the function I≤ almost always coincides
with the function Inc∗ while I≥ deviates to Inc∗ by a factor of at most 2.2.

3.4 measuring inconsistency by distance minimization 73

3.4.3 Extensions

In the following, we consider two extensions of the underlying probabilis-
tic framework of probabilistic conditional logic and discuss the applicability
of the MinDev inconsistency measures in these extensions. We investigate
inconsistency measurement in the framework of bounded probabilistic con-
ditionals (see Section 2.3) and within the framework of linear probabilistic
knowledge bases, cf. (Paris, 1994; Daniel, 2009). We restrain our attention to
the inconsistency measure Inc∗ but the discussion and the technical results
carry over to the approximations I≤ and I≥ in a similar fashion.

Bounded Probabilistic Conditionals

In Section 2.3 we presented bounded probabilistic conditionals, i. e., condition-
als of the form (ψ | φ)[l, u] with φ, ψ ∈ L(At), l, u ∈ [0, 1] and l ≤ u denot-
ing lower and upper bounds to the probability of the conditional. Given a
knowledge base R consisting of bounded probabilistic conditionals a prob-
ability function P satisfies R, denoted by P |=pr R, if and only if for every
conditional (ψ | φ)[l, u] ∈ R it holds that P(φ) = 0 or P(ψ | φ) ∈ [l, u].
Using this definition we can consider the problem of inconsistency mea-
surement in the same way as above. Furthermore, we can easily extend
the approach of inconsistency measurement using distance minimization
to bounded probabilistic conditionals as follows.

We extend the notion of the characteristic function to include bounded
knowledge bases as well. In the following, let R be a knowledge base of
bounded probabilistic conditionals with

〈R〉 = ((ψ1 | φ1)[l1, u1], . . . , (ψn | φn)[ln, un]) .

The characteristic function ΛR for R is the function

ΛR : ([0, 1]× [0, 1])|R| → P((L(At) | L(At))pr,pr)

with

ΛR((x1, y1), . . . , (xn, yn)) =def {(ψ1 | φ1)[x1, y1], . . . , (ψn | φn)[xn, yn]} .

Then we can extend the notion of the MinDev inconsistency measure for
bounded conditionals as follows.

Definition 3.12 (MinDev inconsistency measure for bounded condition-
als). Let R be a knowledge base of bounded conditionals with 〈R〉 =
((ψ1 | φ1)[l1, u1], . . . , (ψn | φn)[ln, un]). Let Inc∗b : P((L(At) | L(At))pr,pr) →
[0, ∞) be defined as

Inc∗b(R) =def min{|l1 − x1|+ |u1 − y1|+ . . . + |ln − xn|+ |un − yn| |
ΛR((x1, y1), . . . , (xn, yn)) is consistent} .

74 measuring inconsistency

Inc∗b is called the MinDev inconsistency measure for bounded conditionals.

Proposition 3.27. LetR be a knowledge base of bounded conditionals with 〈R〉 =
((ψ1 | φ1)[l1, u1], . . . , (ψn | φn)[ln, un]) and let (x∗1 , y∗1), . . . , (x∗n, y∗n) ∈ [0, 1]2

such that

Inc∗b(R) = |l1 − x∗1 |+ |u1 − y∗1 |+ . . . + |ln − x∗n|+ |un − y∗n| (3.20)

and ΛR((x∗1 , y∗1), . . . , (x∗n, y∗n)) is consistent. Then for every i = 1, . . . , n it cannot
be the case that both x∗i 6= li and y∗i 6= ui.

Proof. Without loss of generality assume that x∗1 6= l1 and y∗1 6= u1. Let
P be a probability function with P |=pr ΛR((x∗1 , y∗1), . . . , (x∗n, y∗n)) and con-
sider p = P(ψ1 | φ1). It follows that p ∈ [x∗1 , y∗1] and p /∈ [l1, u1], otherwise
ΛR((0, 0), (x∗2 , y∗2), . . . , (x∗n, y∗n)) would be consistent, contradicting the min-
imality in Equation (3.20). If p < li then p ∈ [x∗1 , u1] and ΛR((x∗1 , 0), (x∗2 , y∗2),
. . . , (x∗n, y∗n)) would be consistent, contradicting the minimality in Equa-
tion (3.20). It follows that p > ui, so p ∈ [l1, y∗1] and ΛR((0, y∗1), (x∗2 , y∗2), . . . ,
(x∗n, y∗n)) is consistent, contradicting again the minimality in Equation (3.20).
It follows that at either x∗1 = l1 or y∗1 = u1.

Proposition 3.28. For R = {(ψ1 | φ1)[l1, u1], . . . , (ψn | φn)[ln, un]} with li =
ui for all i = 1, . . . , n it follows that Inc∗b(R) = Inc∗(R′) with R′ =def
{(ψ1 | φ1)[l1], . . . , (ψn | φn)[ln]}.

Proof. Let R be a knowledge base of bounded conditionals with 〈R〉 =
((ψ1 | φ1)[l1, u1], . . . , (ψn | φn)[ln, un]) and let R′ be a knowledge base with
〈R′〉 = (ψ1 | φ1)[l1], . . . , (ψn | φn)[ln]. The proof of the claim follows directly
from the fact that P |=pr (ψ | φ)[d] if and only if P |=pr (ψ | φ)[d, d] for
every probability function P. Therefore, for x∗1 , . . . , x∗n with Inc∗(R′) =
|l1 − x∗1 |+ . . . + |ln − x∗n| and ΛR′(x∗1 , . . . , x∗n) is consistent it follows that

ΛR((min{x∗1 , l1}, max{x∗1 , u1}), . . . , (min{x∗n, ln}, max{x∗n, un}))

is consistent as well and (due to li = ui for i = 1, . . . , n)

Inc∗b(R) ≥ |l1 −min{x∗1 , l1}|+ |u1 −max{x∗1 , u1}|+ . . .+

|ln −min{x∗n, ln}|+ |un −max{x∗n, un}|
= |l1 − x1|+ . . . + |ln − xn| = Inc∗(R′)

Similarly, one obtains Inc∗b(R) ≤ Inc∗(R′) by starting with
Inc∗b(R′) = |l1 − x∗1 | + |u1 − y∗1 | + . . . + |ln − x∗n| + |ui − y∗n| such that
ΛR((x∗1 , y∗1), . . . , (x∗n, y∗n)) is consistent and then applying Proposi-
tion 3.27.

As before, Inc∗b can be phrased as the solution of an optimization problem.
For every i = 1, . . . , n we introduce variables ηl

i , ηu
i ∈ [0, 1] that measure the

minimal deviation of the value of the probabilistic conditional (ψi | φi)[li, ui]

3.4 measuring inconsistency by distance minimization 75

to the lower and upper side, respectively. Let αω denote the probability of
some possible world ω ∈ Ω(At). Now, for every conditional (ψi | φi)[li, ui],
i = 1, . . . , n, consider the constraints

∑
ω∈ModP(ψi∧φi)

αω ≥ (li − ηl
i) · ∑

ω∈ModP(φi)

αω (3.21)

∑
ω∈ModP(ψi∧φi)

αω ≤ (ui + ηu
i) · ∑

ω∈ModP(φi)

αω (3.22)

to comprehend for the fact that the modified conditional (ψi | φi)[li− ηl
i , ui +

ηu
i] is satisfiable. Further integrity constraints are given via

ηl
1 ≤ l1, ηu

1 ≤ 1− u1, . . . , ηl
n ≤ ln, ηu

n ≤ 1− un (3.23)

∑
ω∈Ω(At)

αω = 1 (3.24)

αω ≥ 0 for all ω ∈ Ω(At) . (3.25)

We denote by DevConsLinb(R) the set of constraints (3.21), (3.22), (3.23),
(3.24), and (3.25) for a knowledge base R of bounded probabilistic condi-
tionals. Consider minimizing the function

fb(η
l
1, ηu

1 , . . . , ηl
n, ηu

n) =def |ηl
1|+ |ηu

1 |+ · · ·+ |ηl
n|+ |ηu

n |

with respect to DevConsLinb(R). By construction it follows that Inc∗b(R) =
f b(ηl

1, ηu
1 , . . . , ηl

n, ηu
n) if ηl

1, ηu
1 , . . . , ηl

n, ηu
n minimize fb with respect to the con-

straints in DevConsLinb(R).

Linear Probabilistic Knowledge Bases

Probabilistic conditionals are a natural means to represent probabilistic
beliefs but fail to represent certain more complex pieces of information.
Consider the statement “The probability of Anna winning some competition is at
least twice as large as the probability of Bob winning some competition”. Clearly,
there is no way of expressing these statements using solely probabilistic
conditionals. In the following, we consider linear probabilistic knowledge
bases to adhere for this lack of expressivity and show how the previous
discussion on inconsistency measurement can be applied to this framework.

A linear probabilistic constraint c is a linear constraint of the form

c : b ≥ h1〈φ1〉p + . . . + hm〈φm〉p (3.26)

with formulas φ1, . . . , φm ∈ L(At), and real values b, h1, . . . , hm ∈ R. Let K
denote the term on the right-hand side of Equation (3.26). As a notational
convenience we sometimes write linear constraints of the form b ≤ K
(equivalent to −b ≥ −K) and b = K (equivalent to the two constraints
b ≥ K and b ≤ K).

76 measuring inconsistency

A finite set of probabilistic constraints R = {c1, . . . , cn} is called a lin-
ear probabilistic knowledge base, cf. (Daniel, 2009). A probability function
P : Ω(At) → [0, 1] satisfies a probabilistic constraint c of the form (3.26),
denoted by P |=pr c, if and only if

b ≥ h1P(φ1) + . . . + hmP(φm) . (3.27)

A probability function P satisfies a knowledge baseR, denoted by P |=pr R,
if and only if P satisfies every constraint in R, i. e., for every c ∈ R it holds
that P |=pr c.

Example 3.17. Let a denote the proposition “Anna wins some competition”
and b denote the “Bob wins some competition”. Then the statement “The
probability of Anna winning some competition is at least twice as large as the
probability of Bob winning some competition” can be expressed as a linear
probabilistic constraint 0 ≤ 〈a〉p − 2〈b〉p.

Example 3.18. The constraint imposed by a probabilistic conditional r with
r = (ψ | φ)[d] can be represented as a linear probabilistic constraint via
0 = 〈φ ∧ ψ〉p − d〈φ〉p. Furthermore, the constraint imposed by a bounded
probabilistic conditional (ψ | φ)[l, u] can be represented as the two linear
probabilistic constraints 0 ≤ 〈φ ∧ ψ〉p − l〈φ〉p and 0 ≥ 〈φ ∧ ψ〉p − u〈φ〉p.

As the previous examples show linear probabilistic knowledge bases are a
strict generalization of both probabilistic conditional knowledge bases and
probabilistic conditional knowledge bases with bounded conditionals.

A probabilistic constraint c is said to be in canonical form if it has the form

0 ≥ ∑
ω∈Ω(At)

hω〈ω〉p

for some hω ∈ [−1, 1]. Note that every probabilistic constraint can be
rewritten to be in canonical form (Paris, 1994; Daniel, 2009). As before,
we assume that every probabilistic constraint c is self-consistent, i. e., there
is always a P with P |=pr c. Using linear probabilistic knowledge bases we
can consider the problem of inconsistency measurement in the same way
as before and develop an approach of inconsistency measurement using
distance minimization for this framework as follows.

Let R be a linear probabilistic knowledge base with 〈R〉 = (c1, . . . , cn).
Without loss of generality we assume that every ci is in canonical form

ci : 0 ≥ ∑
ω∈Ω(At)

hi
ω〈ω〉p

with hi
ω ∈ [−1, 1] for every ω ∈ Ω(At) and i = 1, . . . , n. For every i =

1, . . . , n and ω ∈ Ω(At) we introduce a variable τi
ω ∈ R that measures the

minimal deviation for the corresponding hi
ω. Let αω denote the probability

3.5 related work 77

of a possible world ω ∈ Ω(At). Now, for every constraint ci, i = 1, . . . , n,
consider the constraint

0 ≥ ∑
ω∈Ω(At)

(hi
ω + τi

ω)αω (3.28)

to comprehend for the fact that the linear probabilistic knowledge base R′
with 〈R′〉 = (c′1, . . . , c′n) of modified probabilistic constraints

c′i : 0 ≥ ∑
ω∈Ω(At)

(hi
ω + τi

ω)〈ω〉p (i = 1, . . . , n)

is satisfiable. As before, further integrity constraints are given via

∑
ω∈Ω(At)

αω = 1 and (3.29)

αω ≥ 0 for all ω ∈ Ω(At) . (3.30)

We denote with DevConsLinlp(R) the set of constraints (3.28), (3.29), and
(3.30) for a linear probabilistic knowledge base R. Consider minimizing
the function

flp((τ
i
ω)

i=1,...,n
ω∈Ω(At)

) =def

n

∑
i=1

∑
ω∈Ω(At)

|τi
ω|

with respect to DevConsLinlp(R). Let Inc∗lp(R) denote the solution for flp
in this optimization problem.

Proposition 3.29. Let R be a linear probabilistic knowledge base with 〈R〉 =
(c1, . . . , cn). If ci ∈ R is of the form

ci : 0 = 〈φiψi〉p − di〈φi〉p

for all i = 1, . . . , n then

Inc∗lp(R) = Inc∗(R′)

with R′ = {(ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]}.

Proof. The proof directly follows from the fact that P |=pr (ψ | φ)[d] if and
only if P |=pr (0 = 〈φψ〉p − di〈φ〉p) for every probability function P (see
also the proof of Proposition 3.28 on page 74).

3.5 related work

The problem of measuring inconsistency in probabilistic knowledge bases
is relatively novel and has—to our knowledge—only been addressed be-
fore in (Rödder and Xu, 2001), (Daniel, 2009), and (Thimm, 2009a). While

78 measuring inconsistency

our previous discussion on inconsistency measurement has been based on
the work (Thimm, 2009a) an evaluation and comparison with the works
(Rödder and Xu, 2001) and (Daniel, 2009) is given below. We also have
a closer look on the approach of η-consistency (Knight, 2001, 2002) which
uses probability theory to measure inconsistencies in classical theories. Fur-
ther related work is also concerned with measuring inconsistency in clas-
sical theories, see e. g. the works by Hunter et. al. (Hunter, 2002, 2003;
Konieczny et al., 2003; Hunter and Konieczny, 2004; Grant and Hunter,
2006; Hunter and Konieczny, 2006, 2008; Grant and Hunter, 2008; Hunter
and Konieczny, 2010). While (Hunter, 2002, 2003; Konieczny et al., 2003;
Hunter and Konieczny, 2004, 2006, 2008, 2010) deal with measuring incon-
sistency in propositional logic, the works (Grant and Hunter, 2006, 2008)
consider first-order logic. Those works also take a principled approach to
measuring inconsistency and many of our properties have been adapted
from e. g. (Hunter and Konieczny, 2006, 2008). Furthermore, the inconsis-
tency measures presented in Section 3.3 are straightforward translations of
inconsistency measures from those works. However, Hunter et. al. are
working with classical theories and as such do not have to deal with proba-
bilities as a means for knowledge representation. In order to adhere for the
presence of probabilities we introduced the MinDev inconsistency measure
which has no correspondent in the classical setting.

We go on by taking a closer look on the works by Knight (Knight, 2001,
2002), Rödder and Xu (Rödder and Xu, 2001), and Daniel (Daniel, 2009).

3.5.1 η-Consistency

The works (Knight, 2001, 2002) employ probability theory to measure in-
consistency in classical theories. Let At be a propositional signature. Then
a set of propositional sentences Φ ⊆ L(At) is η-consistent if there is a prob-
ability function P on L(At) in the sense of Section 2.3 such that P(φ) ≥ η

for all φ ∈ Φ. The rationale behind this definition is that the probability
function P measures the compatibility of the interpretations of L(At) from
the point of view of P. The higher the probability P(φ) of some φ ∈ Φ the
better φ can be explained by the interpretations of L(At) with respect to P.
A set Φ ⊆ L(At) is maximally η-consistent if Φ is η-consistent and for every
η′ > η it is not η′-consistent. Consider At = {a} and Φ = {a,¬a}. Then
Φ is maximally 1/2-consistent as P with P(a) = 1/2 and P(¬a) = 1/2 is a
valid probability function and there can be no probability function P′ such
that P′(a) > 1/2 and P′(¬a) > 1/2. It can be shown, see (Knight, 2002), that
for every Φ ⊆ L(At) there is always some η with 0 ≤ η ≤ 1 such that Φ
is maximally η-consistent. In particular, for consistent Φ it holds that Φ is
maximally 1-consistent.

From a categorical point of view the concept of η-consistency is hardly
comparable to our notion of inconsistency measures as (Knight, 2001, 2002)
use a classical knowledge representation formalism and we employ a prob-
abilistic framework. However, a translation of η-consistency to probabilis-

3.5 related work 79

tic conditional logic seems to be feasible as we already translated several
other inconsistency measures for classical logic to probabilistic conditional
logic. The main idea of η-consistency lies in finding a probability func-
tion on the interpretations of the knowledge base that maximizes the prob-
ability of the sentences in the knowledge base. When switching to our
probabilistic framework the interpretations for knowledge bases are prob-
ability functions themselves. Then, a straightforward application of the
paradigm of η-consistency to our framework may be defined as follows. Let
P̂ : PP(At)→ [0, 1] be a probability function on PP(At) such that P̂(P) > 0
only for finitely many P ∈ PP(At). Define

P̂(r) =def ∑
P∈PP(At),P|=prr

P̂(P)

for a probabilistic conditional r. This means, that the probability (in terms
of P̂) of a probabilistic conditional is the sum of the probabilities of probabil-
ity functions that satisfy r. By defining P̂(r) as above we strictly follow the
idea of (Knight, 2001, 2002). While in (Knight, 2001, 2002) formulas of the
object level are propositional formulas, here formulas of the object level are
probabilistic conditionals. Accordingly, we define the probability of a for-
mula of the object level as the sum of the probabilities of all interpretations
satisfying this formula, i. e., the sum of the probabilities P̂(P) of probability
functions P that satisfy the probabilistic conditional. Then, a knowledge
base R is η-consistent if there is a probability function P̂ on PP(At) such
that P̂(r) ≥ η for every r ∈ R. Note that this definition as well is a straight-
forward translation from the concept of probability functions on classical
logic to the concept of probability functions on probability functions on clas-
sical logic. In particular, given a probability function P̂ : PP(At) → [0, 1],
the higher the probability P̂(r) for some probabilistic conditional r the bet-
ter r can be explained by the probability functions in PP(At) from the point
of view of P̂.

At a first glance, this definition also preserves many properties from η-
consistency for classical theories. In particular, we can make the following
observations.

Proposition 3.30. If R is consistent then R is maximally 1-consistent.

Proof. As R is consistent let P be a probability function such that P |=pr R.
Define P̂P via P̂P(P) = 1 and P̂P(P′) = 0 for all P′ ∈ PP(At) with P′ 6= P.
It follows that R is 1-consistent with respect to P̂P and as there can be
no η′ > 1 such that R is η′-consistent it follows that R is maximally 1-
consistent.

The following proposition is a direct extension of Theorem 2.12 in (Knight,
2002).

Proposition 3.31. If MI(R) = {R} then R is maximally (1− 1/|R|)-consistent.

80 measuring inconsistency

Proof. Let R = {r1, . . . , rn} and let R1, . . . ,Rn be defined via Ri =def
R \ {ri} for i = 1, . . . , n. Each Ri for i = 1, . . . , n is consistent as R is
minimally inconsistent. Therefore, let P1, . . . , Pn be probability functions
with Pi |=pr Ri for i = 1, . . . , n. Define P̂ through P̂(Pi) =def 1/n and P̂ = 0
for all P ∈ PP(At) with P /∈ {P1, . . . , Pn}. Note that every ri is contained in
every Rj with j 6= i. Therefore, all probability functions Pj with j 6= i satisfy
ri and it follows

P̂(ri) = P̂(P1) + . . . + P̂(Pi−1) + P̂(Pi+1) + . . . + P̂(Pn)

=
n− 1

n
= 1− 1

n

It follows that P̂(ri) = 1 − 1/n for every i = 1, . . . , n and, hence, R is
(1 − 1/n)-consistent. It is also easy to see that there can be no P̂′ with
P̂′(ri) > 1− 1/n for all i = 1, . . . , n, see (Knight, 2002) for details.

Although it seems that η-consistency is apt for measuring inconsistency in
probabilistic conditional logic it exhibits some problems as the following
example shows.

Example 3.19. Let R =def {r1, r2} and R′ =def {r′1, r′2} be knowledge bases
given via

r1 =def (a)[0.51] r2 =def (a)[0.49]

r′1 =def (a)[0.9] r′2 =def (a)[0.1]

Note that R′ is far more inconsistent than R with respect to the mini-
mal distance to a consistent knowledge base, in particular it holds that
Inc∗(R) = 0.02 and Inc∗(R′) = 0.8. However, the notion of η-consistency
cannot differentiate between those knowledge base and it is easy to see
that both R and R′ are maximally 1/2-consistent (this is an implication of
Proposition 3.31).

The above observation suggests that η-consistency suffers from the same
disadvantages as the inconsistency measures presented in Section 3.3. How-
ever, we leave it for future work to investigate the notion of η-consistency
further for probabilistic conditional logic.

3.5.2 An Inconsistency Measure based on Generalized Divergence

The work discussed above comes from the field of measuring inconsistency
in classical theories. We now turn to an inconsistency measure that has
been explicitly developed for the use in probabilistic conditional logic. In
(Rödder and Xu, 2001) an inconsistency measure is presented that bases on
the notion of generalized divergence which generalizes cross-entropy. Given

3.5 related work 81

vectors ~y,~z ∈ (0, 1]n with ~y = (y1, . . . , yn) and ~z = (z1, . . . , zn), the general-
ized divergence D(~y,~z) from ~y to ~z is defined

D(~y,~z) =def

n

∑
i=1

yild
yi
zi
− yi + zi .

We abbreviate further

D2(~y,~z) =def D(~y,~z) + D(~z,~y) =
n

∑
i=1

yild
yi
zi

+ zild
zi
yi

.

Let R be a knowledge base with 〈R〉 = (r1, . . . , rn) and ri = (ψi | φi)[di] for
i = 1, . . . , n. Then the inconsistency measure Incgd is defined via

Incgd(R) =def min{D2(~y,~z) | P ∈ PP(At) and

yi = (1− di)P(ψiφi) and zi = diP(ψiφi) for i = 1, . . . , n} . (3.31)

Let ~y∗,~z∗, P∗ be some parameters such that D2(~y∗,~z∗) is minimal and y∗i =
(1− di)P∗(ψiφi) and z∗i = diP∗(ψiφi) are satisfied for i = 1, . . . , n. Then it
follows that

y∗i − z∗i = P∗(ψiφi)− diP∗(φi) . (3.32)

for i = 1, . . . , n. Minimizing D2(~y,~z) amounts to finding a probability
function P∗ such that ~y∗ and ~z∗ are as close as possible to each other
with respect to D2. In particular, if there is a P∗ such that y∗ = z∗ it
follows that P∗(ψiφi)− diP∗(φi) = 0 and therefore P∗ |=pr (ψi | φi)[di] (for
i = 1, . . . , n), i. e, R is consistent. Furthermore, the more y∗i differs from
z∗i the more P∗(ψi | φi) differs from di (for i = 1, . . . , n). The measures
Incgd and Inc∗ are similar in spirit as they both minimize the distance of a
knowledge base to a consistent one. However, the implementation of those
measures is different as they use different distance measures. The MinDev

inconsistency measure uses the 1-norm distance and the measure Incgd uses
generalized divergence.

In (Rödder and Xu, 2001), no justification is given why Incgd is a reason-
able inconsistency measure for probabilistic conditional knowledge bases.
In particular, no motivation is given for the use of generalized divergence
as a distance measure and its commonsense interpretation. However, due
to the similarity of Incgd and Inc∗ (in terms of the employed paradigm) it
follows that Incgd satisfies the same properties as Inc∗.

Theorem 3.2. The function Incgd satisfies (Consistency), (Monotonicity), (Super-
Additivity), (Weak Independence), (Independence), and (Continuity).

The proof of Theorem 3.2 can be found in Appendix A on page 236. As for
(MinInc Separability) we can also only conjecture its satisfaction for Incgd.

82 measuring inconsistency

Conjecture 3.2. The function Incgd satisfies (MinInc Separability).

The function Incgd fails to satisfy (Irrelevance of Syntax) for the same rea-
sons as Inc∗ fails to satisfy (Irrelevance of syntax), i. e., Incgd exhibits the
same problem as Inc∗ in Example 3.13 on page 65. This also applies to the
properties (Penalty) and (Normalization).

The difference between Inc∗ and Incgd lies mainly in the scaling of the
inconsistency values. Consider the knowledge bases R1, R2, and R3 given
via

R1 =def {(b | a)[0.9], (a)[0.9], (b)[0.1]}
R2 =def {(b | a)[0.9], (a)[0.9], (b)[0.01]}
R3 =def {(b | a)[0.9], (a)[0.9], (b)[0.001]}

As one can see, the difference between the above knowledge bases lie only
in the value of the last probabilistic conditional (b)[x] which has been mod-
ified by the value −0.09 from the first to the second knowledge base and
by −0.009 from the second to the third knowledge base. The inconsistency
values of R1, R2, and R3 with respect to the inconsistency measures Inc∗

and Incgd amount to2

Incgd(R1) ≈ 2.536 Inc∗(R1) = 0.71

Incgd(R2) ≈ 4.361 Inc∗(R2) = 0.8

Incgd(R3) ≈ 5.904 Inc∗(R3) = 0.809 .

The differences of the inconsistency values with respect to Inc∗ perfectly
resemble the modifications in the original knowledge bases, i. e., it holds
that

Inc∗(R2)− Inc∗(R1) = 0.09

Inc∗(R3)− Inc∗(R2) = 0.009 .

This is not the case for the measure Incgd as the differences of the inconsis-
tency values amount to

Incgd(R2)− Incgd(R1) = 1.825

Incgd(R3)− Incgd(R2) = 1.543 .

Note also that the ratio of the change in the inconsistency value does not
match the modifications of the knowledge bases. More specifically, the
change of the probabilities from R1 to R2—the probability of (b) has been
changed by the value 0.09 from 0.1 to 0.01—is ten times more drastic than
the change of the probabilities from R2 to R3—by the value 0.009from 0.01

2 The inconsistency values with respect to Incgd have been computed using the SPIRIT
expert system shell version 3.7.3.2.

3.5 related work 83

to 0.001. However, the ratio in the change of the inconsistency values with
respect to Incgd amounts to

1.825
1.543

≈ 1.183

while for the measure Inc∗ we get 0.09/0.009 = 10.
We argue that this linear behavior of Inc∗ with respect to modifications

is more intuitive as it helps the knowledge engineer to assess the severity
of the inconsistency in a better way. An inconsistency value x = Inc∗(R)
can be roughly interpreted as the need to change the probabilities of the
conditionals by a total of x. By also taking the number of conditionals in
the knowledge base into account the knowledge engineer gets a good idea
of the effort needed to manually repair the knowledge base. As for Incgd,
there is no linear connection between the inconsistency value and the effort
needed to restore consistency. However, one might also argue that other cri-
teria are more appropriate for comparing inconsistency values than those
linear measures, e. g. comparing the values on a logarithmic scale. In par-
ticular, as conditional probabilities are defined as the ratio of probabilities
differences in conditional probabilities may have different effects depend-
ing on the actual conditional probability. For example, varying conditional
probabilities between values 0.4 and 0.5 has by far less effect (in terms of
the underlying probabilistic model) than varying the probability between
0 and 0.1, as the latter contains the transition between strict and uncertain
belief3. We leave it for future work to investigate this topic.

3.5.3 Candidacy Degrees of Best Candidates

The motivation of the work (Daniel, 2009) is very similar to ours, namely,
probabilistic reasoning with inconsistent information. Among others, one
contribution of (Daniel, 2009) is an inconsistency measure on knowledge
bases of probabilistic constraints. In particular, the work (Daniel, 2009) fo-
cuses on linear probabilistic knowledge bases as discussed in Section 3.4.3
but also considers generalizations such as polynomial probabilistic knowl-
edge bases. However, in order to compare it to our work we simplify several
notations and present the inconsistency measure Inch

µ of (Daniel, 2009) only
for probabilistic conditional logic.

The central notion of (Daniel, 2009) is the candidacy function. A candi-
dacy function is similar to a fuzzy set (Gerla, 2001) as it assigns a degree of
membership of a probability function belonging to the models of a knowl-
edge base. For the rest of this section let At be some propositional signa-
ture. Then a candidacy function C is a function C : PP(At) → [0, 1]. A u-
niquely determined candidacy function CR can be assigned to a (consistent
or inconsistent) knowledge base R as follows. For a probability function
P ∈ PP(At) and a set of probability functions S ⊆ PP(At) let d(P, S) denote

3 I thank Gabriele Kern-Isberner for pointing this out to me.

84 measuring inconsistency

the distance of P to S with respect to the Euclidean norm, i. e., d(P, S) is
defined via

d(P, S) =def inf


√

∑
ω∈Ω(At)

(P(ω)− P′(ω))2 | P′ ∈ S

 .

Let h : R+ → (0, 1] be a strictly decreasing, positive, and continuous log-
concave function with h(0) = 1. Then the candidacy function Ch

R for a
knowledge base R is defined as

Ch
R(P) =def ∏

r∈R
h
(√

2|At|d(P,ModPr({r}))
)

for every P ∈ PP(At). Note that the definition of the candidacy function
Ch
R depends on the size of the signature At. The intuition behind this

definition is that a probability function P that is near to the models of each
probabilistic conditional in R gets a high candidacy degree in Ch

R(P). It is
easy to see that it holds that Ch

R(P) = 1 if and only if P |=pr R. Using the
candidacy function Ch

R the inconsistency measure Inch
µ can be defined via

Inch
µ(R) =def 1− max

P∈PP(At)
Ch
R(P)

for a knowledge base R. In (Daniel, 2009) it is shown that Inch
µ satisfies

(among others) the following properties.

Proposition 3.32. Inch
µ satisfies (Consistency), (Monotonicity), (Continuity), and

(Normalization).

The function Inch
µ does not satisfy (Irrelevance of Syntax) as we show in the

following example.

Example 3.20. Let R =def {r1, r2} and R′ =def {r1, r2, r3, r4} be knowledge
bases with

r1 =def (a)[0.7] r2 =def (a)[0.3]

r3 =def (¬a)[0.3] r4 =def (¬a)[0.7]

Note that R1 ≡cond R2 as r1 ≡pr r3 and r2 ≡pr r4. Let P ∈ PP(At) be
some probability function, h : R+ → (0, 1] a strictly decreasing, positive,
and continuous log-concave function with h(0) = 1 and define

xi =def h
(√

2|At|d(P,ModPr({ri}))
)

for i = 1, . . . , 4. Note that x1 = x3 as ModPr({r1}) = ModPr({r3}) and
x2 = x4 as ModPr({r2}) = ModPr({r4}). As R is inconsistent it follows that

3.5 related work 85

it cannot be the case that both x1 = x3 = 1 and x2 = x4 = 1 because P
cannot be a model of both r1 and r2. It follows that x1x2 < 1 and x3x4 < 1
and hence

Ch
R(P) = x1x2 > x1x2x3x4 = Ch

R′(P) .

Therefore, for every P ∈ PP(At) it holds that Ch
R(P) > Ch

R′(P) and conse-
quently Inch

µ(R) < Inch
µ(R′) violating (Irrelevance of Syntax).

In Example 3.2 on page 51 we talked about the issue of an inconsistency
measure satisfying all three of (Consistency), (Super-Additivity), and (Nor-
malization). We showed that an inconsistency measure that does not take
the cardinality of the signature into account cannot satisfy all these proper-
ties at once. As one can see above, the function Inch

µ takes the cardinality of

the signature into account and it may be possible that Inch
µ satisfies (Super-

Additivity). However, this is not the case as the following example shows.

Example 3.21. Let At = {a1, a2} be a propositional signature and let
R1 =def {r1, r2} and R2 =def {r3, r4} be knowledge bases with

r1 =def (a1)[1] r2 =def (a1)[0]

r3 =def (a2)[1] r4 =def (a2)[0]

and let R =def R1 ∪ R2. Note that both R1 and R2 are inconsistent and
R1 ∩R2 = ∅. As Inch

µ is defined on the semantic level and does not take

the names of propositions into account it follows that Inch
µ(R1) = Inch

µ(R2).
As the situations in R1 and R2 are symmetric and Ri is symmetric with
respect to r1 and r2 and with respect to r3 and r4 there are probability
functions Pi with Inch

µ(Ri) = 1− Ch
Ri
(Pi) for i = 1, 2 and

d(P1,ModPr({r1})) = d(P1,ModPr({r2}))
= d(P2,ModPr({r3}))
= d(P2,ModPr({r4})) .

Let x =def d(P1,ModPr({r1})) and let h∗ : R+ → (0, 1] be a strictly de-
creasing, positive, and continuous log-concave function with h∗(0) = 1 and
h∗
(√

2|At|x
)
= 0.5. Then it follows Ch∗

R1
(P1) = 0.25 and Inch∗

µ (R1) = 0.75.

In order to satisfy (Super-Additivity) Inch∗
µ must satisfy

Inch∗
µ (R) ≥ Inch∗

µ (R1) + Inch∗
µ (R2) = 1.5

which is a contradiction since Inch∗
µ satisfies (Normalization).

In (Daniel, 2009) it is shown that Inch
µ satisfies several other properties that

86 measuring inconsistency

cannot be related directly to our properties of Section 3.2. For example,
(Daniel, 2009) investigates the property consequence invariance which is sim-
ilar to (Independence) but not equivalent. The property consequence invari-
ance is defined as

If R |=∗ r then Inc(R) = Inc(R∪ {r})

with |=∗ is one of |=ic, |=ff as defined in (Daniel, 2009). It is shown that Inch
µ

satisfies consequence invariance for both entailment relations. However, there
are no results on the behavior of Inch

µ by addition of unrelated conditionals
such as free conditionals in the sense of Definition 3.2 on page 48. However,
it can be easily seen that Inch

µ also fails to satisfy (Penalty) for similar
reasons as Inc∗ fails to satisfy (Penalty). For the knowledge base R =def
{(b | a)[1], (a)[1], (b)[0]} let P′ be such that

max
P∈PP(At)

Ch
R(P) = Ch

R(P′) . (3.33)

In other words, P′ is a probability function that has the maximal candi-
dacy degree with respect to R. As R is inconsistent, it follows that P′

fails to satisfy at least one of the probabilistic conditionals of R. As-
sume that it holds that P′ 6|=pr (b | a)[1] which implies P′(a) > 0. Con-
sider the knowledge base R′ =def R ∪ {r′} with r′ =def (b | a)[P′(b | a)].
As Inch

µ satisfies (Monotonicity) it follows Inch
µ(R′) ≥ Inch

µ(R) and due to

h
(√

2|At|d(P′,ModPr({r′}))
)
= 1 (as d(P′,ModPr({r′})) = 0) it follows that

P′ also satisfies

max
P∈PP(At)

Ch
R′(P) = Ch

R′(P′) .

Therefore, P′ has also maximal candidacy degree with respect to R′
which is clear as we only added information consistent with P′ (otherwise
P′ would have violated (3.33). It follows Inch

µ(R′) ≤ Inch
µ(R) and as

{(b | a)[1], (a)[1], r′} is a minimal inconsistent subset of R′ this contradicts
(Penalty). Similar observations can be made when P′ 6|=pr (a)[1] or
P′ 6|=pr (b)[0]. It is outside the scope of this thesis to check whether
Inch

µ satisfies any of the properties (Weak Independence), (Independence),
and (MinInc Separability). Hence, we leave a deeper discussion of the
inconsistency measure Inch

µ for future work.

3.6 summary and discussion

In this chapter we discussed the problem of analyzing and measuring in-
consistencies in probabilistic conditional logic. We developed a series of ra-
tionality postulates for inconsistency measures and extended inconsistency
measures for classical theories to the probabilistic setting. Furthermore,
we proposed a novel inconsistency measure for probabilistic conditional

3.6 summary and discussion 87

logic that bases on a specific notion of distance to consistent knowledge
bases. We showed that the MinDev inconsistency measure is more apt for
the probabilistic setting than the traditional approaches. We continued with
the development of approximations to the MinDev inconsistency measure
and extended it to two more general frameworks for probabilistic reasoning.
Finally, we reviewed related work regarding inconsistency measurement in
probabilistic reasoning.

Property Incd IncMI IncMI
0 IncMI

C IncMI
C,0 Inc∗ Inc∗0 Incgd Inch

µ

(Consistency) X X X X X X X X X
(Irr. of Syntax) X
(Monotonicity) X X X X X X
(Super-Additivity) X X X X
(Weak Indep.) X X X X X ?
(Independence) X X X X X ?
(MinInc Sep.) X X ? ? ?
(Penalty) X X
(Continuity) X X X X
(Normalization) X X X X X

Table 3: Comparison of inconsistency measures

Table 3 shows a comparison of the inconsistency measures discussed in
this chapter with respect to their properties (a question mark indicates that
it has not been proven whether this property holds or not). As one can
see, the measures that satisfy a maximal number of properties are IncMI,
IncMI

C , Inc∗, and Incgd (under the assumption that Conjectures 3.1 and 3.2
are true). These measures differ only in their satisfaction of the proper-
ties (Penalty) and (Continuity). In the presence of quantified knowledge
representation satisfaction of (Continuity) seems more important than sat-
isfaction of (Penalty), see the discussion at the end of Section 3.3. Due
to the lack of formal results regarding several properties of Inch

µ a classifi-

cation of Inch
µ is not possible at this time. Appendix C on page 253ff. lists

inconsistency values for the inconsistency measures Incd, IncMI, IncMI
0 , IncMI

C ,
IncMI

C,0, Inc∗, Inc∗0 , and the approximations I≤, I≥, I≤0 , and I≥0 for Inc∗ and
Inc∗0 , respectively, on several benchmark examples. Some of these examples
have already been discussed throughout this chapter. The implementations
of the inconsistency measures—which were used for computing the values
shown in Appendix C—can be found in the Tweety library for artificial
intelligence4.

4 http://sourceforge.net/projects/tweety/

http://sourceforge.net/projects/tweety/

88 measuring inconsistency

Analyzing inconsistencies is of major concern in the area of knowledge
representation as consistency is a necessary prerequisite for many knowl-
edge representation formalisms. In particular, the task of inference bases
mostly on the consistency of the underlying information. In this chapter
we discussed this problem for a specific approach to uncertain knowledge
representation, i. e. for probabilistic conditional logic. However, analyzing
inconsistencies is only the first step towards handling inconsistencies. From
our current point there are mainly two possible directions for approaching
this goal: 1.) one can acknowledge inconsistency and find a way to perform
reasoning based on inconsistent information, or 2.) one can remove the in-
consistency and perform reasoning based on consistent information. For
(propositional) probabilistic conditional logic an approach that pursues the
first direction has previously been proposed under the notion of paraconsis-
tent probabilistic reasoning in (Daniel, 2009). In the next chapter we pursue
the second direction by exploiting the ideas developed in this chapter for
solving the conflicts in a knowledge base. We also consider pursuing the
first direction but for relational probabilistic conditional logic in Chapter 6.

4S O LV I N G C O N F L I C T S U S I N G I N C O N S I S T E N C Y
M E A S U R E S

The problem of resolving inconsistencies is the major issue in many sub-
fields of artificial intelligence. As noted at the end of the previous chap-
ter there are basically two approaches for dealing with inconsistencies in
general. On the one hand, one can try to cope with inconsistencies in the
knowledge representation formalism and resolve contradictory information
when information is to be inferred from the knowledge base. This approach
is pursued in many fields such as default reasoning (Reiter, 1980; Antoniou,
1999), answer set programming (Gelfond and Lifschitz, 1991; Gelfond and
Leone, 2002), or argumentation (Bench-Capon and Dunne, 2007; Rahwan
and Simari, 2009). Frameworks from these fields usually allow knowledge
bases to contain contradictory information but provide methods that guar-
antee conflict-free inference. For example, in formal frameworks for argu-
mentation such as defeasible logic programming (Garcia and Simari, 2004)
the inference procedure includes an analysis phase where proofs for and
proofs against some proposition are compared with each other in order
to come up with a coherent view on the information. On the other hand,
one can insist on a knowledge representation formalism that allows only
for consistent knowledge bases and try to maintain consistency whenever
contradictory information has to be added. This approach is pursued in
many fields as well, such as belief revision (Alchourrón et al., 1985; Hans-
son, 1999) and information fusion (Bloch and Hunter, 2001). The motivation
for achieving a consistent state of the knowledge base derives from applica-
tion scenarios such as updating or merging beliefs of experts. For instance,
given a set of experts on some field such as medicine, joining the beliefs
of the experts usually results in an inconsistent knowledge base. The goal
of information fusion is to come up with a consistent representation of the
merged knowledge of these experts. As our motivation for dealing with
inconsistent information in probabilistic conditional logic is the same as for
information fusion, i. e. joining beliefs from different sources, we are going
to require consistency for knowledge bases as well and focus on the prob-
lem of how to restore consistency. However, we are not considering the
sources within our discussion but only consider an inconsistent knowledge
base as given.

As for frameworks based on classical logic the issue of handling incon-
sistency has been addressed in several works within the information fusion
and belief merging community, see e. g. (Bloch and Hunter, 2001) for a sur-
vey and (Everaere et al., 2008; Lang and Marquis, 2010) for some recent
developments. Most of these approaches rely on removing specific pieces
of information in order to restore consistency. While this method is also pos-

89

90 solving conflicts using inconsistency measures

sible for probabilistic conditional logic it seems rather extreme in the pres-
ence of a much less invasive approach to alter the information represented
by a knowledge base: modifying probabilities. However, in (Finthammer et
al., 2007) a method is presented that—based on a set of heuristics—restores
consistency in probabilistic conditional knowledge bases essentially by re-
moving conditionals. We review the methods of (Finthammer et al., 2007)
in Section 4.5.3. In contrast to (Finthammer et al., 2007), we focus our dis-
cussion on solving conflicts via modifying probabilities and keeping the
qualitative structure of a knowledge base intact. Of course, we do so by
obeying the minimal change paradigm. But before coming to the actual prob-
lem of restoring consistency we have a look at culpability measures (Daniel,
2009) first. A culpability measure is a generalization of an inconsistency
measure that does not assign a degree of inconsistency to a knowledge
base but to each conditional of a knowledge base separately. Therefore, a
culpability measure allows not only to get an idea of the severity of the
inconsistency but also to obtain information on which parts of the knowl-
edge base are to be blamed for producing an inconsistency. We propose and
discuss two different culpability measures. One of them—the Shapley cul-
pability measure—is inspired by previous work by Hunter and Konieczny
(Hunter and Konieczny, 2006, 2008, 2010) who use the Shapley value (Shap-
ley, 1953) to define a culpability measure for classical theories.

Using culpability measures we investigate the problem of restoring con-
sistency in a probabilistic conditional knowledge base in a principled way.
We implement the general requirement of minimal change by developing a
series of rationality postulates for consistency restorers that are influenced
partially by the role of culpabilities of conditionals. The central idea of
restoring consistency in knowledge bases relies on the requirement to keep
the structure of a knowledge base intact and to modify the probability of
each conditional proportionally to the culpability of the conditional in a
minimal way such that the resulting knowledge base is consistent. We
take some first steps into the development of constructive approaches for
restoring consistency and propose two different families of consistency re-
storers. Our first approach relies on the notion of creeping functions which
are functions ΞR on [0, 1] for a knowledge base R such that ΞR(0) = R
and ΞR(1) is consistent. We give three different implementations of such
creeping functions based on culpability measures. The task of restoring
consistency then reduces to finding a minimal δ∗ such that ΞR(δ∗) is con-
sistent. Our second approach is more declarative in nature and is inspired
by the characterization of Inc∗ using the optimization problem DevCons(R).
As discussed in Chapter 3 the cardinality of the set MD(R) (see page 63)
of vectors that minimize the 1-norm distance to a consistent knowledge
base is usually greater than one. Therefore, just using one of these argu-
ments to define the outcome of restoring consistency is not appropriate as
it violates the functional requirement of a consistency restorer, i. e., for an
inconsistent knowledge base R the outcome R′ of the consistency restor-
ing process should be uniquely determined. Our second approach relies on

4.1 culpability measures 91

restricting DevCons(R) by introducing requirements based on culpabilities
such that the outcome is uniquely determined.

This chapter is organized as follows. In the next section we discuss the
general concept of culpability measures and propose two specific measures,
the Shapley culpability measure and the mean distance culpability measure.
We continue in Section 4.2 with discussing the problem of restoring consis-
tency in knowledge bases in a principled fashion by developing a series of
rationality postulates for methods that restore consistency. Afterwards, we
propose two different families of methods for restoring consistency. First,
in Section 4.3 we discuss the method of creeping functions which are a
constructive approach to restore consistency. Afterwards, in Section 4.4 we
discuss a declarative approach that bases on the optimization problem to
determine the minimal distance to consistent knowledge bases developed
in the previous chapter. We go on with a review of related work in Sec-
tion 4.5 and conclude with a summary and some remarks in Section 4.6.

4.1 culpability measures

In the following, we adopt the notion of culpability measure (Daniel, 2009) in
order to give a more fine-grained idea of how inconsistency is distributed
over the pieces of information in a knowledge base.1 Note, that the actual
definition of a culpability measure given here has been modified with
respect to the definition in (Daniel, 2009) in order to fit our framework.

Definition 4.1 (Culpability measure). A culpability measure CR for a knowl-
edge base R = {r1, . . . , rn} is a function mapping each ri ∈ R to a non-
negative real value CR(ri) ∈ R+

0 , i. e., it holds that CR : R → R+
0 .

A culpability measure CR for a knowledge base R assigns to each condi-
tional ri ∈ R a quantitative value of the “blame” to be given for creating an
inconsistency. We call CR(r) for r ∈ R the culpability value of r in R with
respect to CR. When talking about culpability values we omit the reference
to the culpability measure when this is clear from context. A larger value of
CR(ri) refers to a larger culpability, so if CR(ri) > CR(rj) the conditional ri
is more responsible for creating an inconsistency than rj.

Some properties expected from culpability measures can be found in
(Hunter and Konieczny, 2008) and are rephrased here to fit our framework.
Let R = {r1, . . . , rn} be a knowledge base, Inc be an inconsistency measure,
and CR be a culpability measure for R.

(Inc-Distribution) ∑r∈R CR(r) = Inc(R).

(Inc-Symmetry) For all r, r′ ∈ R, if Inc(R′ ∪ {r}) = Inc(R′ ∪ {r′}) for all
R′ ⊆ R \ {r, r′} then CR(r) = CR(r′).

1 Culpability measures are referred to as inconsistency values in the works by Hunter and
Konieczny, see e. g. (Hunter and Konieczny, 2008, 2010)

92 solving conflicts using inconsistency measures

(Minimality) If r is a free conditional in R then CR(r) = 0.

(Decomposability) If MI(R1 ∪ R2) = MI(R1) ∪MI(R2) and MI(R1) ∩
MI(R2) = ∅ then for r ∈ R1 ∩R2 it holds that CR1∪R2(r) = CR1(r) +
CR2(r).

The property (Inc-Distribution) states that the culpability measure CR dis-
tributes the full inconsistency value Inc(R) between the individual condi-
tionals. Property (Inc-Symmetry) states that two conditionals r and r′ that
play symmetric roles in producing inconsistencies in R have identical cul-
pability values. As free conditionals do not take part in producing inconsis-
tencies the property (Minimality) requires them to have culpability values
of zero. The property (Decomposability) is a straightforward extension of
the property (MinInc Separability) to culpability measures, cf. Section 3.2.
In (Hunter and Konieczny, 2008) another property called (Dominance) is
mentioned that demands for a piece of information α to have no smaller
culpability value than some piece β if β semantically follows from α. In
our framework semantical entailment is trivial. By defining r |=pr r′ for
conditionals r and r′ if and only if for every probability function P with
P |=pr r it follows P |=pr r′, we get r |=pr r′ if and only if r ≡pr r′. By re-
membering the geometrical interpretation of probabilistic conditionals this
is easy to see. Two hyperplanes H1, H2 of dimension m are related to each
other in only one of three possible ways: either H1 and H2 intersect in a
hyperplane of dimension m− 1, or H1 and H2 are parallel, or H1 and H2
are identical. For two conditionals r and r′ this means that either r and
r′ are consistent but there are P and P′ with P |=pr r and P 6|=pr r′ and
P′ |=pr r′ and P′ 6|=pr r, or r and r′ are inconsistent, or r ≡pr r′. It follows
that the property (Dominance) is tautological in our framework and thus is
neglected in this thesis.

As for inconsistency measures we also consider the property of continu-
ity for culpability measures.

Definition 4.2 (Characteristic culpability function). Let CR be a culpability
measure and let R be a knowledge base with 〈R〉 = (r1, . . . , rn). The
function

θ†
CR,R : [0, 1]n → [0, ∞)n

with

θ†
CR,R(x1, . . . , xn) =def (C

ΛR(x1,...,xn)(r1), . . . , CΛR(x1,...,xn)(rn))

is called the characteristic culpability function of CR and R.

Using the characteristic culpability function we specify our requirement of
continuity as follows.

4.1 culpability measures 93

(Continuity) The characteristic culpability function θ†
CR,R is continuous on

[0, 1]|R| (with respect to the standard topology on Rn).

Culpability measures can be used to guide the knowledge engineer to
restore consistency in an inconsistent knowledge base as they can be used
as an indicator for how to change the probabilities of the conditionals
appropriately. Before investigating these possibilities we first develop two
culpability measures, one of them applying the Shapley value and the other
one using distance minimization.

4.1.1 Shapley Culpability Measure

In the following, we use the Shapley value (Shapley, 1953) as a means to
measure the culpability of each conditional for creating inconsistencies.
The Shapley value is a well-known solution for coalition games in game
theory and before continuing with defining the culpability measure based
on the Shapley value we give a brief overview on coalition game theory as
motivation.

Coalition Game Theory

Coalition game theory is concerned with games where players can form
coalitions in order to maximize their own payoff of the game.

Definition 4.3 (Coalition game). A coalition game (N, v) is composed of a
set of players N ⊆ N and a function v : P(N) → R with v(∅) = 0 and
v(S ∪ T) ≥ v(S) + v(T) for S, T ⊆ N with S ∩ T = ∅.

For every possible coalition C ⊆ N of players in the game, the value
v(C) determines the payoff this coalition gets. As this payoff must be
distributed on the members of C, every player has to evaluate himself,
which coalition to form in order to maximize his or her own expected
payoff. Not every player has to expect the same payoff, as players may be
more or less important for the forming of coalitions. Consider the following
example taken from (Hunter and Konieczny, 2006).

Example 4.1. Let the set of players N be defined as N =def {1, 2, 3} and the
function v : P(N)→ R be defined as

v({1}) =def 1 v({2}) =def 0 v({3}) =def 1

v({1, 2}) =def 10 v({2, 3}) =def 11 v({1, 3}) =def 4

v({1, 2, 3}) =def 12

In this game, not every player should expect the same payoff, as for instance
it is more advantageous for player 1 to form a coalition with player 2 rather
than with player 3 alone.

94 solving conflicts using inconsistency measures

A solution to a coalition game (N, v) consists of an assignment Si(v) of
payoffs to each player i ∈ N, that is fair in the sense that every player gets
as much payoff as his or her contribution in the grand coalition N weighs.
Some formal desirable properties of a solution are as follows.

(Efficiency) ∑i∈N Si(v) = v(N)

(Symmetry) For all i, j ∈ N, if v(C ∪ {i}) = v(C ∪ {j}) for all C ⊆ N \ {i, j}
then Si(v) = Sj(v)

(Dummy) If for i ∈ N it holds that v(C) = v(C ∪ {i}) for all C ⊆ N then it
holds that Si(v) = 0

(Additivity) Si(v + w) = Si(v) + Si(w) for all i ∈ N

A solution should comprehend for the fact, that the value to be distributed
among the players is the maximal value that can be achieved, cf. (Efficiency).
If two players are indistinguishable by their contributions to the coalitions
they deserve the same payoff, cf. (Symmetry); if a player does not contribute
to any coalition at all his or her payoff should be zero, cf. (Dummy). The
property (Additivity) describes the desired behavior of a solution if two
coalition games are combined.

It can be shown (Shapley, 1953), that the Shapley value defined as follows
is the only solution for a coalition game that satisfies (Efficiency), (Symme-
try), (Dummy), and (Additivity).

Definition 4.4 (Shapley value). Let (N, v) be a coalition game. The Shapley
Value Sv(i) for a player i ∈ N is defined as

Sv(i) =def ∑
C⊆N

(|C| − 1)!(|N| − |C|)!
|N|! (v(C)− v(C \ {i})

Consider the following example taken from (Hunter and Konieczny, 2006).

Example 4.2. The Shapley values for the players 1, 2, 3 from Example 4.1
are

Sv(i) ≈ 2.83 Sv(i) ≈ 5.83 Sv(i) ≈ 3.33 .

Measuring Culpabilities using the Shapley Value

The approach discussed in this section is inspired by the works of Hunter
and Konieczny (Hunter and Konieczny, 2006, 2008, 2010) where the Shapley
value is used to investigate the causes of inconsistency in classical proposi-
tional knowledge bases.

4.1 culpability measures 95

Definition 4.5 (Probabilistic Shapley culpability measure). Let Inc be an in-
consistency measure andR be a knowledge base. We define the probabilistic
Shapley culpability measure SRInc for R and with respect to Inc as

SRInc(r) =def ∑
C⊆R

(|C| − 1)!(n− |C|)!
n!

(Inc(C)− Inc(C \ {r}))

for all r ∈ R.

Using the probabilistic Shapley culpability measure we can obtain more
specific information about how the inconsistency is distributed among the
probabilistic conditionals of a knowledge base. In the following we use the
MinDev inconsistency measure Inc∗ for the application of the probabilistic
Shapley culpability measure.

Example 4.3. Consider again the knowledge base R1 = {r1, r2, r3, r4} from
Example 3.11 on page 64 given via

r1 = (b | a)[0.8] r2 = (b | a)[0.6]

r3 = (a)[0.5] r4 = (b)[0.2]

with Inc∗(R1) = 0.5. There, we have

SR1
Inc∗(r1) ≈ 0.15 SR1

Inc∗(r2) ≈ 0.117

SR1
Inc∗(r3) ≈ 0.05 SR1

Inc∗(r4) ≈ 0.183 .

The distribution of the probabilistic Shapley culpability values indicates
that the conditional r4 = (b)[0.2] is more responsible for the inconsistency
in R1 and r3 = (a)[0.5] is less responsible. This can be justified as both
rules r1 and r2 describe an influence of a on b and—assuming that the
knowledge base describes causal rather than diagnostic information—thus
state that a is more entrenched or more basic than b. Thus, rule r4 that
gives a probability of b not conditioned on anything else, is most dangerous
for consistency. As a more formal justification for this distribution take
into account that the set of minimal inconsistent subsets of R is given via
MI(R1) = {{r1, r2, r4}, {r1, r3, r4}, {r2, r3, r4}}. As one can see, r4 is the only
conditional that is in every minimal inconsistent subset and therefore seems
to be most problematic.

Example 4.4. Consider again the knowledge base R = {r1, r2, r3} from
Example 3.10 on page 63 given via

r1 = (b | a)[1] r2 = (a)[1] r3 = (b)[0]

with Inc∗(R) = 1. There, we have

SRInc∗(r1) ≈ 0.33 SRInc∗(r2) ≈ 0.33 SRInc∗(r3) ≈ 0.33 .

96 solving conflicts using inconsistency measures

Here it is clear, that all three probabilistic conditionals are equally responsi-
ble for the inconsistency in R as MI(R) = {{r1, r2, r3}}.

Example 4.5. Consider again the knowledge base R3 = {r1, r2, r3, r4, r5}
from Example 3.12 on page 64 given via

r1 = (a | c)[0.7] r2 = (b | c)[0.8] r3 = (a)[0.2]

r4 = (b)[0.3] r5 = (c)[0.5]

with Inc∗(R3) = 0.25. There we have

SR3
Inc∗(r1) ≈ 0.062 SR3

Inc∗(r2) ≈ 0.045 SR3
Inc∗(r3) ≈ 0.062

SR3
Inc∗(r4) ≈ 0.045 SR3

Inc∗(r5) ≈ 0.036 .

The probabilistic Shapley culpability measure satisfies the same properties
as the Shapley value.

Proposition 4.1. If Inc is an inconsistency measure that satisfies (Consistency)
and (Super-Additivity), then the probabilistic Shapley culpability measure SInc

satisfies (Inc-Distribution), (Inc-Symmetry), and (Minimality).

Proof. It suffices to show that Inc satisfies the preconditions on functions in
coalition games, cf. Definition 4.3 on page 93. Then SRInc is a valid definition
of a Shapley value according to Definition 4.4 on page 94 and thus satisfies
the restated properties due to (Shapley, 1953). But this is clear, as Inc
satisfies Inc(∅) = 0 due to (Consistency) and Inc(S ∪ T) ≥ Inc(S) + Inc(T)
with S ∩ T = ∅ due to (Super-Additivity).

The probabilistic Shapley culpability measure also satisfies the property
(Additivity) as pointed out in Section 4.1.1. However, we do not consider a
restated version of this property for culpability measures as combination of
inconsistency measures seems to be of no practical relevance, see (Hunter
and Konieczny, 2008) for a discussion.

From Proposition 4.1 and Propositions 3.11 on page 54, 3.13 on page 57,
and Theorem 3.1 on page 65 we obtain the following statement.

Corollary 4.1. Let Inc ∈ {IncMI, IncMI
C , Inc∗}. The probabilistic Shapley inconsis-

tency measure SInc satisfies (Inc-Distribution), (Inc-Symmetry), and (Minimality).

Satisfaction of (Decomposability) is only achieved for a special type of
probabilistic Shapley culpability measure, cf. (Hunter and Konieczny, 2008).

Proposition 4.2. Let R be a knowledge base and Inc be an inconsistency measure
with Inc(M) = 1 for eachM ∈ MI(R). A culpability measure CR satisfies (Inc-
Distribution), (Inc-Symmetry), (Minimality), and (Decomposability) if and only if
Inc = IncMI and CR = SR

IncMI .

4.1 culpability measures 97

The above proposition states that CR = SR
IncMI is uniquely identified by the

properties (Inc-Distribution), (Inc-Symmetry), (Minimality), (Decomposabil-
ity), and the additional demand that it holds that Inc(M) = 1 for a minimal
inconsistent set M. The proof of Proposition 4.2 is analogous to the proof
of Proposition 5 in (Hunter and Konieczny, 2008).

As a further side note, the probabilistic Shapley culpability measure
SR
IncMI has a nice characterization as the following theorem shows which

extends a result from (Hunter and Konieczny, 2008).

Theorem 4.1. Let R be a knowledge base and r ∈ R. Then

SR
IncMI(r) = ∑

M∈MI(R),r∈M

1
|M|

The proof of the above theorem is straightforward and follows the proof
of Proposition 4 in (Hunter and Konieczny, 2008). Note that the above
characterization of the probabilistic Shapley culpability measure resembles
the notion of the MIC inconsistency measure, cf. Section 3.3.

The probabilistic Shapley culpability measure SRInc does not satisfy (Con-
tinuity) for arbitrary inconsistency measure Inc, as the following example
shows.

Example 4.6. Consider the knowledge base Rx,y with 〈Rx,y〉 = (r1, r2) and

r1 =def (a)[x] r2 =def (a)[y] .

For x = y it is Incd(Rx,x) = 0 and therefore SRx,x
Incd

(r1) = SRx,x
Incd

(r2) = 0.

However, for every x, y with x 6= y it is Incd(Rx,y) = 1 and S
Rx,y
Incd

(r1) =

S
Rx,y
Incd

(r2) = 0.5. In particular, for fixed y and x 6= y it holds that

lim
x→y

θ†
S
R1,1
Incd

,R1,1
(x, y) = (0.5, 0.5)

but θ†
S
R1,1
Incd

,R1,1

(y, y) = (0, 0).

However, for continuous inconsistency measures the probabilistic Shapley
culpability measure is continuous as well.

Proposition 4.3. If Inc satisfies (Continuity) then SRInc satisfies (Continuity) for
every knowledge base R.

Proof. We only have to show that θ†
SRInc,R is continuous in each dimension.

But this is clear due to the continuity of Inc and the continuity of the
operations summation and multiplication in Definition 4.5.

98 solving conflicts using inconsistency measures

4.1.2 Mean Distance Culpability Measure

When considering again the MinDev inconsistency measure and the op-
timization problem of minimizing fInc∗ with respect to DevCons(R) from
Section 3.4, one might get the intuition that a solution of this optimiza-
tion problem already defines a culpability measure. In Example 3.11 from
page 64, a solution of DevCons(R) is η∗1 = η∗2 = η∗3 = 0 and η∗4 = 0.5,
therefore assigning each of the conditionals r1, r2, r3 a “culpability” of zero
and r4 the value 0.5. This is true for this solution, but remember that—in
general—there is no unique (x1, . . . , xn) that minimizes fInc∗ with respect
to DevCons(R). Other (minimal) solutions may assign a value of zero to r4
thus marking r4 as harmless. But still, distance minimization is a rational
choice for measuring inconsistency and can be made fit to be applied to the
problem of culpability measurement when considering not a single but the
set MD(R) of all solutions to minimizing fInc∗ with respect to DevCons(R).
We abbreviate

MDi(R) =def {xi | (x1, . . . , xn) ∈MD(R)}

for i = 1, . . . , and define the mean distance culpability measure as follows.

Definition 4.6 (Mean distance culpability measure). Let R be a knowledge
base with 〈R〉 = ((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]). Then the mean distance
culpability measure AR is defined as

AR((ψi | φi)[di]) =def

∣∣∣∣di −
supMDi(R) + infMDi(R)

2

∣∣∣∣
for i = 1, . . . , n.

We further define the sign of culpability SignCulpR((ψi | φi)[di]) ∈ {−1, 0, 1}
of (ψi | φi)[di] in R via

SignCulpR((ψi | φi)[di]) =def sgn

(
di −

supMDi(R) + infMDi(R)
2

)
where sgn is the signum function and i = 1, . . . , n.

Example 4.7. We continue Example 3.10 from page 63 and consider the
knowledge base R with 〈R〉 = (r1, r2, r3) and

r1 = (b | a)[1] r2 = (a)[1] r3 = (b)[0] .

It holds that Inc∗(R) = 1 and there are three solutions satisfying the corre-
sponding optimization problem that maximizes or minimizes, respectively,
one η-value at a time:

η1
1 = −1 η1

2 = 0 η1
3 = 0

4.1 culpability measures 99

η2
1 = 0 η2

2 = −1 η2
3 = 0

η3
1 = 0 η3

2 = 0 η3
3 = 1 .

Therefore we have AR(r1) = AR(r2) = AR(r3) = 1/2 and

SignCulpR(r1) = −1 SignCulpR(r2) = −1 SignCulpR(r3) = 1

We now turn to the formal properties of AR.

Proposition 4.4. AR satisfies (Minimality) and (Continuity).

Proof. Let R be a knowledge base with 〈R〉 = (r1, . . . , rn) and ri =
(ψi | φi)[di] for i = 1, . . . , n.

(Minimality) If ri ∈ R is free in R then for R′ = ΛR(d1 + η1, . . . , dn + ηn)
with Inc∗(R) = x = |η1|+ . . . + |ηn| it follows ηi = 0. Otherwise the
knowledge base R′ \ {(ψi | φi)[di + ηi]} would be consistent as well
and therefore Inc∗(R \ {ri}) = x − ηj < x which contradicts that ri
is free in R. It follows that infMDi(R) = supMDi(R) = 0 and
AR(ri) = 0.

(Continuity) As θInc,R is continuous so are supMDi(R) and infMDi(R)
for every i = 1, . . . , n and consequently θ†

AR,R as well.

As Example 4.7 has shown AR does not satisfy (Inc∗-Distribution) in gen-
eral. This also holds for every other inconsistency measure Inc discussed
before and the property (Inc-Distribution). The culpability measure AR

also fails to satisfy (Decomposition) as the following example shows.

Example 4.8. Consider the knowledge bases R1 =def {r1, r2} and R2 =def
{r1, r3} given via

r1 =def (a)[0.7] r2 =def (a)[0.3] r3 =def (¬a)[0.7] .

It follows that for R =def R1 ∪R2 it holds that

MI(R) = {{r1, r2}, {r1, r3}} = MI(R1) ∪MI(R2)

and also MI(R1) ∩MI(R2) = ∅. However, for r1 ∈ R1 ∩R2 it holds that

AR1(r1) = 0.2 and AR2(r1) = 0.2

but AR(r1) = 0 6= AR1(r1) + AR2(r1).

Furthermore, AR also fails to satisfy (Inc∗-Symmetry). Consider the follow-
ing counterexample.

100 solving conflicts using inconsistency measures

Example 4.9. Let R =def {r1, r2, r3} given via

r1 = (b | a)[0.9] r2 = (a)[0.9] r3 = (b)[0.1] .

Note that Inc∗(R) = 0.81 and modifying r3 to 0.81 is the only possible
minimal modification. However, as every subset of R is consistent, i. e. for
every two R′,R′′ (R it holds that Inc∗(R′) = Inc∗(R′′) = 0. There-
fore, satisfaction of (Inc∗-Symmetry) demands that AR(r2) = AR(r3). As
AR(r2) = 0 and AR(r3) = 0.71 the culpability measure AR fails to satisfy
(Inc∗-Symmetry). This also holds for every other inconsistency measure Inc
discussed before and the property (Inc-Symmetry).

The above discussion raises the question whether the mean distance culpa-
bility measure is a meaningful measure for probabilistic conditional logic.
With the probabilistic Shapley culpability measure we already have a mea-
sure that satisfies all our desired properties and we have shown that AR

violates three of those properties. However, due to its definition based on
the MinDev inconsistency measure, AR allows to make some distinct ob-
servations. Consider the following example.

Example 4.10. Consider the knowledge base R =def {r1, r2, r3} given via

r1 =def (a)[0.3] r2 =def (b)[0.4] r3 =def (a∧ b)[0.6] .

Note that for a consistent modification of R the probabilities of both r1
and r2 must be at least as large as the probability of r3. It holds that
Inc∗(R) = 0.3 and assigning probability 0.4 to each conditional yields a
consistent knowledge base. In particular, the probability of r2 has not been
changed by this assignment. Assume there is also a consistent knowledge
base that changes the probability of r2 to 0.4 + α for some α. It follows that
the probability of r3 has to be modified by at least 0.6− 0.4 + α. Now, only
r1 has a too small probability to achieve consistency and the only possible
solution is either to change the probability of r1 to at least 0.4+ α as well, or
to change the probability of r3 down to 0.3 or less, or something in between.
In any case, this yields a total modification of 0.3 + α which is not minimal
if α 6= 0. It follows that every consistent knowledge base with minimal
distance to R does not change the probability of r2 and it follows

AR(r1) = 0.05 AR(r2) = 0 AR(r3) = 0.25

Although r2 is not free in R it is somewhat “neutral” in the light of the
inconsistency produced by r1 and r3. Considering e. g. the culpability
measure SR

IncMI
C

it follows that

SR
IncMI

C
(r1) = 0.25 SR

IncMI
C
(r2) = 0.25 SR

IncMI
C
(r3) = 0.5

4.2 principled consistency restoring 101

thus rendering r2 as culpable as r1 for producing the inconsistency. This
is due to the fact that IncMI and SR

IncMI
C

only considers the membership of

conditionals to minimal inconsistent subsets and not their role in these sets.
However, consider the culpability measure SRInc∗ with the culpability values

SRInc∗(r1) ≈ 0.083 SRInc∗(r2) ≈ 0.033 SRInc∗(r3) ≈ 0.183 .

As one can see, SRInc∗ also takes those roles into account and assigns r2 a
smaller culpability value than r1.

The assignment of zero culpability of AR to r2 is very drastic, considering
that r2 is indeed part of a minimal inconsistent subset. This behavior of AR

is even more apparent in the following example.

Example 4.11. Consider the knowledge base R =def {r1, r2, r3, r4} given via

r1 =def (b | a)[0.8] r2 =def (b | ¬a)[0.6]

r3 =def (a)[0.5] r4 =def (b)[0.2]

For R it holds that

AR(r1) = AR(r2) = AR(r3) = 0 AR(r4) = 0.5

and

SR
IncMI

C
(r1) = SR

IncMI
C
(r2) = SR

IncMI
C
(r3) ≈ 0.222 SR

IncMI
C
(r4) ≈ 0.333 .

Note that the large culpability value AR(r4) derives from the fact that r4 is
contained in all minimal inconsistent subsets of R (it holds that MI(R) =
{{r1, r2, r4}, {r1, r3, r4}, {r2, r3, r4}}).

The above examples show that SR is more “balanced” when assigning
culpability values of members of minimal inconsistent subsets. In fact, due
to the structure of SR it follows that every probabilistic conditional that is a
member of at least one minimal inconsistent subset gets a culpability value
greater than zero. As the above examples showed, this is not the case for
AR.

4.2 principled consistency restoring

While inconsistency and culpability measures help to analyze and under-
stand the inconsistencies in a knowledge base there is still the open problem
of repairing the knowledge base to restore consistency. This is a crucial task
as repairing an inconsistent knowledge base requires modifying it and any
modification alters the beliefs that were initially intended to be represented.

102 solving conflicts using inconsistency measures

With the use of inconsistency and culpability measures a knowledge engi-
neer has already a powerful set of tools to guide him to manually repair
the knowledge base. However, in the following we consider automatic repair
of inconsistent knowledge bases that adheres to some rationality postulates.
We develop several approaches that use inconsistency and culpability mea-
sures to restore consistency. Note that these approaches work on the syn-
tactic level only and semantical aspects of the represented beliefs are not
adhered for. In practice it is up to the knowledge engineer to verify the
results of an automatic repair of an inconsistent knowledge base.

Before discussing rationality postulates for automatic repair we first dis-
cuss a naive approach inspired by the solutions to the optimization problem
DevCons(R). By definition, these already describe minimal adjustments to
be made in order to restore consistency. By considering the culpability
measure CR for the conditionals in R one could select the most appropri-
ate solution and modify the knowledge base accordingly. But as pointed
out in the previous section, the solutions MD(R) given by the optimization
problem DevCons(R) are not always the “rational” ones to choose, despite
the fact that they describe minimal adjustments. Consider again the knowl-
edge base R from Example 3.10 on page 63 with 〈R〉 = (r1, r2, r3) and

r1 = (b | a)[1] r2 = (a)[1] r3 = (b)[0] .

Some minimal solutions of the optimization problem DevCons(R) are η∗1 =
−1 or η∗2 = −1 or η∗3 = 1 (all other values being zero) and thus there are
three “extreme” adjustments R1,R2,R3 of R according to these values2:

R1 =def { (b | a)[0], (a)[1], (b)[0] }
R2 =def { (b | a)[1], (a)[0], (b)[0] }
R3 =def { (b | a)[1], (a)[1], (b)[1] }

But clearly, none of these solutions seem to be an “appropriate” adjustment
of R due to their large discrepancies in the modeled beliefs.

We go on by discussing some rationality postulates for restoring consis-
tency. Let undef denote a not defined function value. Let At be a proposi-
tional signature and Υ be a function

Υ : P((L(At) | L(At))pr)→ P((L(At) | L(At))pr) ∪ {undef} .

In the following Υ is called a consistency restorer and is intended to map
a possibly inconsistent knowledge base R to a consistent knowledge base
Υ(R). For the rest of this section let R with

〈R〉 = ((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn])

2 Note that there are infinitely many consistent and minimal solutions.

4.2 principled consistency restoring 103

be a possibly inconsistent knowledge base. Following (Finthammer et
al., 2007), there are three basic approaches (and combinations thereof) for
restoring consistency:

1. removing conditionals such that Υ(R) ⊆ R,

2. qualitative modification of conditionals, i. e., a conditional (ψ | φ)[d] is
modified to (ψ′ | φ′)[d], and

3. quantitative modification of conditionals, i. e., a conditional (ψ | φ)[d] is
modified to (ψ | φ)[d′].

The second approach has already been investigated in (Rödder and Xu,
2001) and in a heuristic fashion in (Ludolph, 2009). A combination of the
first and third approach has been discussed (also heuristically) in (Fintham-
mer et al., 2007). Another possibility of restoring consistency—also fol-
lowed in (Rödder and Xu, 2001; Finthammer et al., 2007)—is by considering
bounded conditionals and widen the probability intervals for conditionals
appropriately, cf. Section 2.3. However, this last approach changes the for-
malism for knowledge representation which is not a reasonable thing to do
when restoring consistency in probabilistic conditional logic. In this thesis
we focus on the third option of quantitative modifications and proceed with
a principled instead of heuristic approach. We give a comparison with the
previously mentioned approaches at the end of this chapter.

Restoring consistency in a knowledge base R is similar to the problem
of information fusion (Bloch and Hunter, 2001) or belief merging (Konieczny
and Pino-Pérez, 1998, 2005; Grégoire and Konieczny, 2006). Belief merging
considers the problem of joining a set of knowledge bases (possibly coming
from different sources) into a single knowledge base that describes the
original distributed knowledge in the best way. This problem is also similar
to the problems discussed in social choice theory (Arrow, 1950; Kelly, 1988).
In social choice theory the goal is to aggregate interests or votes in order
to come up with a decision that is favorable in the light of the individual
interests. A well-known application for social choice theory is the problem
of voting, i. e. of constructing a voting mechanism that is, in some sense,
fair. Arrow’s famous impossibility theorem (Arrow, 1950) states that there
is no such thing as a fair voting mechanism or “every voting mechanism
is flawed”. Nonetheless, in the following we borrow many properties that
were originally stated for social choice theory and belief merging and apply
them to our framework of restoring consistency.

Let Υ be a consistency restorer. The basic demands for such a function
are summarized in the following five properties.

(Existence) For every knowledge base R it holds that Υ(R) 6= undef.

(Uniqueness) For every knowledge base R the value of Υ(R) is uniquely
determined.

104 solving conflicts using inconsistency measures

(Structural Preservation) For every knowledge base R it holds that either
Υ(R) = {(ψ1 | φ1)[d′1], . . . , (ψn | φn)[d′n]} or Υ(R) = undef.

(Success) For every knowledge base R it holds that if Υ(R) 6= undef then
Υ(R) is consistent.

(Irrelevance of Syntax) For knowledge bases R1 and R2 it holds that if
R1 ≡cond R2 then Υ(R1) ≡cond Υ(R2).

The property (Existence) demands that the result of restoring consistency
in R is well-defined, i. e., for every knowledge base R we get a knowl-
edge base Υ(R). The property (Uniqueness) demands that the result of
restoring consistency is uniquely determined. Note that (Uniqueness) is
trivially satisfied by every Υ due to its functional property. As pointed out
above we focus on quantitative modifications of conditionals which is de-
scribed by the property (Structural Preservation). The property (Success)
describes the very basic demand of a consistency restorer to restore con-
sistency. The property (Irrelevance of Syntax) demands that restoring con-
sistency in cond-equivalent knowledge bases yields again cond-equivalent
knowledge bases. One may argue that a similar property can be stated us-
ing the notion of kb-equivalence. But remember that kb-equivalence does
not distinguish between inconsistent knowledge bases, see Proposition 2.4
on page 29. As for inconsistent R1, R2 it is always the case that R1 ≡kb R2
defining (Irrelevance of Syntax) based on kb-equivalence amounts to re-
quiring that the outcome of restoring consistency is the same, regardless
of the structure of R1 and R2, respectively. Of course, this is not desir-
able as e. g. restoring consistency in both R1 =def {(a)[0.7], (a)[0.3]} and
R2 =def {(b)[0.7], (b)[0.3]} should not yield equivalent consistent knowl-
edge bases.

For all following properties we assume that Υ satisfies (Structural Preser-
vation). If also Υ(R) 6= undef for a knowledge base R with 〈R〉 =
((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]) we assume

〈Υ(R)〉 = ((ψ1 | φ1)[d∗1], . . . , (ψn | φn)[d∗n]) .

Further, we abbreviate ri =def (ψi | φi)[di] and r∗i =def (ψi | φi)[d∗i] for i =
1, . . . , n.

Due to the minimal-change paradigm a consistent R has an obvious solu-
tion.

(Consistency) For consistent R it holds that Υ(R) = R.

As discussed above, the problem of restoring consistency bears much re-
semblance to social choice theory. Consequently, many of the principles of
social choice theory can be adapted for consistency restoring such as the
following ones, cf. (Arrow, 1950; Kelly, 1988).

4.2 principled consistency restoring 105

(Pareto-Efficiency) If Υ(R) 6= undef then for every i = 1, . . . , n and every
d ∈ [0, 1] such that |d− di| < |d∗i − di| it follows that the knowledge
base {(ψ1 | φ1)[d∗1], . . . , (ψi | φi)[d], . . . , (ψn | φn)[d∗n]} is inconsistent.

In voting theory, a candidate a is called Pareto-efficient (or Pareto-optimal) if
there is no other candidate b that is at least equally preferred by all voters
and there is no voter that prefers b to a. This means that all other outcomes
for the voting procedure disadvantage at least one voter. Here, the property
(Pareto-Efficiency) demands that the result of restoring consistency should
be as close as possible to the original knowledge base and no modified con-
ditional should deviate more as needed from its original one. In particular,
every other consistent knowledge base deviates to a larger extent from the
original knowledge base in at least one probabilistic conditional.

(Non-Dictatorship) For every non-tautological (ψi | φi)[di] there is a knowl-
edge base R with (ψi | φi)[di] ∈ R such that Υ(R) 6= undef and
d∗i 6= di.

The property (Non-Dictatorship) demands that no non-tautological condi-
tional takes the role of a dictator and is never modified in any knowledge
base. In voting theory, this property states that there is no single voter that
can dictate the outcome.

(Non-Imposition) Υ is surjective.

In voting theory, the property (Non-Imposition) states that every possible
outcome of a voting, e. g. the election of any candidate, should be
achievable. In our setting, this means that every knowledge base can
be the result of consistency restoration. Note that (Non-Imposition)
cannot (and should not) be satisfied by any meaningful consistency
restorer Υ as P((L(At) | L(At))pr) also contains inconsistent knowledge
bases which should not be contained in the image of Υ. Hence, ev-
ery function Υ that satisfies (Success) cannot satisfy (Non-Imposition).
Therefore, let P((L(At) | L(At))pr)∗ ⊆ P((L(At) | L(At))pr) be the set
of consistent knowledge bases and consider the following restriction of
(Non-Imposition).

(Rational Non-Imposition) It holds that Im Υ = P((L(At) | L(At))pr)∗.

The property (Rational Non-Imposition) means that every consistent knowl-
edge base can be a function value.

Proposition 4.5. If Υ satisfies (Existence), (Success) and (Consistency) then Υ
satisfies (Rational Non-Imposition).

Proof. Let Υ satisfy (Existence), (Success) and (Consistency). Due to (Exis-
tence) and (Success) it holds that Im Υ ⊆ P((L(At) | L(At))pr)∗. For every
knowledge base R ∈ P((L(At) | L(At))pr)∗ it holds that Υ(R) = R due to
(Consistency) and it follows Im Υ = P((L(At) | L(At))pr)∗.

106 solving conflicts using inconsistency measures

Another property discussed in social choice theory is (Independence of
Irrelevant Alternatives). Basically, in the scenario of voting theory this
property states that given two elections A and B with participants 1, . . . , m,
if i prefers candidate a to candidate b in A whenever i prefers candidate
a to candidate b in B for i = 1, . . . , m, then candidate a is preferred to
candidate b in the outcome of the election A if and only if candidate a is
preferred to candidate b in the outcome of the election B. This means that
preferences regarding other combinations of candidates are irrelevant for
the decision regarding just a and b. There is no direct and meaningful
translation of this property into the framework of restoring consistency.
In the previous translations of properties from social choice theory the
notion of “preference” has been translated using the notion of consistency.
There, a conditional r ∈ R “prefers” a conditional r′ to r′′ if r and r′ are
consistent and r and r′′ are inconsistent. A straightforward translation
of (Independence of Irrelevant Alternatives) into our framework could be
phrased as follows.

Let R1 and R2 be two knowledge bases with |R1| = |R2| = n.
If there is a bijective function σ : R1 → R2 such that for every
r ∈ R1, if {r, r′} is consistent for some r′ whenever {σ(r), r′} is
consistent then r ∈ Υ(R1) whenever σ(r) ∈ Υ(R2).

For two arbitrary knowledge bases R1 and R2 the prerequisite of the above
statement is hard to fulfill except in trivial cases. Also, there is no clear
motivation why to demand this property of consistency restorers. Hence,
we neglect considering this property in the following.

So far we have not taken culpability measures into account when restor-
ing consistency. A culpability measure is a powerful tool that leads to
the culprits of creating inconsistencies and a rational consistency restorer
should adhere to a culpability measure in order to modify conditionals
with respect to their culpabilities. In the following, we discuss properties
relating culpability measures and consistency restorers. The general idea
is that, if a culpability measure assigns a large degree of culpability to a
conditional r and a much smaller degree of culpability to a conditional r′

then r should befall a larger modification than r′.
Let CR be a culpability measure and remember that for a knowledge

base R with 〈R〉 = ((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]) we assume

〈Υ(R)〉 = ((ψ1 | φ1)[d∗1], . . . , (ψn | φn)[d∗n]) .

(CR-Conformity) If Υ(R) 6= undef then

CR((ψi | φi)[di]) ≥ CR((ψj | φj)[dj]) implies |d∗i − di| ≥ |d∗j − dj|

for every i, j = 1, . . . , n.

Satisfying (CR-Conformity) means that a conditional that is less responsible
for an inconsistency is not harder penalized than a conditional that is more
responsible.

4.3 solving conflicts by penalizing culpabilities 107

(Inverse CR-Conformity) If Υ(R) 6= undef then

|d∗i − di| ≥ |d∗j − dj| implies CR((ψi | φi)[di]) ≥ CR((ψj | φj)[dj])

for every i, j = 1, . . . , n.

The property (Inverse CR-conformity) is the counterpart of the property
(CR-conformity), i. e. a conditional that is harder penalized than another
one is more responsible for an inconsistency with respect to the given
culpability measure.

As for inconsistency measures we demand some form of continuity as
well for consistency restorers. Remember that Pord(X) denotes the set of
all vectors of elements of X, cf. page 27. Let R be a knowledge base. Let
ζR be the function ζR : Pord((L(At) | L(At))pr)→ [0, 1]|R| defined via

ζR(((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn])) =def (d1, . . . , dn) .

for ((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]) ∈ Pord((L(At) | L(At))pr) and
let ςΥ

R : [0, 1]|R| → [0, 1]|R| be defined via ςΥ
R(x1, . . . , x|R|) =def

ζR(〈Υ(ΛR(x1, . . . , x|R|))〉) for all x1, . . . , x|R| ∈ [0, 1]|R|. Then we demand
satisfaction of the following property.

(Continuity) For every R the function ςΥ
R is continuous (with respect to

the standard topology on Rn).

Table 4 gives an overview on the properties discussed above. There, only
those properties are listed that are regarded as desirable for consistency re-
storers. Consequently, Table 4 does not list the property (Non-Imposition).

We go on by taking some first steps in developing concrete approaches
for consistency restorers. In the following, we develop two families of con-
sistency restorers, one defined using creeping functions and one by distance
minimization.

4.3 solving conflicts by penalizing culpabilities

Let R be a knowledge base. Our first approach to restore consistency is a
procedural approach based on a creeping function ΞR given via

ΞR : [0, 1]→ P((L(At) | L(At))pr) .

A creeping function ΞR is defined as a function that “creeps” from the orig-
inal (inconsistent) knowledge base towards a consistent one. The creeping
is controlled by a parameter δ ∈ [0, 1] such that ΞR(0) = R and for larger
δ the inconsistency in ΞR(δ) vanishes. Given such a function we look for
the minimal parameter δ∗ such that ΞR(δ∗) is consistent. In the following,
we discuss three different creeping functions, each more sophisticated than
the previous one.

108 solving conflicts using inconsistency measures

Property Description

(Existence) It holds that Υ(R) 6= undef

(Uniqueness) The value of Υ(R) is unique
(Structural Preservation) Υ(R) = undef or Υ(R) has the same

structure as R
(Success) If Υ(R) 6= undef then Υ(R)

is consistent
(Irrelevance of Syntax) If R1 ≡cond R2 then

Υ(R1) ≡cond Υ(R2)

(Consistency) For consistent R it holds that
Υ(R) = R

(Pareto-Efficiency) The deviation from Υ(R) to R
is minimal

(Non-Dictatorship) For every non-tautological r there is an
R such that r has been modified in
Υ(R)

(Rational Non-Imposition) Im Υ = P((L(At) | L(At))pr)∗

(CR-Conformity) If CR(r) ≥ CR(r′) then r is modified to
no less extent than r′ in Υ(R)

(Inverse CR-Conformity) If r is modified to no less extent than r′

in Υ(R) then CR(r) ≥ CR(r′)
(Continuity) ςΥ

R is continuous

Table 4: Properties of consistency restorers

In order to ensure that we end up with a consistent knowledge base we
need the following notation.

Definition 4.7 (Uniform conditional probability). Let At be propositional
signature, let (ψ | φ) be a conditional and P0 the uniform probability func-
tion on Ω(At). Then the uniform conditional probability of (ψ | φ) is defined
as ucp(ψ | φ) =def P0(ψ | φ) if P0(φ) > 0 and ucp(ψ | φ) =def 0 otherwise.

Note, that for every set R = {(ψ1 | φ1), . . . , (ψn | φn)} of qualitative condi-
tionals the set {(ψ1 | φ1)[ucp(ψ1 | φ1)], . . . , (ψn | φn)[ucp(ψn | φn)]} is consis-
tent, cf. Proposition 3.17 on page 60.

4.3.1 Unbiased Creeping

The first creeping function we consider is a very simple one that actually
does not consider any culpability measure at all. We give this definition to
have a starting point for the development of more sophisticated creeping
functions in the following.

4.3 solving conflicts by penalizing culpabilities 109

Definition 4.8 (Unbiased creeping function). The unbiased creeping function
ΞU
R of R with 〈R〉 = ((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]) is the function ΞU

R :
[0, 1]→ P((L(At) | L(At))pr) defined as

ΞU
R(δ) =def ΛR((1− δ)d1 + δucp(ψ1 | φ1), . . . , (1− δ)dn + δucp(ψn | φn))

for δ ∈ [0, 1].

Note, that ΞU
R(0) = R and that ΞU

R(1) is satisfiable by the uniform proba-
bility function. By increasing the parameter δ from zero to one we perform
a continues “creep” from the (inconsistent) starting point to the necessarily
consistent goal ΞU

R(1). Therefore, at some point along the way the inconsis-
tency in the knowledge base has to vanish (as the creeping is continuous),
see remark below. Note also, that “inconsistency vanishing” is continuous
as we have shown that there exists a continuous inconsistency measure
(Inc∗).

Definition 4.9 (Unbiased creeping consistency restorer). Let ΥU be the func-
tion ΥU : P((L(At) | L(At))pr)→ P((L(At) | L(At))pr) defined as

ΥU(R) =def ΞU
R(δ

∗)

with δ∗ =def min{δ ∈ [0, 1] | ΞU
R(δ) is consistent}.

Remark 4.1. We show now that the set

C = {((1− δ)d1 + δucp(ψ1 | φ1), . . . , (1− δ)dn + δucp(ψn | φn)) ∈ [0, 1]n |
δ ∈ [0, 1] and

ΛR((1− δ)d1 + δucp(ψ1 | φ1), . . . , (1− δ)dn + δucp(ψn | φn))

is consistent}

is closed. Note that C ⊆ ρ(PR) with ρ(PR) from the proof of Proposi-
tion 3.18 on page 61. Assume that

(d1, . . . , dn) 6= (ucp(ψ1 | φ1), . . . , ucp(ψn | φn)) . (4.1)

Otherwise R = ΞU
R(0) is already consistent. Consider a sequence

(xi
1, . . . , xi

n) ∈ C for i ∈N such that

lim
i→∞

(xi
1, . . . , xi

n) = (y1, . . . , yn) .

For each (xi
1, . . . , xi

n) let δi ∈ [0, 1] be such that

(xi
1, . . . , xi

n) = ((1− δi)d1 + δiucp(ψ1 | φ1), . . . , (1− δi)dn + δiucp(ψn | φn)) .

Note that due to (4.1) each δi is uniquely determined. As the mapping
δi 7→ (xi

1, . . . , xi
n) is continuous it follows that limi→∞ δi = δ∗ and as [0, 1]

110 solving conflicts using inconsistency measures

is closed it follows that δ∗ ∈ [0, 1]. As ρ(PR) is closed it follows that
(y1, . . . , yn) ∈ ρ(PR) because (xi

1, . . . , xi
n) ∈ C ⊆ ρ(PR) for each i ∈ N.

Therefore, ΛR(y1, . . . , yn) = ΞU
R(δ

∗) is consistent and (y1, . . . , yn) ∈ C. As
C is closed and there is a unique and continuous mapping between each
(x1, . . . , xn) ∈ C and δ ∈ [0, 1], assuming that (4.1) holds, it follows that the
set {δ ∈ [0, 1] | ΞU

R(δ) is consistent} is closed as well. As the minimum of
a closed set of reals is well-defined so is the unbiased creeping consistency
restorer.

Before investigating the properties of ΥU we first have a look at some
examples.

Example 4.12. We continue Example 3.10 from page 63 and consider the
knowledge base R = {r1, r2, r3} given via

r1 = (a | b)[1] r2 = (b)[1] r3 = (a)[0] .

Note that ucp(a) = 0.5, ucp(b) = 0.5 and ucp(a | b) = 0.5. The smallest
value of δ such that ΞU

R(δ) is consistent is δ∗ ≈ 0.763898. The resulting
knowledge base is

ΥU(R) = { (a | b)[0.61805],

(b)[0.61805],

(a)[0.38195] } .

Example 4.13. Consider the knowledge base R′2 =def {r1, r2, r3, r4} that
extends the knowledge base from Example 4.12 and is given via

r1 =def (a | b)[1] r2 =def (b)[1]

r3 =def (a)[1] r4 =def (c)[0.3] .

Note that r4 is a free conditional in R′2 and therefore does not participate

in the inconsistency in R′2, i. e., it holds that e. g. SR
′
2

Inc∗(r4) = AR′2(r4) = 0.
Still, the probability of r4 is modified when applying unbiased creeping:

ΥU(R′2) = { (a | b)[0.61805],

(b)[0.61805],

(a)[0.38195],

(c)[0.45278] } .

Example 4.14. Consider the knowledge base R′′2 =def {r1, r2, r3} that is a
variant of the knowledge base from Example 4.12 and given via

r1 =def (a | b)[1] r2 =def (b)[1] r3 =def (a)[0.75] .

4.3 solving conflicts by penalizing culpabilities 111

Applying ΥU to R′′2 yields ΥU(R′′2) = {r′1, r′2, r′3} given via

r′1 = (a | b)[0.80905] r′2 = (b)[0.80905] r′3 = (a)[0.65453] .

Note that although conditional r3 in R′′2 has a probability that is too low
to be consistent with the other two conditionals, the probability of r3 gets
decreased in ΥU(R′′2) due to the uniform probability of 0.5.

We now turn to the formal properties of ΥU .

Theorem 4.2. ΥU satisfies (Existence), (Uniqueness), (Structural Preservation),
(Success), (Irrelevance of Syntax), (Consistency), (Rational Non-Imposition), and
(Continuity).

The proof of Theorem 4.2 can be found in Appendix A on page 237. In
general, the function ΥU does not satisfy (Non-Dictatorship). Consider the
non-tautological conditional r = (a)[0.5] and any knowledge base R with
r ∈ R. As ucp(a) = 0.5 it follows (1− δ)0.5 + δ0.5 = 0.5 for any δ ∈ [0.1]
and therefore r ∈ ΥU(R). As a matter of fact, ΥU is only dictatorial for con-
ditionals whose probability is exactly the uniform conditional probability
of the conditional.

Note that, in general, ΥU is neither AR- nor SR-conform (and neither
inverse AR- nor SR-conform) and not Pareto-efficient, see counter examples
above.

4.3.2 Penalized Creeping

The unbiased creeping function satisfies many of the desired properties but
treats all conditionals in the knowledge base the same. In order to incorpo-
rate the role the individual conditionals play in creating inconsistencies, we
consider now the culpability measure AR to guide the creeping function.
Let α = (α1, . . . , αn) with

αi =def SignCulp
R(ri)AR(ri)

be the culpability vector of R. Note that instead of AR we could also use
another culpability measure but we stick to AR for matters of presentation.
Furthermore, let

α̂ = (α̂1, . . . , α̂n) =def

(
α1

αmin
, . . . ,

αn

αmin

)
with αmin =def min{|αi| | αi 6= 0, i = 1, . . . , n} be the normalized culpability
vector (if α1 = . . . = αn = 0 the value αmin is defined to be 1).

Example 4.15. We continue Example 4.7 from page 98. Here we have
α = (−1/2,−1/2, 1/2) and α̂ = (−1,−1, 1).

112 solving conflicts using inconsistency measures

In the following the vector α̂ is used as a weighted search direction for find-
ing the next consistent knowledge base. In order to stay in the space of
probabilistic knowledge bases let u : R→ [0, 1] be the function

u(x) =def


x x ∈ [0, 1]
0 x < 0
1 x > 1

In the following definition, the function u is used to ensure that the values
of conditionals describe probabilities.

Definition 4.10 (Penalizing creeping function). Let R be a knowledge base
with 〈R〉 = (r1, . . . , rn) and ri = (ψi | φi)[di] for i = 1, . . . , n and let α be the
culpability vector of R. Then the penalizing creeping function ΞP

R of R is the
function ΞP

R : [0, 1]→ P((L(At) | L(At))pr) defined via

ΞP
R(δ) =def ΛR(u(d1 + δα̂1), . . . , u(dn + δα̂n))

for δ ∈ [0, 1].

Note that ΞP
R(0) = R but it is not easy to see that ΞP

R(δ) is consistent for
some δ ∈ [0, 1]. As a matter of fact, neither a proof nor a counterexample
has been found that shows whether ΞP

R(δ) is consistent for some δ ∈ [0, 1].

Conjecture 4.1. For every R the knowledge base ΞP
R(δ) is consistent for some

δ ∈ [0, 1].

Consider the following example.

Example 4.16. We continue Example 4.15 from page 111 and consider the
knowledge base R2 with 〈R〉 = (r1, r2, r3) and

r1 = (a | b)[1] r2 = (b)[1] r3 = (a)[0] .

For R2 it holds that α̂ = (−1,−1, 1). For δ ≈ 0.38915 we get

ΞP
R2

(δ) = { (a | b)[0.61805], (b)[0.61805], (a)[0.38195] } .

which is consistent.

By also considering the examples in Appendix C on page 253—which also
show that for the given knowledge bases there is some δ such that ΞP

R(δ) is
consistent—we are justified in believing Conjecture 4.1 to be true. However,
due to the lack of a formal proof we have to consider the situation that the
set

{δ ∈ [0, 1] | ΞP
R(δ) is consistent}

4.3 solving conflicts by penalizing culpabilities 113

may be empty. Therefore, we can define the penalizing creeping consistency
restorer only for the case where this set is not empty.

Definition 4.11 (Penalizing creeping consistency restorer). Let ΥP be a func-
tion ΥP : P((L(At) | L(At))pr)→ P((L(At) | L(At))pr) defined as

ΥP(R) =def ΞP
R(δ

∗)

with δ∗ =def min{δ ∈ [0, 1] | ΞP
R(δ) is consistent} if {δ ∈ [0, 1] | ΞP

R(δ) is
consistent} 6= ∅ and ΥP(R) =def undef otherwise.

Remark 4.1 on page 109 applies to the penalizing creeping consistency
restorer as well. We now have a look at some examples.

Example 4.17. We continue Example 4.13 from page 110 with the knowl-
edge base R′2 = {r1, r2, r3, r4} given via

r1 = (a | b)[1] r2 = (b)[1]

r3 = (a)[1] r4 = (c)[0.3] .

Applying ΥP to R′2 yields

ΥP(R′2) = { (a | b)[0.61805], (b)[0.61805],

(a)[0.38195], (c)[0.3] } .

As one can see, ΥP conforms to AR
′
2 by not penalizing r4.

Example 4.18. We continue Example 4.14 from page 110 with the knowl-
edge base R′′2 = {r1, r2, r3} given via

r1 = (a | b)[1] r2 = (b)[1] r3 = (a)[0.75] .

Applying ΥP on R′′2 yields

ΥP(R′′2) = { (a | b)[0.9142], (b)[0.9142], (a)[0.8358] } .

Note that the probability of r3 has been modified using the correct sign of
its culpability.

As we have to adhere for the possibility of ΞP
R(δ) being inconsistent for

every δ ∈ [0, 1] it may be the case that ΥP(R) = undef for some R. It
follows that ΥP does not satisfy (Existence) in general and therefore neither
(Continuity) nor (Rational Non-Imposition).

Theorem 4.3. The function ΥP satisfies (Uniqueness), (Structural Preservation),
(Success), (Consistency), and (Non-Dictatorship).

The proof of Theorem 4.3 can be found in Appendix A on page 238.

114 solving conflicts using inconsistency measures

Sadly, whether ΥP satisfies (AR-Conformity) or (Inverse AR-Conformity)
can only be conjectured but seems to be justified by considering the above
examples.

Conjecture 4.2. The function ΥP satisfies (AR-Conformity) and (Inverse AR-
Conformity).

The problem in providing a formal proof for the above conjecture lies in the
role of the function u in Definition 4.10. Consider some knowledge base R
with r, r′ ∈ R such that r = (ψ | φ)[0.1] and r′ = (ψ′ | φ′)[0.3]. Assume
that the normalized culpability values of r and r′ are 2 and 4, respectively.
It follows the probabilities of r and r′ in ΞP

R(δ) are given by the functions
h1(δ) = u(0.1+ 2δ) and h2(δ) = u(0.3+ 4δ), respectively. Now assume that
the minimal δ∗ such that ΞP

R(δ
∗) is consistent is given by δ∗ = 0.5. Then

it follows that (ψ | φ)[1], (ψ′ | φ′)[1] ∈ ΞP
R(δ

∗). Hence, the probability of r
has been modified by 0.9 and the probability of r′ has been modified by
0.7. It follows that ΞP violates (AR-Conformity). The one key assumption
in this scenario is that the minimal δ∗ with ΞP

R(δ
∗) being consistent is large

enough such that the probabilities of both r and r′ reach the border of
the interval [0, 1]. Remember that the mean distance culpability measure
assigns the mean deviation of a probabilistic conditional’s probability in
the set MD(R). Consider again the conditional r′ which has a normalized
culpability value 4. As the probability of r′ is 0.3, the maximal value for
a deviation of r′ is 0.7. Assuming that this is also the mean deviation
this amounts to 0.7/4 = 0.175 being the factor used for normalization and
therefore 2 · 0.175 = 0.35 is the mean deviation of r. This amounts to r
maximally deviating by a value of 2 · 0.35 = 0.7 in MD(R) (when the
infimum of the deviation is 0 and the supremum is 0.7). However, in ΞP

R(δ
∗)

the probabilistic conditional r deviates by a value of 0.9 which seems to be
too drastic to be imaginable.

Under the assumption that both Conjecture 4.1 and Conjecture 4.2 are
true we can strengthen Theorem 4.3 as follows.

Theorem 4.4. If Conjectures 4.1 and 4.2 are true then ΥP satisfies (Existence),
(Uniqueness), (Structural Preservation), (Success), (Consistency), (Rational Non-
Imposition), (Continuity), (Non-Dictatorship), (AR-Conformity), and (Inverse
AR-Conformity).

The proof of Theorem 4.4 can be found in Appendix A on page 239. In
general, ΥP does not satisfy (Irrelevance of Syntax) and (Pareto-Efficiency).

Example 4.19. Consider the probabilistic conditionals

r1 =def (a)[0.7] r2 =def (a)[0.4] r3 =def (¬a)[0.6]

and the knowledge bases R1 =def {r1, r2} and R2 =def {r1, r2, r3}. As
r2 ≡pr r3 it follows R1 ≡cond R2. The culpability values of the conditionals

4.3 solving conflicts by penalizing culpabilities 115

with respect to to their knowledge bases and the culpability measure AR

are given via

AR1(r1) = 0.15 AR1(r2) = 0.15

AR2(r1) = 0.3 AR2(r2) = 0 AR2(r3) = 0 .

Note that AR2(r2) = AR2(r3) = 0 as modifying both r2 and r3 yields a
more drastic change than just r1. It follows that

ΥP(R1) = {(a)[0.55]} ΥP(R2) = {r2, r3}

with ΥP(R1) 6≡cond ΥP(R2), thus violating (Irrelevance of Syntax).

Example 4.20. Consider the knowledge base R =def {r1, r2, r3, r4, r5} given
via

r1 =def (b|a)[1] r2 =def (a)[1] r3 =def (b)[0]

r4 =def (c)[0.3] r5 =def (c)[0.7]

and the culpability measure AR with culpability values given as

AR(r1) = 0.5 AR(r2) = 0.5 AR(r3) = 0.5

AR(r4) = 0.2 AR(r5) = 0.2 .

It follows that it holds that ΥP(R) = {r′1, r′2, r′3, r′4} with

r′1 = (b|a)[0.5] r′2 = (a)[0.5] r′3 = (b)[0.5] r′4 = (c)[0.5] .

However, also the knowledge base R′ =def {r′′1 , r′′2 , r′′3 , r′′4 } with

r′′1 =def (b|a)[0.5] r′′2 =def (a)[0.6] r′′3 =def (b)[0.5] r′′4 =def (c)[0.5]

is consistent and |1− 0.6| < |1− 0.5|, i. e., the probabilistic conditional r2
has been modified less in R′ than in ΥP(R). It follows that ΥP does not
satisfy (Pareto-Efficiency) in general.

4.3.3 Smoothed Penalized Creeping

The lack of a formal proof for Conjecture 4.1 and thus the possible dis-
satisfaction of (Existence) is a major drawback of the penalizing creeping
consistency restorer. We now look at a hybrid approach that combines
the unbiased and the penalizing consistency restorer in order to regain the
satisfaction of (Existence). Our idea bases on the approach of the unbi-
ased creeping function. We want to model a creeping function that starts
with the original knowledge base for δ = 0 and creeps towards a knowl-
edge base that is satisfiable by the uniform probability function for δ = 1.

116 solving conflicts using inconsistency measures

In contrast to the unbiased creeping function, for each probabilistic condi-
tional the gradient of this creeping is not a simple convex combination but
obeys the culpability of the conditional. For that, let γ, β1, β2, θ ∈ R and
vθ

γ,β1,β2
: [0, 1]→ [0, 1] be the function

vθ
γ,β1,β2

(x) =def



β2 + γθx β2 < β1 and β2 + γθx < β1
and γ 6= 0

β2 − γθx β2 > β1 and β2 − γθx > β1
and γ 6= 0

β2 γ = 0 and x ∈ [0, 1)
β1 otherwise

(4.2)

The function vθ
γ,β1,β2

describes a weighted linear approach from β2 to β1

with gradient γ. Note that for l, r ∈ R with l < r it holds that v1
r/l,r,l(x) =

xl + (1 − x)r. The parameter θ is a scaling parameter. Figure 5 shows
the general function vθ

γ,β1,β2
(x) and Figure 6 shows the specific function

v1
0.5,0.5,0.8(x). Note also that vθ

γ,β1,β2
(x) = β2 for γ = 0 and x 6= 1 and

vθ
γ,β1,β2

(x) = β1 for γ = 0 and x = 1. Hence, vθ
γ,β1,β2

is not continuous for
γ = 0.

x

vθγ,β1,β2
(x)

β1

β2

10

γ

1

Figure 5: The function vθ
γ,β1,β2

(x)

Our third approach of a creeping function uses the function v for creep-
ing towards a knowledge base that can be satisfied by the uniform prob-
ability function while at the same time adhering to a culpability measure
CR. In order to ensure that we end with a knowledge base that is satisfiable
with the uniform probability function we have to set the scaling parameter
θ for v appropriately. In the smoothed penalizing creeping function that is to
be defined we set the parameter β1 of v to the uniform probability of the
conditional. For γ 6= 0 we want v to be continuous so we have to ensure
that v approaches β1 when going with δ to 1, i. e., we have to ensure that

4.3 solving conflicts by penalizing culpabilities 117

x

v1
0.5,0.5,0.8(x)

0.5

0.8

1

1

Figure 6: The function v1
0.5,0.5,0.8(x)

the absolute value of the gradient of v is not too small, cf. Figure 5. For a
culpability measure CR let

θ∗ =def inf{θ ∈ R+
0 | ∀i : ucp(ψi | φi) ∈ Im vθ

CR(ri),ucp(ψi | φi),di
} (4.3)

denote the smoothed scaling factor of CR and R with 〈R〉 = (r1, . . . , rn) and
ri = (ψi | φi)[di] for i = 1, . . . , n. The smoothed scaling factor θ∗ is the
smallest scaling factor such that for every probabilistic conditional in the
knowledge base it is ensured that vθ

CR(ri),ucp(ψi | φi),di
(1) = ucp(ψi | φi) (this

follows from the monotonicity of v) and that vθ
CR(ri),ucp(ψi | φi),di

is continu-

ous for CR(ri) 6= 0. The factor θ∗ can also be characterized via

θ∗ = min
{
|di − ucp(ψi | φi)|

CR(ri)
| i = 1, . . . , n

}
. (4.4)

This is easy to see, as due to the monotonicity of v it suffices to require

vθ
CR(ri),ucp(ψi | φi),di

(1) = ucp(ψi | φi) (4.5)

for each i = 1, . . . , n. Assume that di < ucp(ψi | φi). By considering the first
case of (4.2) we want θ to satisfy

di + CR(ri) · θ · 1 = ucp(ψi | φi)

118 solving conflicts using inconsistency measures

which is equivalent to

θ =
ucp(ψi | φi)− di

CR(ri)
.

Similarly, for the case di > ucp(ψi | φi) we get

θ =
di − ucp(ψi | φi)

CR(ri)

and together

θ =
|di − ucp(ψi | φi)|

CR(ri)
.

As we consider a finite set of conditionals the infimum in Equation (4.3)
becomes a minimum in Equation (4.4). We are now able to define the
smoothed penalizing creeping function as follows.

Definition 4.12 (Smoothed penalizing creeping function). The smoothed
penalizing creeping function ΞS

R,C of R with 〈R〉 = (r1, . . . , rn)
and ri = (ψi | φi)[di] for i = 1, . . . , n and C is the function
ΞS
R,C : [0, 1]→ P((L(At) | L(At))pr) defined via

ΞS
R,C(δ) =def ΛR(vθ∗

CR(r1),ucp(ψ1 | φ1),d1
(δ), . . . , vθ∗

CR(rn),ucp(ψn | φn),dn
(δ))

for δ ∈ [0, 1] and θ∗ being the smoothed scaling factor of C and R.

Note that for every knowledge base R and culpability measure C it holds
that ΞS

R,C(0) = R and ΞS
R,C(1) is satisfiable by the uniform probability

function. In particular, it holds that

ΞS
R,C(1) =def ΛR(ucp(ψ1 | φ1), . . . , ucp(ψn | φn))

as ensured by the definition of vθ
γ,β1,β2

above.

Definition 4.13 (Smoothed penalizing creeping consistency restorer). Let
ΥS

C be a function ΥS
C : P((L(At) | L(At))pr)→ P((L(At) | L(At))pr) defined

as

ΥS
C(R) =def ΞU

R,C(δ
∗)

with δ∗ =def min{δ ∈ [0, 1] | ΞP
R(δ) is consistent}.

Theorem 4.5. ΥS
C satisfies (Existence), (Uniqueness), (Structural preservation),

(Success), (Consistency), and (Rational Non-Imposition).

4.4 solving conflicts by balanced distance minimization 119

The proof of Theorem 4.5 can be found in Appendix A on page 239. The
function ΥS

C does not satisfy (Irrelevance of Syntax) which can be shown
by using the same example as for the penalizing consistency restorer, cf.
Example 4.19 on page 114. It also does not satisfy (Non-Dictatorship)
using the same argumentation as for the unbiased creeping function. The
function ΥS

C does not satisfy (Continuity) as vθ
γ,β1,β2

is discontinuous for

γ = 0. In general ΥS
C does not satisfy (C-Conformity) nor (Inverse C-

Conformity) as well. The following example illustrates this issue.

Example 4.21. Consider the knowledge base R =def {r1, r2, r3, r4} given via

r1 =def (a)[0.6] r2 =def (a)[0.7]

r3 =def (b)[0.8] r4 =def (b)[0.85] .

It holds that AR(r1) = AR(r2) = 0.05 and AR(r3) = AR(r4) = 0.025
and ΥS

AR(R) = {(a)[0.5], (b)[0.5]} as ucp(a) = ucp(b) = 0.5. Hence, ΥS
AR

violates (AR-Conformity) as the culpability value of r1 is at least as large
as the culpability value of r2 but r2 has been modified more drastically, i. e.,
AR(r1) ≥ AR(r2) but |0.6− 0.5| < |0.7− 0.5|. Furthermore, ΥS

AR violates
(Inverse AR-Conformity) as r3 has been modified more drastically than r1
but the culpability value of r1 is larger than the culpability value of r3, i. e.,
|0.8− 0.5| ≥ |0.6− 0.5| but AR(r1) > AR(r3).

Similar observations like in the above example can be made for other cul-
pability measures. The function ΥS

C also fails to satisfy (Pareto-Efficiency),
in particular, ΥS

AR violates (Pareto-Efficiency) in the same example used
for proving this statement for the penalizing consistency restorer, cf. Exam-
ple 4.20 on page 115 (see also Table 27 in Appendix C on page 263).

4.4 solving conflicts by balanced distance minimization

In the following, we describe a declarative approach to restore consistency
that is inspired by the computation of the MinDev inconsistency measure.

Let R be a knowledge base with 〈R〉 = (r1, . . . , rn) and ri = (ψi | φi)[di]
for i = 1, . . . , n, CR be some culpability measure, and let η1, . . . , ηn be
some variables. Then consider again the set of constraints DevCons(R)
(see page 64).

∑
ω∈ModP(ψi∧φi)

αω = (di + ηi) · ∑
ω∈ModP(φi))

αω (4.6)

0 ≤ d1 + η1 ≤ 1, . . . , 0 ≤ dn + ηn ≤ 1 (4.7)

120 solving conflicts using inconsistency measures

∑
ω∈Ω(At)

αω = 1 (4.8)

αω ≥ 0 for all ω ∈ Ω(At) . (4.9)

Let CR be a culpability measure. In order to explicitly impose (CR-
Conformity) and (Inverse CR-Conformity) to be satisfied consider

|ηi| ≥ |ηj| for i, j = 1, . . . , n with i 6= j and CR(ri) ≥ CR(rj) (4.10)

Let CRDevCon(C,R) denote the set of constraints (4.6), (4.7), (4.8), (4.9),
and (4.10) for some culpability measure C. Now consider minimizing

f B
C (η1, . . . , ηn) =def |η1|+ · · ·+ |ηn| (4.11)

with respect to CRDevCon(C,R).

Definition 4.14 (Balanced consistency restorer). Let C be some culpability
measure and ΥB

C : P((L(At) | L(At))pr)→ P((L(At) | L(At))pr) be defined
as

ΥB
C(R) =def ΛR(d1 + η∗1 , . . . , dn + η∗n)

where η∗1 , . . . , η∗n are uniquely determined variable assignments that mini-
mize f B

C with respect to CRDevCon(C,R). If there is no unique optimal
solution then ΥB

C(R) =def undef.

As the following example shows there are indeed cases where no unique
optimal solution for CRDevCon(C,R) can be obtained.

Example 4.22. Let R be the knowledge base given via 〈〉〉 = (r1, r2, r3) and

r1 =def (a)[0.3] r2 =def (b)[0.4] r3 =def (a ∧ b)[0.6] .

Consider the culpability measure AR with the culpability values

AR(r1) = 0.05 AR(r2) = 0 AR(r3) = 0.25 .

Let η∗1 , η∗2 , η∗3 be such that ΛR(0.3 + η∗1 , 0.4 + η∗2 , 0.6 + η∗3) is consistent and
|η∗1 |+ |η∗2 |+ |η∗3 | is minimal with obeying (4.10) which amounts to (among
others) η∗1 ≤ η∗3 . It follows that for each x ∈ [0, 1] the values

η∗1 = 0.3x η∗2 = 0 η∗3 = −0.3(1− x)

yield consistent ΛR(0.3 + η∗1 , 0.4 + η∗2 , 0.6 + η∗3) and |η∗1 |+ |η∗2 |+ |η∗3 | = 0.3
minimal.

4.4 solving conflicts by balanced distance minimization 121

Nevertheless, ΥB
C still satisfies (Uniqueness) as for R from the above exam-

ple it follows ΥB
C(R) = undef and this is uniquely determined. However,

from the above discussion it also follows that ΥB
C does not satisfy (Existence),

(Continuity) and (Rational Non-Imposition) in general.

Theorem 4.6. Let C satisfy (Inc∗-symmetry). Then ΥB
C satisfies (Uniqueness),

(Structural Preservation), (Success), (Consistency), (C-Conformity), (Inverse C-
Conformity), and (Non-Dictatorship).

The proof of Theorem 4.6 can be found in Appendix A on page 240. The
function ΥB

C does not satisfy (Irrelevance of Syntax) which can be shown
by using the same example as for the penalizing consistency restorer, cf.
Example 4.19 on page 114. Furthermore, the function ΥB

C does not satisfy
(Pareto-Efficiency) in general as the following example shows.

Example 4.23. Let R =def {r1, r2, r3, r4, r5, r6} be a knowledge base given
via

r1 =def (b | a)[1] r2 =def (a)[1] r3 =def (b)[0]

r4 =def (d | c)[0.9] r5 =def (c)[0.9] r6 =def (d)[0.1] .

It follows

SR
IncMI(r1) = SR

IncMI(r2) = SR
IncMI(r3) = SR

IncMI(r4) = SR
IncMI(r5)

= SR
IncMI(r6) ≈ 0.111

and it holds that ΥB
SR
IncMI

(R) = {r′1, r′2, r′3, r′4, r′5, r′6} with

r′1 = (b | a)[0.618] r′2 = (a)[0.618] r′3 = (b)[0.382]

r′4 = (d | c)[0.518] r′5 = (c)[0.518] r′6 = (d)[0.482] .

Note, however, that ΥB
SR
IncMI

(R) is not Pareto-efficient as R′ =

{r′′1 , r′′2 , r′′3 , r′′4 , r′′5 , r′′6 } with

r′′1 = (b | a)[0.618] r′′2 = (a)[0.618] r′′3 = (b)[0.382]

r′′4 = (d | c)[0.618] r′′5 = (c)[0.618] r′′6 = (d)[0.382]

is consistent as well.

The previous example showed that there are cases where satisfaction of
(C-Conformity) disallows satisfaction of (Pareto-Efficiency). There, all
probabilistic conditionals are assigned the same culpability value by SR

IncMI

and there are two minimal inconsistent subsets of R—{r1, r2, r3} and
{r4, r5, r6}—that both model a similar inconsistency but differ slightly in
their probabilities. However, the culpability measure SR

IncMI is indifferent

122 solving conflicts using inconsistency measures

about this and as ΥB
SR
IncMI

satisfies (SR
IncMI-Conformity) each probabilistic

conditional is modified by the same value. Looking at the set {r1, r2, r3},
one can see that each probabilistic conditional has to be modified by at
least a value of (approximately) 0.383. For {r4, r5, r6} a modification by
0.283 suffices, but as ΥB

SR
IncMI

satisfies (SR
IncMI-Conformity) all probabilistic

conditionals are modified by 0.383. This yields a solution that is not Pareto-
efficient. Note also that the observation in Example 4.23 is not restricted to
culpability measures that do not satisfy (Continuity). The same reasoning
applies for e. g. the knowledge base R =def {r1, r2, r3, r4, r5} given via

r1 =def (b | a)[1] r2 =def (a)[1] r3 =def (b)[0]

r4 =def (c)[1] r5 =def (c)[0]

and the culpability measure AR as

AR(r1) = AR(r2) = AR(r3) = AR(r4) = AR(r5) = 0.5 .

4.5 related work

The notion of culpability measures used in this chapter has been adopted
from the work (Daniel, 2009) and that work also proposes a specific imple-
mentation for a culpability measure. Moreover, the work (Daniel, 2009) also
considers the problem of probabilistic reasoning from inconsistent knowl-
edge bases. In particular, (Daniel, 2009) extends reasoning based on the
principle of maximum entropy to inconsistent knowledge bases and there-
fore takes a different approach for handling inconsistency. We discuss the
approach of (Daniel, 2009) in more depth below. Culpability measures
have also been used under the notion of inconsistency values in the works of
Hunter et. al., cf. e. g. (Hunter and Konieczny, 2008, 2010). However, those
works are concerned with measuring culpabilities in classical logic. In this
thesis we adopted several ideas and approaches of (Hunter and Konieczny,
2006, 2008, 2010) for the framework of probabilistic conditional logic. In
particular, we extended the Shapley culpability measure and were able to
transfer several results to this more expressive framework.

Other related work for our approach to restoring consistency in proba-
bilistic knowledge base consists mainly of the works (Rödder and Xu, 2001)
and (Finthammer et al., 2007) which are also reviewed below.

4.5.1 Culpabilities and Candidacy degrees

Recall that the inconsistency measure Inch
µ is defined as

Inch
µ(R) =def 1− max

P∈PP(At)
Ch
R(P) ,

4.5 related work 123

i. e., Inch
µ(R) is one minus the maximal candidacy degree of a probability

function, cf. Section 3.5.3. For the candidacy function Ch
R of a knowledge

base R let

Ω̂h
R =def arg max

P∈PP(At)
Ch
R(P)

be the set of probability functions that are assigned a maximal candidacy
degree. Then a culpability measure CRh can be defined via

CRh (r) =def 1− Ch
{r}(P)

for r ∈ R and some P ∈ Ω̂h
R. In (Daniel, 2009) Daniel admits that CRh (r) is

not well-defined if there are P, P′ ∈ Ω̂h
R with Ch

{r}(P) 6= Ch
{r}(P′) for some

r ∈ R. However, it is conjectured that CRh is well-defined if h = hHG is
defined via

hHG(x) =def 1 +
2√
π

∫ − x√
2

0
e−t2

dt .

The function hHG is called the half-Gaussian blur (with reliability 0.5). Under
the assumption that it holds that ChHG

{r} (P) = C
hHG
{r} (P′) for all P, P′ ∈ Ω̂hHG

R
and all r ∈ R, Daniel proves that CRhHG

satisfies (among others) an alter-

native notion of (InchHG
µ -Distribution) defined on multiplication rather than

summation. More precisely, it is shown that it holds that

InchHG
µ (R) = 1− ∏

r∈R
(1− CRhHG

(r))

which derives directly from the definition. As a consequence, CRhHG
does

not satisfy (InchHG
µ -Distribution) in general which is defined as

(InchHG
µ -Distribution) ∑r∈R CR(r) = InchHG

µ (R)

for some culpability measure CR. In other words, while the general prop-
erty (Inc-Distribution) says that the culpability measure and the inconsis-
tency measure Inc have an additive relationship, the inconsistency measure
InchHG

µ is the noisy-or of the culpability measure CRhHG
, cf. (Pearl, 1998). It

is also shown that CRhHG
satisfies a similar property like (Minimality). In

particular, it holds that

If R |=∗ r then CRhHG
(r) = 0

with |=∗ is one of |=ic, |=ff as defined in (Daniel, 2009). As for the properties
of Inch

µ no statements with respect to free conditionals are given in (Daniel,
2009).

Using candidacy functions Daniel extends reasoning based on the prin-
ciple of maximum entropy (see also Section 2.3) as follows. Recall that for

124 solving conflicts using inconsistency measures

consistent R the maximum entropy model P∗ of R is uniquely determined
by

P∗ = arg max
P|=prR

H(P) , (4.12)

see also Definition 2.27 on page 32. This definition is extended in (Daniel,
2009) by defining P∗ via

P∗ =def arg max
P∈Ω̂h

R

H(P) . (4.13)

This means that the maximum entropy model of a (possibly inconsistent)
knowledge baseR is selected among the probability functions that have the
maximal candidacy degree with respect to R. Note that (4.13) is equivalent
to (4.12) if R is consistent as for all P it holds that P |=pr R if and only if
Ch
R(P) = 1. For consistent R the latter is equivalent to P ∈ Ω̂h

R. Hence, the
inference process defined in (Daniel, 2009) clearly extends reasoning based
on the principle of maximum entropy to inconsistent knowledge bases and
it is also shown that P∗ as defined in (4.13) satisfies several rationality
postulates like uniqueness and irrelevant information. As discussed before,
this approach of handling inconsistencies is orthogonal to our approach.
Both approaches are justifiable and it depends on the intended application
which paradigm is more suitable.

4.5.2 Qualitative Modification and Generalized Divergence

In (Rödder and Xu, 2001) three approaches are proposed for restoring con-
sistency in a knowledge base R. The first two approaches are very similar
and follow the paradigm of qualitative modifications of conditionals, see also
(Rödder and Xu, 1999) and (Kern-Isberner and Rödder, 2003). In those ap-
proaches each probabilistic conditional ri = (ψi | φi)[di] ∈ R is extended
to (ψi | φi ∧ wi)[di] with a new proposition wi for i = 1, . . . , n. By doing
so, inconsistencies in the former knowledge base are resolved as the actual
probabilities of the new conditionals heavily depend on the probabilities of
the wi (i = 1, . . . , n) which are unrestricted in general. The third approach
of (Rödder and Xu, 2001) is to define the new probability of a probabilistic
conditional (ψ | φ)[d] ∈ R to be P∗(ψ | φ) where P∗ is the unique probabil-
ity function for the solution of Incgd(R), cf. Section 3.5.2 and particularly
Equation (3.31) on page 81. Note that there is no motivation and no evalu-
ation of those approaches given in (Rödder and Xu, 2001). The qualitative
approach is hard to compare to our notion of consistency restorers as the
former does not satisfy (Structural Preservation) which is a necessary re-
quirement for our approaches to restoring consistency. The approach of
using the solution P∗ that minimizes the inconsistency measure Incgd to de-
fine the new probabilities of the conditionals falls into the same category
as the consistency restorers developed in this chapter. As the inconsistency

4.5 related work 125

measure Incgd is very similar to Inc∗ the outcomes of the third approach
of (Rödder and Xu, 2001) can be expected to be similar to the balanced
consistency restorer ΥB

C when ignoring the culpabilities of the probabilistic
conditionals. However, as there are no results on the quality of the ap-
proaches of (Rödder and Xu, 2001) further discussion has to be postponed
for future work.

4.5.3 Heureka

The work (Finthammer et al., 2007)—see also (Finthammer, 2008)—share the
same motivation as our work in this chapter, namely, restoring consistency
in probabilistic conditional knowledge bases. However, while we take a
principled approach and base our notion of consistency restoring on a theo-
retical foundation the works (Finthammer et al., 2007) handle the problem of
restoring consistency in a more pragmatic way. More precisely, the system
Heureka presented in (Finthammer et al., 2007) restores consistency mainly
by 1.) removing probabilistic conditionals and 2.) treating probabilistic con-
ditionals as bounded probabilistic conditionals and widening their interval
appropriately. By assigning priorities to the probabilistic conditionals and
specifying optimization criteria like “minimize number of removed/modi-
fied conditionals” or “minimize sum of priorities of removed/modified con-
ditionals” the user can control the result of the restoration to some extent.
Restoring consistency by removing rules is a rather drastic approach and re-
sults in a lot of information getting lost. The main issue with widening the
intervals of probabilistic conditionals is a categorical one as consistency is
restored by switching to a more expressive framework. If one is dependent
on using the framework of probabilistic conditional logic this approach is
not applicable. However, the idea of widening the intervals of probabilistic
conditionals is similar in spirit to the approach taken by creeping functions.
By a stepwise widening of the intervals a creeping function can be simu-
lated. Nonetheless, in (Finthammer et al., 2007) no specific strategy is given
of how to widen the intervals appropriately, except a uniform widening of
the intervals of all conditionals which is a similar to the unbiased creeping
function.

In contrast to the work of (Finthammer et al., 2007) our approach is prin-
cipled and we have shown that the consistency restorers investigated in this
section satisfy several quality criteria. Another issue with the approach of
(Finthammer et al., 2007) is the need to specify the priorities of conditionals
used by the heuristics to restore consistency. In (Finthammer et al., 2007) no
hint is given of how to obtain the priorities other than in a user-specified
manner. However, one possible approach to obtain priorities is to use (in-
verse) culpability measures. A large culpability value can be translated to
a small priority with the intended meaning that this rule may be likely re-
moved or changed. A more throughout discussion of this idea may be part
of future work.

126 solving conflicts using inconsistency measures

Nonetheless, the aim of the system Heureka lies in effective and simple
consistency restoration which makes it suitable for real-world applications
if the results can be verified by a knowledge engineer.

4.6 summary and discussion

In this chapter we investigated approaches for restoring consistency in prob-
abilistic conditional knowledge bases. In particular, we extended the notion
of inconsistency measures to culpability measures which allow to assign a
degree of culpability to each probabilistic conditional in a knowledge base.
We gave two implementations of culpability measures: the mean distance
culpability measure and the Shapley culpability measure. Using these cul-
pability measures we approached the problem of consistency restoration in
a principled fashion. We focused our attention to methods for consistency
restoration that keep the structure of the knowledge base intact and are
only allowed to modify probabilities of conditionals. We devised a series
of rationality postulates and adopted many other from the related field of
belief merging. Several of these postulates are influenced by the culpability
values of the probabilistic conditionals and follow the idea that probabilis-
tic conditionals that are more culpable are modified to more extent. In the
following, we developed two families of approaches of consistency restor-
ers. The first one based on the notion of a creeping function and we gave
three instantiations for specific creeping functions. Our second approach
extends the optimization problem used to determine the value of the Min-
Dev inconsistency measure from the previous chapter by incorporating a
culpability measure that guides the search for finding a reasonable solution.
Finally, we reviewed related work with respect to culpability measures and
consistency restoration.

Table 5 gives an overview on the properties that are satisfied by the con-
sistency restorers investigated in this chapter. The notation “(X)” means
that it is only conjectured that the corresponding consistency restorer satis-
fies the property and the notation “A” means satisfaction of the conformity
properties with respect to the mean distance culpability measure A. As
one can see, none of the approaches satisfies (Pareto-Efficiency) in general.
The discussion regarding Example 4.23 on page 121 suggests that (Pareto-
Efficiency) and (C-Conformity) are conflicting demands, at least for those
culpability measures discussed in this chapter. However, further work is
mandatory and we only took a first step in the field of principled consis-
tency restoration in probabilistic knowledge bases. Thus, we are currently
not in the situation to state an analogon of Arrow’s famous impossibility
theorem for principled consistency restoration, cf. (Arrow, 1950).

Appendix C on page 253 ff. lists the outcomes of applying the consistency
restorers ΥU , ΥP, ΥS

C, and ΥB
C for different choices of the C on several

benchmark examples, some of them have already been discussed in this
chapter. Prototypical implementations of the consistency restorers—which

4.6 summary and discussion 127

Property ΥU ΥP ΥS
C ΥB

C

(Existence) X (X) X
(Uniqueness) X X X X
(Structural Preservation) X X X X
(Success) X X X X
(Irrelevance of Syntax) X
(Consistency) X X X X
(Pareto-Efficiency)
(Non-Dictatorship) X X
(Rational Non-Imposition) X (X) X
(CR-Conformity) (A) X
(Inverse CR-Conformity) (A) X
(Continuity) X (X)

Table 5: Comparison of consistency restorers

were used for computing the values shown in Appendix C—can be found
in the Tweety library for artificial intelligence3.

In this chapter and the previous one we investigated the issue of incon-
sistencies in (propositional) probabilistic conditional logic in great depth. It
remains to investigate whether our approaches are applicable if we switch
to probabilistic conditionals based on first-order logic. As we will see in the
following chapter there are more fundamental problems in the relational
context that have to be solved first.

3 http://sourceforge.net/projects/tweety/

http://sourceforge.net/projects/tweety/

5R E L AT I O N A L P R O B A B I L I S T I C C O N D I T I O N A L L O G I C

Hitherto we considered probabilistic knowledge representation employing
propositional models of belief. For the rest of this thesis we switch to
a more expressive framework, namely, probabilistic knowledge represen-
tation on (restricted) first-order logic. As has been pointed out in Sec-
tion 2.4, probabilistic reasoning on relational domains is a rather novel
research area within artificial intelligence. However, most of the existing ap-
proaches are primarily concerned with machine learning problems, and do
not care about logical or formal properties of relational probabilistic reason-
ing. The following example, inspired by (Delgrande, 1998), illustrates that
defining a proper semantics for first-order probabilistic knowledge bases is
not straightforward. Let elephant(X) denote that X is an elephant, keeper(X)
means that X is a keeper, and likes(X,Y) denotes that X likes Y. Consider
the following set of relational conditionals.

r1 =def (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6]

r2 =def (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]

r3 =def (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7]

An informal interpretation of the above conditionals can be given as follows.
With a probability of 0.6 elephants like keepers (r1), with a probability of
0.4 elephants like keeper Fred (r2), and with probability 0.7 elephant Clyde
likes keeper Fred (r3). From the point of view of commonsense reason-
ing this knowledge base makes perfect sense: conditional r1 expresses that
in some given population, choosing randomly an elephant-keeper-pair, we
would expect that the elephant likes the keeper with probability 0.6. How-
ever, keeper Fred and elephant Clyde are exceptional—mostly, elephants
do not like Fred, but Clyde likes (even) Fred.

The example is ambiguous and its formal interpretation via conditional
probabilities is hard to grasp. The probabilistic conditional r1 expresses a
belief about the whole population and r3 clearly expresses individual belief
on the specific individuals Clyde and Fred. The probabilistic conditional r2
seems to represent something in between as it takes both the whole popu-
lation and the specific individual Fred into account. In many approaches
such as BLPs and MLNs relational rules are grounded, and the probability
is attached to each instance. For r1, this means:

elephant(a) ∧ keeper(b) → likes(a, b) [0.6] for all a, b ∈ U.

Here U is a properly (or arbitrarily) chosen universe. Besides the question,
how U should be chosen, there are two other problems. First, grounding

129

130 relational probabilistic conditional logic

turns the relational statement r1 into a collection of statements of the same
type as r3, i. e. statements about individual beliefs. The population aspect
gets lost, more precisely: r1 is no longer a statement describing a generic
behavior in a population but is understood as a template that is applicable
in precisely the same manner to all individuals. As a consequence, each
individual is treated the same way. Secondly, naive grounding techniques
make the knowledge base inconsistent, as setting a = clyde and b = fred
renders the above instance contradictory to the beliefs represented in r3. So,
grounding has to take further constraints into account, in order to return a
consistent knowledge base, see e. g. (Fisseler, 2010; Loh et al., 2010).

In contrast to the inconsistencies investigated in the previous two chap-
ters the inconsistency expressed in, e. g., the conditionals r1 and r2 above
is neither accidental nor derives from false or uncertain information. Here,
the problem lies not in the dissatisfiability of the conditionals with respect
to the semantics outlined above but in the semantics itself. As discussed
above, by simply treating a conditional like r1 as a schema for its instances,
information gets lost. In this chapter, we discuss the problem of how to
define reasonable semantics for relational conditionals that allows condi-
tionals like r1, r2, and r3 to be consistent. By doing so we take another
approach as the one that we pursued in the previous two chapters. There,
we accepted the semantics for (propositional) probabilistic conditional logic
and enabled reasoning based on this semantics by restoring consistency.
Here, we acknowledge inconsistency with respect to naive grounding and
develop new semantics that allow for consistent reasoning. In particular,
we propose two approaches for giving formal semantics to relational prob-
abilistic knowledge bases that aim at catching properly the commonsense
intuition and resolving ambiguities.

This chapter is organized as follows. In Section 5.1 we look a little more
deeply at some problems in existing approaches that combine first-order
logic and probabilistic reasoning, mainly with respect to non-monotonic
reasoning. Afterwards in Section 5.2 we present relational probabilistic con-
ditional logic (RPCL), a very simple probabilistic logic that extends proposi-
tional probabilistic conditional logic. In Section 5.3 we discuss semantical
issues with this logic and propose two different approaches. In Section 5.4
we analyze this logic and investigate properties for the proposed semantics.
In Section 5.5 we review related work and in Section 5.6 we conclude this
chapter.

The work reported in this chapter is partially joint work with Gabriele Kern-
Isberner, cf. “Publications and Disclaimer” on page v.

5.1 relational probabilistic models and nmr

The development of relational probabilistic models has been driven mainly
by motivation coming from the field of relational databases and specifically

5.1 relational probabilistic models and nmr 131

by learning tasks within relational settings. Therefore most approaches al-
low for easy learning of knowledge bases and provide fast methods for
inferences. But when it comes to default reasoning or non-monotonic reason-
ing (NMR) in general, most approaches fail to be applicable.

Consider the omnipresent penguins example, see e. g. (Finthammer and
Thimm, 2011). For a relational representation of this example we consider
a set of birds and want to be able to state rules about their ability to fly.
In particular, we want to state that birds typically fly (with e. g. probability
0.9), that penguins typically do not fly (they fly only with e. g. probability
0.01), and that every penguin is a bird (with a probability of 1). This
example shows how well a formalism deals with conflicting information
on exceptional individuals. Given a particular bird Tweety for which we
have no belief of being a penguin we expect the formalism to derive with a
high probability that Tweety does actually fly. Adding the information that
Tweety is a penguin the formalism should derive no longer that Tweety flies.
Although Tweety is still a bird the more specific information that penguins
do not fly shall override the general rule of birds flying. We represent this
example using Bayesian logic programs as follows, cf. Section 2.4.1.

Example 5.1. Let bird/1, penguin/1, and flies/1 be unary predicates. Then
the above rules can be stated as the set {c1, c2, c3} of Bayesian clauses with

c1 =def (bird(X) | penguin(X))

c2 =def (flies(X) | bird(X))

c3 =def (flies(X) | penguin(X))

and their conditional probability distributions {cpdc1
, cpdc2

, cpdc3
} by

cpdc1
(true, true) =def 1 cpdc1

(false, true) =def 0

cpdc1
(true, false) =def 0.5 cpdc1

(false, false) =def 0.5

cpdc2
(true, true) =def 0.9 cpdc2

(false, true) =def 0.1

cpdc2
(true, false) =def 0.2 cpdc2

(false, false) =def 0.8

cpdc3
(true, true) =def 0.01 cpdc3

(false, true) =def 0.99

cpdc3
(true, false) =def 0.3 cpdc3

(false, false) =def 0.7 .

Note that some of the probabilities defined for each conditional probability
distribution are somewhat arbitrary. The problem is that defining a proba-
bility for a rule, given that its premise is not fulfilled, is a hard task. Con-
sider clause c2 saying that birds usually fly. But what is the probability of a
non-bird flying? It is a serious drawback of Bayesian logic programs (and
Bayes nets in general) that they demand a full specification of a conditional
probability distribution when complete information is not available.

The specification of the BLP in the previous example lacks one missing

132 relational probabilistic conditional logic

piece of information: the combining rules. These play an essential role in
defining the inferential semantics for a BLP and different combining rules
may yield substantially different results. Consider the query

Q1 =def flies(tweety) | bird(tweety) ,

e. g., the query for the probability of Tweety flying given that Tweety is
a bird. Imagine we define noisy-or to be the combining function for flies.
Then the probability of the above query amounts to 0.9 as only clause c2 is
applicable. Now consider the query

Q2 =def flies(tweety) | penguin(tweety) .

Assuming again that noisy-or is the combining function for flies the proba-
bility of this query amounts to 0.901. This result derives from the fact that
both clauses c2 and c3 are used when determining the probability of Q2 and
combined using noisy-or. Obviously, this inference is not intended and one
might ask if the choice of the combining rule was inadequate. As a mat-
ter of fact using noisy-and1 gives a more appropriate probability of 0.083 in
the example above. But now imagine there are penguins that due to some
super-hero powers have a high probability of flying. Using a new predicate
superpower/1 we can state this property via

c4 =def (flies(X) | penguin(X), superpower(X))

and an adequate conditional probability distribution cpdc4
for c4 with

cpdc4
(true, true, true) = 0.8. Considering the query

Q3 =def flies(tweety) | penguin(tweety), superpower(tweety)

for the BLP containing {c1, . . . , c4} this yields a probability of approxi-
mately 0.26 (using the combining rule noisy-and) that is far too small if we
have a super-penguin. Note that the probabilities of the queries Q1, Q2 re-
main the same in the new BLP. In general, the choice of the combining rule
depends on whether the combination should strengthen or weaken some
probability. But this choice itself is not a matter of numbers but a matter of
semantics of the applied clauses and, hence, cannot be determined by the
BLP alone. The above discussion applies to other approaches for statistical
relational learning that employ similar concepts as combining rules such as
probabilistic relational models (Getoor et al., 2007), relational Bayesian networks
(Jaeger, 2002), and logical Bayesian networks (Fierens et al., 2004).

Besides the inability to model rules with exceptions adequately, another
drawback of BLPs (and similar approaches) has already been mentioned
in Example 5.1. In order to obtain a unique model for a BLP the full
specification of the conditional probability distribution of each clause is
mandatory.

1 For two probabilities p1, p2 the noisy-and of p1 and p2 is defined to be p1 · p2.

5.2 syntax of rpcl 133

There exist refinements of BLPs that try to overcome some of their draw-
backs. Logical Bayesian networks (Fierens et al., 2004) introduce purely log-
ical statements that are not interpreted in a probabilistic sense. This allows
for omitting the specification of unknown probabilistic dependencies such
as—in the above example—the probability of an individual flying if the in-
dividual is not a bird. Furthermore, the Balios engine (Kersting and Dick,
2004) for Bayesian logic programs allows the specification of logical pred-
icates as well and supports the inclusion of a purely logical specification
of background knowledge with Prolog. Still, for both these refinements of
BLPs, if one wants to define a probabilistic relationship between two prob-
abilistic variables the conditional probability distribution has to be fully
specified.

The discussion above motivates the need for a flexible semantics of rela-
tional rules that allows for exceptions and enables default reasoning. In the
following we propose relational probabilistic conditional logic as a frame-
work for specifying such semantics.

5.2 syntax of rpcl

We already presented most of the syntactical concepts of relational proba-
bilistic conditional logic (RPCL) in Chapter 2. In particular, in Section 2.1.2
we introduced the language L/∀/∃(Σ, V), the quantifier-free fragment of first-
order logic. Further, we restrict the underlying signature as follows.

Definition 5.1 (Simple relational signature). A first-order signature Σ =
(U, Pred, Func) is a simple relational signature if and only if Pred is finite and
Func = ∅.

If Σ is a simple relational signature then for a set of variables V the resulting
language L/∀/∃(Σ, V) is called simple relational language. In the following, let
Σ = (U, Pred, ∅) be a simple relational signature with some infinite pool of
constants U and let V be a set of variables. Then (L/∀/∃(Σ, V) | L/∀/∃(Σ, V))pr

is the corresponding probabilistic conditional language, cf. Definition 2.24

on page 26. In the following we call (L/∀/∃(Σ, V) | L/∀/∃(Σ, V))pr a rela-
tional probabilistic conditional language. A knowledge base R is a subset of
(L/∀/∃(Σ, V) | L/∀/∃(Σ, V))pr and as before probabilistic conditionals of the
form (ψ | >)[d] are abbreviated by (ψ)[d].

For a probabilistic conditional (ψ | φ)[d] ∈ (L/∀/∃(Σ, V) | L/∀/∃(Σ, V))pr and
a knowledge base R ∈ P((L/∀/∃(Σ, V) | L/∀/∃(Σ, V))pr) we define

Const((ψ | φ)[d]) =def Const(ψ) ∪ Const(φ)
Const(R) =def

⋃
r∈R

Const(r) .

134 relational probabilistic conditional logic

Let D ⊆ U be a finite set of constants. We extend the function gndD(·)
in a straightforward fashion to conditionals r = (ψ | φ) and probabilistic
conditionals r′ = (ψ | φ)[d] via

gndD(r) =def {(θ(ψ) | θ(φ)) | θ ∈ Γgnd(Σ) ∧ Im θ ⊆ D} and

gndD(r
′) =def {(θ(ψ) | θ(φ))[d] | θ ∈ Γgnd(Σ) ∧ Im θ ⊆ D}

and to knowledge bases R via

gndD(R) =def
⋃

r∈R
gndD(r) .

If {X1, . . . ,Xn} is the set of free (and not bound) variables in φ or ψ we also
write (ψ | φ)[d] as (ψ(~X) | φ(~X))[d] with ~X = (X1, . . . ,Xn). If~a = (a1, . . . , an)
is a vector of constants of the same length we denote by (ψ(~a) | φ(~a))[d] the
conditional (ψ′ | φ′)[d] that is the same as (ψ | φ)[d] but every occurrence of
Xi is replaced by ai for i = 1, . . . , n. If a probabilistic conditional (ψ | φ)[d]
contains at least one free variable we say that (ψ | φ)[d] is an open probabilis-
tic conditional.

5.3 semantics of rpcl

Introducing relational aspects in probabilistic statements raises some ambi-
guity on the understanding of these statements. Consider again the exam-
ple from the beginning of this chapter.

Example 5.2. Let Rzoo =def {r1, r2, r3} be the knowledge base given via

r1 =def (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6]

r2 =def (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]

r3 =def (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7] .

The knowledge base Rzoo describes the relationships between keepers and
elephants in a zoo. The intuitive meaning behind conditional r1 is that
generally some elephant likes a keeper with a probability 0.6. Conditional
r2 says that keeper Fred is exceptional and an elephant likes him only with
a probability 0.4 and conditional r3 states that elephant Clyde likes Fred
with a probability of 0.7.

Clearly, the three probabilistic conditionals from Example 5.2 form a hierar-
chy of specificity from the most general probabilistic conditional r1 to the
most specific probabilistic conditional r3. As pointed out in Section 5.1 the
use of combining functions is not adequate for representing non-monotonic
reasoning behavior which is exactly the kind of reasoning expected for
the knowledge base Rzoo. Looking closer at the probabilistic conditionals
r1, r2, r3 and their intended meaning it becomes clear that the type of in-

5.3 semantics of rpcl 135

formation represented by the conditionals differs. Conditional r3 contains
no variables but gives a probabilistic statement on the relationship of the
individuals Clyde and Fred. This means that the true state of the relation-
ship is known only with some uncertainty of 0.7 and thus r3 describes a
degree of belief on the truth of likes(clyde, fred). Both conditionals r1 and r2
contain free variables and thus describe knowledge ranging over the whole
population. When representing a conditional of the form r2 a statistical in-
terpretation like “40% of all elephants like Fred” is applicable that does not
allow for universal instantiation if information on specific individuals is
present.

In the following we investigate two approaches that give formal seman-
tics to knowledge bases like Rzoo. As in Section 2.3 semantics are given
to relational probabilistic conditionals by means of probability functions
P : Ω(Σ)→ [0, 1] with Ω(Σ) being the set of Herbrand interpretations of Σ,
cf. Definition 2.14 on page 17. Besides the restrictions made to probability
functions in Definition 2.15 on page 19 we also demand

1. if ω ∈ Ω(Σ) is infinite then P(ω) = 0, and

2. it holds that P(ω) 6= 0 only for finitely many ω ∈ Ω(Σ).

We require probability functions to satisfy these two properties in order to
avoid technical difficulties in handling infinite sums. As we only consider
finite knowledge bases these demands are of no concern regarding the
expressivity of our logic.2 In the following let PF(Σ) denote the set of all
these probability functions. A probability function P ∈ PF(Σ) is extended
to sentences φ (ground formulas) of L/∀/∃(Σ, ∅) via

P(φ) =def ∑
ω∈Ω(Σ), ω|=Fφ

P(ω) . (5.1)

A function P satisfies a ground probabilistic conditional (ψ | φ)[d], denoted
by P |=pr (ψ | φ)[d], if and only if

P(ψ | φ) = d or P(φ) = 0 . (5.2)

Note that this relation is identical to the definition of satisfaction for propo-
sitional probabilistic conditional logic—see Equation (2.6) on page 28—but
does not suffice to give full semantics to relational probabilistic knowledge
bases as these may contain open probabilistic conditionals. It remains to
define P |=pr (ψ | φ)[d] for non-ground conditionals (ψ | φ)[d]. We address
this issue in the following two sections which present the averaging and
aggregating semantics, respectively.

For the upcoming discussion we need some further notation.

2 Remember that every probabilistic conditional is finite as well, cf. Definition 2.24 on
page 26.

136 relational probabilistic conditional logic

Definition 5.2 (Relevance set). Let D ⊆ U be finite. Then the set of rele-
vant Herbrand interpretations Ω(Σ, D) of Ω(Σ) with respect to D is the set
Ω(Σ, D) ⊆ Ω(Σ) defined as Ω(Σ, D) =def {ω ∈ Ω(Σ) | Const(ω) ⊆ D}.

Clearly, it holds that Ω(Σ, D) = Ω((D, Pred, ∅)) if Σ = (U, Pred, ∅). Note,
that the set of relevant Herbrand interpretations is the semantical counter-
part to the grounding function gndD(·).

5.3.1 Averaging Semantics

Example 5.2 on page 134 showed that, in general, universal instantiation
of an open probabilistic conditional (ψ | φ)[d] does not yield an equivalent
representation of the intended meaning of (ψ | φ)[d]. More precisely, it de-
mands that every instantiation inherits the probability d which is not ad-
equate in the context of exceptional individuals. Moreover, having more
specific information on specific instantiations should not render the knowl-
edge base inconsistent as other instantiations might balance out exceptions.
Consider the following example from statistics.

Example 5.3. Imagine a table with ten balls on it and every ball is covered
by a drapery. It is certain knowledge that nine of these balls are blue and
one is red. Taking a look under the first drapery we discover a blue ball.
What is the probability of a blue ball being under the second drapery?
Let D =def {c1, . . . , c10} denote the objects discovered under the draperies
when lifting the draperies in an arbitrary order. We represent the scenario
after we discovered that the ball under the first drapery is blue. LetRdr =def
{r1,1, . . . , r1,10, r2, r3} be given via

r1,1 =def (ball(c1))[1] . . . r1,10 =def (ball(c10))[1]

r2 =def (blue(X) | ball(X))[0.9]

r3 =def (blue(c1))[1]

The conditionals r1,1, . . . , r1,10 represent the facts that there is a ball under
each drapery. Conditional r2 says that a ball is blue with probability 0.9
and conditional r3 states that the object discovered when lifting the first
drapery is blue. Clearly, the probability of discovering a blue object un-
der the second drapery is 8/9, given that the object is a ball, and any rea-
sonable semantics for relational conditionals should allow both Rdr and
Rdr ∪ {(blue(c2))[8/9]} to be at least satisfiable.

In the previous example conditional r2 defined an expected value for the
probability of discovering a blue ball. The additional information that a
blue ball has already been discovered changes the expected value of dis-
covering another blue ball correspondingly. Therefore mutual influences of
different conditionals have to be taken into account when defining meaning
to a knowledge base.

5.3 semantics of rpcl 137

The approach of averaging semantics (Thimm, 2009b; Kern-Isberner and
Thimm, 2010) generalizes the above intuition by interpreting open prob-
abilistic conditionals of the form (ψ(~X) | φ(~X))[d] to describe an expected
value on the probability of (ψ(~a) | φ(~a)) for some randomly chosen ~a in
some given adequately large but finite domain D ⊆ U. Thus, given the ac-
tual probabilities of (ψ(~a) | φ(~a)) for each possible instantiation~a we expect
the average of these probabilities should match d. For a probability function
P ∈ PF(Σ) and a conditional (ψ(~X) | φ(~X)) we abbreviate with

gndP
D(ψ(~X) | φ(~X)) =def {(ψ′ | φ′) ∈ gndD(ψ(~X) | φ(~X))) | P(φ′) > 0}

the set of ground instances of (ψ(~X) | φ(~X)) for which the premise has a
non-zero probability. Then P ∅-satisfies a probabilistic conditional r =
(ψ(~X) | φ(~X))[d] with respect to finite D with Const(r) ⊆ D ⊆ U and
D 6= ∅, denoted by P, D |=pr

∅ (ψ(~X) | φ(~X))[d], if and only if the following
two conditions are satisfied:

1. P(ω) = 0 for every ω /∈ Ω(Σ, D), and

2. it holds that either |gndP
D(ψ(~X) | φ(~X))| = 0 or

∑
(ψ(~a) | φ(~a))∈gndP

D((ψ(~X) | φ(~X)))
P(ψ(~a) | φ(~a))

|gndP
D(ψ(~X) | φ(~X))|

= d . (5.3)

The first condition is merely a technical amenity. By requiring 1.) we can fo-
cus on probability functions that only take those Herbrand interpretations
into account that do not mention elements outside the domain under dis-
course. We come back to this issue in Chapter 6. The interpretation behind
requirement 2.) is that a probability function P ∅-satisfies a probabilistic
conditional (ψ(~X) | φ(~X))[d] if the average of probabilities of the individual
instances of (ψ(~X) | φ(~X))[d] is d. In Equation (5.3), the numerator of the
fraction on the left-hand side sums up the conditional probabilities of the
different instances of (ψ(~X) | φ(~X))[d] for which the premise has non-zero
probability. Note, that we use gndP

D(·) instead of gndD(·) as P(ψ(~a) | φ(~a))
is not defined for (ψ(~a) | φ(~a)) ∈ gndD((ψ(~X) | φ(~X))) \ gndP

D((ψ(~X) | φ(~X)))
due to P(φ(~a)) = 0. Therefore, by considering only ground instances in
gndP

D((ψ(~X) | φ(~X))) we average only the probabilities of ground instances
that are relevant for the open probabilistic conditional.

Remark 5.1. Let r = (ψ | φ)[d] be a ground conditional and P be a probability
function. Then (5.3) becomes

P(ψ | φ)
|gndP

D(ψ | φ)|
= d . (5.4)

It follows that P ∅-satisfies r if either |gndP
D(ψ | φ)| = 0 or P(ψ | φ) = d.

Notice, that the first statement is equivalent to P(φ) = 0. It follows that

138 relational probabilistic conditional logic

ω P(ω) ω P(ω)
∅ 0 {a(a2), b(a1)} 0

{a(a1)} 0 {a(a2), b(a2)} 0

{a(a2)} 0 {b(a1), b(a2)} 0

{b(a1)} 0 {a(a1), a(a2), b(a1)} 0.1
{b(a2)} 0 {a(a1), a(a2), b(a2)} 0.3
{a(a1), a(a2)} 0.1 {a(a1), b(a2), b(a2)} 0

{a(a1), b(a2)} 0 {a(a2), b(a1), b(a2)} 0

{a(a1), b(a2)} 0 {a(a1), a(a2), b(a1), b(a2)} 0.5

Table 6: The probability function P for the knowledge base R in Exam-
ple 5.4 (all Herbrand interpretations omitted have probability 0)

|=pr
∅ is a clear generalization of the standard probabilistic semantics for

propositional probabilistic conditional logic, cf. Equation (5.2) on page 135.

As before, a probability function P ∅-satisfies a knowledge base R with
respect to finite D with Const(R) ⊆ D ⊆ U and D 6= ∅, denoted P, D |=pr

∅
R, if P ∅-satisfies every probabilistic conditional r ∈ R with respect to D.
We say that R is ∅-consistent with respect to finite D ⊆ U if and only if
there is at least one P with P, D |=pr

∅ R, otherwise R is ∅-inconsistent with
respect to D. Two knowledge bases R1 and R2 are ∅-equivalent, denoted
by R1 ≡∅ R3, if and only if for every P and D it holds that P, D |=pr

∅ R1
whenever P, D |=pr

∅ R2.

Example 5.4. Consider the knowledge base R =def {r1, r2, r3} with

r1 =def (b(X) | a(X))[0.7] r2 =def (a(X))[1] r3 =def (b(a1))[0.6]

and let D =def {a1, a2}. Consider the probability function P given in Table 6.
As one can see, it holds that P, D |=pr

∅ R:

• it holds that P, D |=pr
∅ r1 as P(b(a1) | a(a1)) = P(a(a1)b(a1))/P(a(a1) =

0.6/1 = 0.6 and P(b(a2) | a(a2)) = P(a(a2)b(a2))/P(a(a2) = 0.8/1 = 0.8 and
hence (0.8 + 0.6)/2 = 0.7,

• it holds that P, D |=pr
∅ r2 as (P(a(a1)) + P(a(a2)))/2 = 1, and

• it holds that P, D |=pr
∅ r3 as P(b(a1)) = 0.6.

Example 5.5. We continue Example 5.3. Let P be some probability function
that satisfies

P(ball(c1)) = . . . = P(ball(c10)) = 1

P(blue(c1)) = 1

P(blue(c2)) = . . . = P(blue(c10)) = 8/9

5.3 semantics of rpcl 139

and also P(ω) = 0 for every ω /∈ Ω(Σ, D) (it is easy to see that such a
probability function exists). The function P satisfies r1,1, . . . , r1,10, r3 with
respect to D by definition. Furthermore, P satisfies r2 with respect to D
due to

P(blue(c1) | ball(c1)) = 1

P(blue(c2) | ball(c2)) = . . . = P(blue(c10) | ball(c10)) = 8/9

and

1 + 9 8
9

10
= 0.9 .

This implies P, D |=pr
∅ Rdr. Furthermore, P, D |=pr

∅ Rdr ∪ {(blue(c2))[8/9]}
as well by definition, and thereforeRdr ∪{(blue(c2))[8/9]} is satisfiable with
respect to averaging semantics.

Example 5.6. We continue Example 5.2 from page 134. Let D =def {fred,
clyde, dumbo, dave} and let P be a probability function that satisfies

P(elephant(dumbo)) = P(elephant(clyde)) = 1

P(elephant(fred)) = P(elephant(dave)) = 0

P(keeper(dumbo)) = P(keeper(clyde)) = 0

P(keeper(fred)) = P(keeper(dave)) = 1

P(likes(clyde, fred)) = 0.7

P(likes(dumbo, fred)) = 0.1

P(likes(clyde, dave)) = P(likes(dumbo, dave)) = 0.8 .

It follows that P, D |=pr
∅ r3 by definition. For r2 it holds that

gndD((likes(X, fred) | elephant(X) ∧ keeper(fred))) = {
r1

2 =def (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred)),

r2
2 =def (likes(dumbo, fred) | elephant(dumbo) ∧ keeper(fred)),

r3
2 =def (likes(dave, fred) | elephant(dave) ∧ keeper(fred)),

r4
2 =def (likes(fred, fred) | elephant(fred) ∧ keeper(fred)) }

and gndP
D((likes(X, fred) | elephant(X)∧ keeper(fred))) = {r1

2, r2
2} as for r3

2 and
r4

2 it holds that elephant(dave) ∧ keeper(fred) and elephant(fred) ∧ keeper(fred)
have probability zero, respectively. It follows P, D |=pr

∅ r2 due to

P(r1
2) + P(r2

2)

|gndP
D((likes(X, fred) | elephant(X) ∧ keeper(fred)))|

=
0.7 + 0.1

2
= 0.4 .

Furthermore, for r1 it holds that

140 relational probabilistic conditional logic

gndP
D((likes(X,Y) | elephant(X) ∧ keeper(Y))) = {

r1
1 =def (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred)),

r2
1 =def (likes(dumbo, fred) | elephant(dumbo) ∧ keeper(fred)),

r3
1 =def (likes(clyde, dave) | elephant(clyde) ∧ keeper(dave)),

r4
1 =def (likes(dumbo, dave) | elephant(dumbo) ∧ keeper(dave)) } .

Similarly it follows P, D |=pr
∅ r1 as

P(r1
1) + P(r2

1) + P(r3
1) + P(r4

1)

|gndP
D((likes(X,Y) | elephant(X) ∧ keeper(Y)))|

=
0.7 + 0.1 + 0.8 + 0.8

4
= 0.6 .

5.3.2 Aggregating Semantics

Averaging semantics preserves the interpretation of a conditional probabil-
ity as subjective belief in the conclusion given the premise holds. There-
fore conditional probabilities are only defined for ground conditionals and
the probability of an open conditional (ψ(~X) | φ(~X)) is defined in terms
of conditional probabilities of its instances. When considering a relational
language, one might argue whether a conditional should be interpreted in
this manner or whether conditional probability should be redefined on a
higher level, incorporating the relational structure of the language. In the
following we give a novel approach for defining conditional probabilities
in a relational setting.3

We first consider unconditioned formulas (φ(~X))[d] with free (and not
bound) variables ~X. Let ω be some Herbrand interpretation and D with
Const(φ(~X)) ⊆ D ⊆ U and D 6= ∅ the finite set of constants under
consideration. Treating ω as a statistical sample we can count the number
of true instances of φ(~X) in ω under D and determine the average number
of true instances via

f D
ω (φ(~X)) =def

|{φ(~a) | φ(~a) ∈ gndD(φ(~X)) | ω |=F φ(~a)}|
|gndD(φ(~X))|

. (5.5)

Note that |gndD(φ(~X))| > 0 for every φ(~X) as D 6= ∅. For ground φ(~a) we
get

f D
ω (φ(~a)) =

{
1 if ω |=F φ(~a)
0 if ω 6|=F φ(~a)

3 The following elaboration (until right after Equation 5.8) is due to Gabriele Kern-Isberner
and stems from personal communication.

5.3 semantics of rpcl 141

and then (5.5) amounts to

f D
ω (φ(~X)) =

∑φ(~a)∈gndD(φ(~X)) f D
ω (φ(~a))

|gndD(φ(~X))|
.

Considering some probability function P ∈ PF(Σ) (thus describing either a
series of samples or subjective beliefs in each interpretation being the actual
world) we can appropriately define

P(φ(~X); D) =def ∑
ω∈Ω(Σ)

f D
ω (φ(~X))P(ω) (5.6)

to be the weighted sum of the average frequencies. Rearranging (5.6) yields

P(φ(~X); D) = ∑
ω∈Ω(Σ)

f D
ω (φ(~X))P(ω)

= ∑
ω∈Ω(Σ)

∑φ(~a)∈gndD(φ(~X)) f D
ω (φ(~a))

|gndD(φ(~X))|
P(ω)

=
∑ω∈Ω(Σ) ∑φ(~a)∈gndD(φ(~X)) f D

ω (φ(~a))P(ω)

|gndD(φ(~X))|

=
∑φ(~a)∈gndD(φ(~X)) ∑ω∈Ω(Σ) f D

ω (φ(~a))P(ω)

|gndD(φ(~X))|

=
∑φ(~a)∈gndD(φ(~X)) P(φ(~a))

|gndD(φ(~X))|
(5.7)

and thus also a statistical justification for (5.3) on page 137 for the case of
unconditioned formulas. But instead of applying (5.7) in the same way to
conditionals we give a new definition of the conditional probability via

P(ψ(~X) | φ(~X); D) =
P(ψ(~X)φ(~X); D)

P(φ(~X); D)
if P(φ(~X); D) > 0 (5.8)

thus carrying over the definition of conditional probability to a relational
setting. By applying (5.7) and assuming P(φ(~X); D) > 0 this yields

P(ψ(~X) | φ(~X); D) =

|gndD(φ(~X))|∑(ψ(~a)φ(~a))∈gndD(φ(~X)ψ(~X)) P(ψ(~a)φ(~a))

|gndD(φ(~X)ψ(~X))|∑φ(~a)∈gndD(φ(~X)) P(φ(~a))
.

142 relational probabilistic conditional logic

Note that the equation |gndD(φ(~X)ψ(~X))| = |gndD(φ(~X))| does not hold in
general. For example, consider the conditional r = (p(X,Y) | q(X)) with

gnd{c1,c2}(p(X,Y)q(X)) = {p(c1, c1)q(c1), p(c1, c2)q(c1),

p(c2, c1)q(c2), p(c2, c2)q(c2)}
gnd{c1,c2}(q(X)) = {q(c1), q(c2)}

However, if every variable that occurs in ψ(~X) also appears in φ(~X) then
we get |gndD(φ(~X)ψ(~X))| = |gndD(φ(~X))| and accordingly

P(ψ(~X) | φ(~X); D) =
∑(ψ(~a)φ(~a))∈gndD(φ(~X)ψ(~VX)) P(ψ(~a)φ(~a))

∑φ(~a)∈gndD(φ(~X)) P(φ(~a))
. (5.9)

A conditional that satisfies the above property is also called safe or range-
restricted, cf. e. g. (Kersting and Raedt, 2007). In the following, we are only
dealing with range-restricted conditionals and, consequently, we use the
simple form (5.9) for discussion.

We are now able to define the aggregating semantics as follows. A prob-
ability function P ∈ PF(Σ) �-satisfies r = (ψ(~X) | φ(~X))[d] with respect
to finite D with Const(r) ⊆ D ⊆ U and D 6= ∅, denoted by P, D |=pr

�
(ψ(~X) | φ(~X))[d] if and only if the following two conditions are satisfied:

1. P(ω) = 0 for every ω /∈ Ω(Σ, D), and

2. it holds that

P(φ(~X); D) = 0 or P(ψ(~X) | φ(~X); D) = d . (5.10)

As for the averaging semantics, condition 1.) is a technical amenity. Note
that this definition nicely resembles the satisfaction relation in the proposi-
tional case, cf. Equation (5.2) on page 135.

Remark 5.2. As for |=pr
∅ , the relation |=pr

� coincides with the standard prob-
abilistic semantics for ground probabilistic conditionals. Let r = (ψ | φ)[d]
be a ground probabilistic conditional and P be a probability function. Then
(5.8) becomes

P(ψ | φ; D) =
P(ψφ; D)

P(φ; D)
=

P(ψφ)
1

P(φ)
1

=
P(ψφ)

P(φ)
.

It follows that P �-satisfies r if either P(φ; D) = 0 or P(ψ | φ) = d. Notice,
that the first statement is equivalent to P(φ) = 0. It follows that |=pr

� is
a clear generalization of the standard probabilistic semantics for proposi-
tional probabilistic conditional logic, cf. Equation (5.2) on page 135.

As before, a probability function P �-satisfies a knowledge base R with
respect to finite D with Const(R) ⊆ D ⊆ U and D 6= ∅, denoted by

5.4 properties and analysis 143

P, D |=pr
� R, if P �-satisfies every probabilistic conditional r ∈ R with

respect to D. We say that R is �-consistent with respect to D if and only if
there is at least one P with P, D |=pr

� R, otherwise R is �-inconsistent with
respect to D. Two knowledge bases R1 and R2 are �-equivalent, denoted
by R1 ≡� R2, if and only if for every P and D it holds that P, D |=pr

� R1
whenever P, D |=pr

� R2.

Example 5.7. Consider the knowledge base R = {r1, r2, r3} from Exam-
ple 5.4 on page 138 with

r1 = (b(X) | a(X))[0.7] r2 = (a(X))[1] r3 = (b(a1))[0.6]

and D = {a1, a1}. As in Example 5.4 consider the probability function P
given in Table 6 (see page 138). As one can see, it holds that P, D |=pr

� R as
well:

• it holds that P |=pr
� r1 as P(b(a1)a(a1)) = 0.6 and P(b(a2)a(a2))) =

0.8, and as well P(a(a1)) = P(a(a2)) = 1; hence (0.8 + 0.6)/2 = 0.7;

• it holds that P |=pr
� r2 as (P(a(a1)) + P(a(a2)))/2 = 1, and

• it holds that P |=pr
� r3 as P(b(a1)) = 0.6.

Examples 5.4 and 5.7 show that both proposed semantics coincide on the
given simple knowledge base. We investigate the similarities and differ-
ences of the both semantics further in the next section.

5.4 properties and analysis

Due to Remark 5.1 on page 137 and Remark 5.2 on page 142 both seman-
tics agree on ground conditionals. Furthermore, it is straightforward to
show that |=pr

∅ and |=pr
� also agree on probabilistic facts (that may contain

variables).

Proposition 5.1. Let P ∈ PF(Σ) be a probability function, D ⊆ U finite, and
(ψ)[d] a probabilistic fact. Then it holds that P, D |=pr

∅ (ψ)[d] if and only if
P, D |=pr

� (ψ)[d].

Proof. It holds that P, D |=pr
∅ (ψ)[d] if and only if

∑ψ′∈gndD(ψ) P(ψ′)
|gndD(ψ)|

= d

as the premise of a probabilistic fact, i. e. a tautology, has probability greater
zero. In particular, due to Equation 5.7 (see page 141) it holds that

P, D |=pr
� (ψ)[d] iff

∑ψ′∈gndD(ψ) P(ψ′)
|gndD(ψ)|

= d

144 relational probabilistic conditional logic

In a straightforward way one can also accept the following statement.

Proposition 5.2. Let r = (ψ | φ) be a conditional and gndD(r) = {(ψ1 | φ1), . . . ,
(ψn | φn)} be the set of its ground instances with respect to a finite set D with
Const(r) ⊆ D ⊆ U. Let P be a probability function. If P(ψ1 | φ1) = . . . =
P(ψn | φn) = d then both P, D |=pr

� (ψ | φ)[d] and P, D |=pr
∅ (ψ | φ)[d].

Proof. Let it hold that P, D |=pr
� (ψ | φ)[d′]. As P(ψiφi) = d · P(φi) for every

i = 1, . . . , n and by considering Equation 5.6 (see page 141) the value d′

amounts to

d′ =
P(ψ1φ1) + . . . + P(ψnφn)

P(φ1) + . . . + P(φn)

=
d · P(φ1) + . . . + d · P(φn)

P(φ1) + . . . + P(φn)
= d .

By considering Equation 5.3 (see page 137) and P, D |=pr
∅ (ψ | φ)[d′] we also

get

d′ =
P(ψ1 | φ1) + . . . + P(ψn | φn)

n

=
nd
n

= d .

Note that P(φi) > 0 as P(ψi | φi) = d is (implicitly) well-defined for i =
1, . . . , n.

For general probabilistic conditionals, however, the averaging and aggregat-
ing semantics turn out to be different, as the following example shows.

Example 5.8. Let a/1 and b/1 be two predicates, let D =def {a1, . . . , a5},
and consider the knowledge base R given via

R =def { (a(a1))[0.5], (a(a2))[0.1],

(a(a3))[0.9], (a(a4))[0.6],

(a(a5))[0.4], (b(a1)a(a1))[0.5],

(b(a2)a(a2))[0.1], (b(a3)a(a3))[0.9],

(b(a4)a(a4))[0.4], (b(a5)a(a5))[0.1] } .

In addition, consider the conditional r = (b(X) | a(X))[0.8]. On the one
hand, any probability function P with P, D |=pr

� R also obeys P, D |=pr
� r as

P(b(a1)a(a1)) + · · ·+ P(b(a5)a(a5))

P(a(a1)) + · · ·+ P(a(a5))

=
0.5 + 0.1 + 0.9 + 0.4 + 0.1
0.5 + 0.1 + 0.9 + 0.6 + 0.4

= 0.8 .

5.4 properties and analysis 145

On the other hand, no probability function P with P, D |=pr
∅ R obeys

P, D |=pr
∅ r due to

1
5
(P(b(a1) | a(a1)) + · · ·+ P(b(a5) | a(a5)))

=
1
5

(
0.5
0.5

+
0.1
0.1

+
0.9
0.9

+
0.4
0.6

+
0.1
0.4

)
= 0.783 6= 0.8 .

As P, D |=pr
� R is equivalent to P, D |=pr

∅ R due to Proposition 5.1 the differ-
ent semantics may lead to different inferences. Furthermore, the two seman-
tics feature a different notion of consistency as R ∪ {r} is ∅-inconsistent
with respect to D but �-consistent with respect to D.

Although the previous example suggests that the difference of the two pro-
posed semantics is marginal, in the following, we show that the difference
can be made arbitrarily large.

Lemma 5.1. Let n > 1 be some integer and let α1, . . . , αn, β1, . . . , βn ∈ (0, 1]
with αi ≤ βi for all i = 1, . . . , n. Then∣∣∣∣∣

α1
β1

+ . . . + αn
βn

n
− α1 + . . . + αn

β1 + . . . + βn

∣∣∣∣∣ < n− 1
n

(5.11)

The proof of Lemma 5.1 can be found in Appendix A on page 240. The
bound of (n− 1)/n is also the least upper bound as the following example
shows.

Example 5.9. Let n > 1 be some integer and let x ≥ 2 be some positive real
value. Define α1 = . . . = αn = β1 = . . . = βn−1 = 1/x and βn = 1− 1/x.
Observe, that for x ≥ 2 it follows α1, . . . , αn, β1, . . . , βn ∈ (0, 1] and αi ≤ βi
for every i = 1, . . . , n. Then it holds that

α1
β1

+ . . . + αn
βn

n
=

n− 1 +
1
x

1− 1
x

n
x→∞→ n− 1

n

and

α1 + . . . + αn

β1 + . . . + βn
=

n
x

n−1
x + 1− 1

x

x→∞→ 0 .

Corollary 5.1. Let P ∈ PF(Σ) be some probability function, D ⊆ U finite, and
(ψ(~X) | φ(~X)) be some probabilistic conditional with |gndP

D((ψ(~X) | φ(~X)))| > 1.
If P, D |=pr

∅ (ψ(~X) | φ(~X))[d1] and P, D |=pr
� (ψ(~X) | φ(~X))[d2] then

|d1 − d2| <
|gndP

D((ψ(~X) | φ(~X)))| − 1

|gndP
D((ψ(~X) | φ(~X)))|

146 relational probabilistic conditional logic

Proof. This follows directly from Lemma 5.1 and the fact that P both ∅-
and �-satisfies (ψ(~X) | φ(~X))[d] with respect to D for some d (therefore all
appearing probabilities of premises are non-zero). Note that Equation (5.8)
on page 141 considers all groundings of a conditional and not only those
groundings with non-zero probability, cf. Equation (5.7) on page 141. How-
ever, if the premise of grounding (ψ(~a) | φ(~a)) has probability zero so has
the conjunction ψ(~a) ∧ φ(~a). Therefore, both the numerator and denom-
inator of (5.8) can be simplified by only summing over groundings in
gndP

D((ψ(~X) | φ(~X))) which justifies the application of Lemma 5.1.

Basically, the above corollary says that the more constants we consider the
more likely it is that the semantics differ significantly.

5.5 related work

The most related works to the framework developed in this chapter are
(Fisseler, 2010) and (Loh et al., 2010)4. Both works also aim at extending
probabilistic conditional logic and reasoning with the principle of maxi-
mum entropy to the relational case. Furthermore, the works (Jaeger, 1995)
and (Halpern, 1990; Grove et al., 1996a,b) also consider relational proba-
bilistic reasoning as well as the works on statistical relational learning, cf.
Section 2.4. All these works also share similarities with the inferential ap-
proach developed in the next chapter. In particular, most approaches for
statistical relational learning such as BLPs (see Section 2.4.1) and MLNs
(see Section 2.4.2) rely on inferential semantics and thus are reviewed at the
end of the next chapter. In this section, however, we restrain the comparison
of our framework with the works (Halpern, 1990; Jaeger, 1995; Grove et al.,
1996a,b; Fisseler, 2010; Loh et al., 2010) to a syntactical and semantical com-
parison and continue with a comparison of inference later in Section 6.4.

5.5.1 Grounding Semantics for RPCL

The works (Fisseler, 2010) and (Loh et al., 2010) share the same motivation
as our work, namely, to extend probabilistic conditional logic to relational
settings. In contrast to the present work those works base their seman-
tics mainly on the assumption that open conditionals are to be treated as
schemas for their instances. As for the syntax, both frameworks use ba-
sically the same formalism as RPCL but with one extension. Both frame-
works allow the specification of grounding constraints which can be attached
to probabilistic conditionals in order to avoid unwanted ground instances
of the conditionals to hold. For instance, Example 5.2 (see page 134) can be
rephrased with grounding constraints yielding R∗zoo =def {r1, r2, r3} with

4 The last work is based on the diploma thesis (Loh, 2009) which was written under the
author’s supervision, see also (Thimm et al., 2010).

5.5 related work 147

r1 =def (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6][Y 6= fred]

r2 =def (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4][X 6= clyde]

r3 =def (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7]

The informal interpretation for the above conditionals is straightforward.
For example, the probabilistic conditional r1 says that every elephant likes
every keeper except Fred with probability 0.6. By employing grounding
constraints one can get rid of the unnecessary inconsistencies in the plain
grounding of R∗zoo. This approach is pursued in depth in (Fisseler, 2010)
but (Loh et al., 2010) also allows for strategic grounding when grounding
constraints may not be specified. In the following we restrain our attention
to the approach of (Loh et al., 2010) as—syntactically and semantically—
this approach subsumes the approach of relational probabilistic conditional
reasoning in (Fisseler, 2010).

The basic notion of the approach of (Loh et al., 2010) is that of a grounding
operator which is defined as follows.

Definition 5.3 (Grounding operator). A grounding operator G is a function
G : P(L/∀/∃(Σ, V))×P(U)→ P(L/∀/∃(Σ, ∅)).

In general, a grounding operator G grounds a relational knowledge base R
to a propositional knowledge base (for which interpretation is straightfor-
ward) using a finite set of constants D with Const(R) ⊆ D ⊆ U.
The semantics of the approach of (Loh et al., 2010) is defined as follows. Let
P ∈ PF(Σ) be a probability function. Then P G-satisfies a knowledge base
R under grounding operator G with respect to finite D with Const(R) ⊆
D ⊆ U, denoted by P, D |=pr

G R, if and only if P |=pr r for all r ∈ G(R, D),
cf. Equation (5.2) on page 135. We say that R is G-consistent with respect
to finite D if and only if there is at least one P with P, D |=pr

G R, otherwise
R is G-inconsistent with respect to D.

The semantics of this approach relies heavily on the actual definition of
a grounding operator. The simplest approach to ground a knowledge base
is universal instantiation.

Definition 5.4 (Naive grounding operator). The naive grounding operator GU
is defined as GU(R, D) =def

⋃
r∈R gndD(r) if Const(R) ⊆ D and D is finite.

As discussed before, without taking grounding constraints into consider-
ation, the naive grounding of a knowledge base like in Example 5.2 (see
page 134) yields a GU-inconsistent ground knowledge base with respect to
the given D. In order to avoid this situation, a series of different grounding
operators are proposed in (Loh et al., 2010) that allow for consistent ground-
ing. The most sophisticated of these is the specificity grounding operator Gsp.
This operator removes from the plain grounding of a knowledge base all

148 relational probabilistic conditional logic

conflicting probabilistic conditionals and leaves only those that are most
specific. We illustrate the specificity grounding operator on Example 5.2.

Example 5.10. The ground knowledge base Gsp(Rzoo, D) obtained when
applying Gsp to Rzoo with D =def {clyde, dumbo, dave, fred} is given as

Gsp(Rzoo, D) = {
(likes(clyde, dave) | elephant(clyde) ∧ keeper(dave))[0.6],

(likes(dumbo, dave) | elephant(dumbo) ∧ keeper(dave))[0.6],

(likes(dumbo, fred) | elephant(dumbo) ∧ keeper(fred))[0.4],

(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7], . . .}

Note that we omitted listing ground conditionals that mention either
elephant(dave), elephant(fred), keeper(clyde), keeper(dumbo) in the premise
due to simplicity of presentation. As one can see, the specificity grounding
operator removed the ground instance

(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.4]

as r3 is more specific than r2 which produced the above ground instance.
Similarly, the ground instances

(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7] and

(likes(dumbo, fred) | elephant(dumbo) ∧ keeper(fred))[0.6]

are removed due to the availability of more specific conditionals. Consider-
ing again the knowledge base R∗zoo (see page 146) one can see that it holds
that Gsp(Rzoo, D) = GU(R∗zoo, D) as the explicitly modeled grounding con-
straints in R∗zoo match the intuition behind specificity.

The formal definition of the specificity grounding operator can be found in
(Loh et al., 2010).

A similar remark like Remarks 5.1 on page 137 and 5.2 on page 142 can
also be phrased for grounding semantics.

Remark 5.3. Let r = (ψ | φ)[d] be a ground conditional, P be a probability
function, and D finite with Const(r) ⊆ D ⊆ U and D 6= ∅. Then for
any grounding operator G it holds that P, D |=pr

G r if and only if P |=pr

r. Therefore, grounding semantics is also a clear generalization of the
standard probabilistic semantics for propositional probabilistic conditional
logic, cf. Equation (5.2 on page 135).

If one restricts attention to the syntactical framework of RPCL (thus for-
bidding grounding constraints) the most obvious problem with the naive
grounding operator is that it often produces a GU-inconsistent ground

5.5 related work 149

knowledge base with respect to the given D. Consider the following ex-
ample.

Example 5.11. Let R =def {r1, r2} be a knowledge base given via

r1 =def (a(X))[0.7] r2 =def (a(c1))[0.4]

and D =def {c1, c2, c3}. Grounding R with GU results in a ground knowl-
edge base GU(R, D) with (a(c1))[0.7], (a(c1))[0.4] ∈ GU(R). It follows that
GU(R, D) is GU-inconsistent with respect to D as there can be no P with
both P(a(c1)) = 0.7 and P(a(c1)) = 0.4. However, R is both ∅-consistent
with respect to D and �-consistent with respect to D. For example, for ev-
ery probability function P with P(a(c1)) = 0.4 and P(a(c2)) = P(a(c3)) =
0.85 it holds that P, D |=pr

∅ R and P, D |=pr
� R.

While the above example shows that there are cases where naive grounding
semantics fail but averaging and aggregating do not, there is no example
for the opposite direction. In fact, it holds the following statement.

Proposition 5.3. LetR be a GU-consistent knowledge base with respect to D ⊆ U.
Then R is also ∅- and �-consistent with respect to D and for every probability
function P ∈ PF(Σ) with P, D |=pr

GU
R it follows P, D |=pr

∅ R and P, D |=pr
� R.

Proof. Let R be GU-consistent with respect to D and let P be a probability
function with P, D |=pr

GU
R. Let r = (ψ | φ)[d] ∈ R and let

S = {(ψ1 | φ1)[d], . . . , (ψn | φn)[d]} = gndr(D)

be the ground instances of r. Then it follows that S ⊆ GU(R, D) as well
and therefore P(ψ1 | φ1) = . . . = P(ψn | φn) = d. It follows that P also
satisfies (5.3) (see page 137) and therefore P, D |=pr

∅ R. By Proposition 5.2
(see page 144) it also follows P, D |=pr

� R.

It follows that both averaging and aggregating semantics are clearly more
expressive than naive grounding semantics on RPCL. However, the matter
changes when we allow grounding constraints.

Example 5.12. Let R =def {r1, r2} be a knowledge base given via

r1 =def (a(X))[0][X 6= c1] r2 =def (a(c1))[d]

with d ∈ (0, 1]. Then R is GU-consistent with respect to every finite D with
c1 ∈ D. By neglecting the grounding constraint of r1 and interpreting R
in RPCL it follows that R is both ∅- and �-inconsistent with respect to
to every finite D with c1 ∈ D. This is clear, as r1 basically demands that
P(a(c)) = 0 for every c ∈ D in order for P, D |=pr

∅ r1 or P, D |=pr
� r1 to

be satisfied. For example, Equation 5.3 (see page 137) yields P(a(c1)) +
. . . + P(a(cm)) = 0 if D = {c1, . . . , cm}. This can only be achieved if

150 relational probabilistic conditional logic

P(a(c1)) = . . . = P(a(cm)) = 0. As a consequence, it cannot hold that
P, D |=pr

∅ r2.

In the above example both averaging and aggregating semantics fail as R
represents a scenario with a debatable strong exception and we neglected
the grounding constraint of r1 for interpretation. In this thesis we refrain
from introducing grounding constraints in RPCL as a matter of clarity. A
grounding constraint puts the burden of identifying exceptions for a proba-
bilistic conditional onto the knowledge engineer. Furthermore, identifying
exceptions may be hard or even impossible in practice. Nonetheless, RPCL
might be as well augmented with grounding constraints and both averaging
and aggregating can be modified in a straightforward way to consider only
ground instances of conditionals that obey the grounding constraints. Then
the knowledge base R in Example 5.12 would be both ∅- and �-consistent
with respect to D.

Example 5.13. Consider again the knowledge base R = {r1, r2} but with-
out the grounding constraint of r1, i. e.

r1 =def (a(X))[0] r2 =def (a(c1))[d] .

Obviously, R is GU-inconsistent with respect to every finite D with c1 ∈ D.
However, R is Gsp-consistent with respect to every finite D with c1 ∈ D as
(a(c1))[0] /∈ Gsp(R) as r2 is more specific than r1 with respect to c1.

Although the previous example suggests that specificity grounding seman-
tics avoids the drawbacks of naive grounding semantics completely the no-
tion of specificity is not always applicable in the presence of conflicting
information.

Example 5.14. Consider the knowledge base R =def {r1, r2, r3} given via

r1 =def (a(X))[0.7] r2 =def (a(X) | b(X))[1] r3 =def (b(c1))[1] .

If e. g. D = {c1, c2} then R is both ∅- and �-consistent with respect to D.
For example, let P be such that

P(b(c1)) = P(a(c1)) = 1 P(b(c2)) = 0 P(a(c2)) = 0.4

Then P, D |=pr
∅ r3 by definition, P, D |=pr

∅ r2 as only the ground instance
of r2 with c1 is considered in Equation (5.3) on page 137 and P(b(c1)) =
P(a(c1)) = 1, and finally P, D |=pr

∅ r1 as the average of P(a(c1)) = 1
and P(a(c2)) = 0.4 is exactly 0.7. It follows P, D |=pr

∅ R and similarly
P, D |=pr

� R as well. However, R is Gsp-inconsistent with respect to every
finite D with c1 ∈ D because of the following reason. The notion of speci-
ficity employed in (Loh et al., 2010) relies mainly on syntactical compari-
son of conditionals. More specifically, a ground instance of a probabilistic

5.5 related work 151

conditional is removed if there is another conditional that is “structurally
identical” to the first conditional but more specific, cf. (Loh et al., 2010).
In R no two conditionals are comparable using this notion and therefore
no ground instance is removed at all yielding Gsp(R, D) = GU(R, D). In
particular, it holds that (a(c1))[0.7], (b(c1))[1], (a(c1) | b(c1))[1] ∈ Gsp(R, D)
which amounts to Gsp(R, D) being Gsp-inconsistent with respect to D.

Another similar approach to the one discussed above is probabilistic logic
programming under maximum entropy (Kern-Isberner and Lukasiewicz,
2004). That work considers bounded probabilistic conditionals as discussed
in Section 2.3 and bases on a simple relational language without disjunc-
tions. The semantics of the relational probabilistic framework of (Kern-
Isberner and Lukasiewicz, 2004) is based on plain grounding and is similar
to the approaches of (Fisseler, 2010) and (Loh et al., 2010). More specifi-
cally, a probability function P satisfies a bound relational probabilistic con-
ditional (ψ | φ)[l, u] if and only if for every ground instance (ψ′ | φ′)[l, u]
of (ψ | φ)[l, u] it holds that P(ψ | φ) ∈ [l, u]. Consequently, everything that
has been said regarding the relation of our approach to the naive ground-
ing operator GU of (Loh et al., 2010) also applies to (Kern-Isberner and
Lukasiewicz, 2004).

5.5.2 First-order Probabilistic Logic

There are several works by Bacchus, Halpern and colleagues that deal with
probabilistic reasoning on first-order logic, see e. g. (Bacchus, 1990; Halpern,
1990; Grove et al., 1994; Bacchus et al., 1996). From a conceptual point
of view, the basic difference of those works with respect to the present
work is that we aim at extending a propositional probabilistic framework—
namely, probabilistic conditional logic—with first-order concepts while in
those works the aim lies in introducing probabilistic concepts into first-
order logic. In the following, we have a closer look on syntax and semantics
of some of the logics proposed in (Bacchus, 1990; Halpern, 1990; Grove et
al., 1994; Bacchus et al., 1996).5

In (Halpern, 1990)—which is inspired by and extends work of (Bacchus,
1990)—two logics and a combination thereof are proposed that introduce
probabilities in first-order formulas. The first language L1 augments a first-
order language L(Σ, V) with statements of the form wX1,...,Xm(φ) ≥ α with
φ ∈ L(Σ, V), X1, . . . ,Xm are free and not bound variables in φ, and α ∈ [0, 1].
The intuition behind the statement wX1,...,Xm(φ) ≥ α is that the probabil-
ity of choosing some random c1, . . . , cm that satisfy φ[X1/c1, . . . ,Xm/cm] is
greater or equal to α. Hence, the probability function P under consider-
ation is actually a probability function on the domain. More specifically,
an interpretation for L1 is a tuple (I, P) with a first-order interpretation
I = (UI , f U

I , PredI , FuncI) ∈ Int(Σ) (see Definition 2.9 on page 15) and a

5 Some of the syntax and semantics of the logics presented in this section are simplified due
to matters of presentation.

152 relational probabilistic conditional logic

probability function P : UI → [0, 1]. The function P is extended to sets of
elements G ⊆ UI via P(G) = ∏c∈G P(c). Then an interpretation (I, P) sat-
isfies a statement wX1,...,Xm(φ) ≥ α, denoted by (I, P) |=pr

1 wX1,...,Xm(φ) ≥ α,
if and only if

∑
I|=Fφ[X1/c1,...,Xm/cm]

P({c1, . . . , cm}) ≥ α . (5.12)

The relation |=pr
1 extends in a straightforward fashion to statements of

the form wX1,...,Xm(φ) ≤ α and wX1,...,Xm(φ) = α. For other first-order
formulas the relation |=pr

1 is the same as |=F, i. e., it holds that (I, P) |=pr
1 φ

if and only if I |=F φ for φ ∈ L(Σ, V), see also page 15ff. Consider
the following example taken from (Halpern, 1990). Let Σ = ({c1, c2, c3},
{son}, ∅) be a first-order signature and (({c1, c2, c3}, id, {son(c1, c2)}, ∅), P)
be an interpretation6 with P(c1) = 1/3, P(c2) = 1/2, and P(c3) = 1/6. Then
we have

(I, P) |=pr
1 wX(son(X, c3)) = 0 (5.13)

(I, P) |=pr
1 wX(son(c1,X)) =

1
2

(5.14)

(I, P) |=pr
1 wX,Y(son(X,Y)) =

1
6

. (5.15)

In particular, (5.15) holds as there is exactly one instantiation of son(X,Y)
that is satisfied in I, namely son(c1, c2), and the probability of “drawing”
both c1 and c2 is P(c1)P(c2) = 1/6. As a consequence, the informal interpre-
tation of L1 is a statistical one. Formulas in L1 are statistical expressions
that rely on the probability of selecting some elements from the underlying
domain. While L1 is apt for representing those statistical expressions it fails
to model degrees of belief such as “the probability that Tweety flies is 0.7”. As
the formula flies(tweety) is ground there is no element from the domain to
be chosen and it always holds that either I, P |=pr

1 wX(flies(tweety)) = 0
or I, P |=pr

1 wX(flies(tweety)) = 1 for every P and I. In (Halpern, 1990) the
logic L2 is proposed to complement L1 in this matter. The language L2 aug-
ments a first-order language L(Σ, V) with statements of the form w(φ) ≥ α

with a sentence φ ∈ L(Σ, V) and α ∈ [0, 1]. The informal interpretation of a
statement w(φ) ≥ α is that the probability of the formula φ being true is at
least α. The semantics for L2 are, essentially, the same as for probabilistic
conditional logic. For a first-order sentence φ ∈ L(Σ, V) and a probability
function P : Int(Σ)→ [0, 1] the probability of φ can be determined via

P(φ) = ∑
I∈Int(Σ), I|=Fφ

P(I) .

A first-order interpretation I and a probability function P : Int(Σ) → [0, 1]
satisfy a statement w(φ) ≥ α, denoted by (I, P) |=pr

2 w(φ) ≥ α, if and

6 The function id is the identity, i. e., it holds that id(x) = x for all x ∈ Dom id.

5.5 related work 153

only if P(φ) ≥ α. The relation |=pr
2 extends in a straightforward fashion

to statements of the form w(φ) ≤ α and w(φ) = α. Note that this relation
is actually independent of I but for other formulas |=pr

2 is the same as |=F

(ignoring P).

The logics L1 and L2 are combined in the logic L3 which allows for
both, statements of the form wX1,...,Xm(φ) ≥ α and statements of the form
w(φ) ≥ α. Semantics are given to L3 with the use of two different
probability functions, the first one P1 : UI → [0, 1] represents a prob-
ability distribution on the elements of the domain, and the second one
P2 : Int(Σ) → [0, 1] represents a probability distribution on the first-order
interpretations. Hence, an interpretation for L3 is a tuple (I, P1, P2) with
a first-order interpretation I and probability functions P1 and P2. A for-
mula of the form wX1,...,Xm(φ) ≥ α is satisfied by (I, P1, P2), denoted by
(I, P1, P2) |=

pr
3 wX1,...,Xm(φ) ≥ α, if and only if (I, P1) |=

pr
1 wX1,...,Xm(φ) ≥ α.

A formula of the form w(φ) ≥ α is satisfied by (I, P1, P2), denoted by
(I, P1, P2) |=

pr
3 w(φ) ≥ α, if and only if (I, P2) |=

pr
2 w(φ) ≥ α. Note that

the language L3 also allows the nesting of expressions of both types which
complicates the definition of the semantics. However, the interpretation
of such nested statements should be clear from the presented basic defini-
tions. The language L3 also allows for conditionals to appear in a prob-
ability statement. As for probabilistic conditional logic, the probability of
a conditional is the conditional probability of the conditional’s conclusion
given its premise. For example, a valid sentence in L3 is

φ =def (w(wX(flies(X) | bird(X)) > 0.99) < 0.2)∧
(w(wX(flies(X) | bird(X)) > 0.9) > 0.95) .

The above statement basically states, that the subjective probability of the
statistical statement that at least 99 % of all birds fly is less than 0.2 and that
the subjective probability of the statistical statement that at least 90 % of all
birds fly is at least 0.95. Note that φ is also satisfiable in L3.

From the point of view of knowledge representation the logic L3 is clearly
more expressive than RPCL, partially due to the availability of quantifiers.
However, our semantical notions differ from both probabilistic concepts
employed in L3. Consider the probabilistic fact

r =def (flies(X))[0.9] (5.16)

and averaging semantics |=pr
∅ . Then for a probability function P and

some finite D ⊆ U with D = {c1, . . . , cm} it holds that P, D |=pr
∅ r if

P(flies(c1)) + . . . + P(flies(cm)) = m · 0.9. If the agent believes r then it
may be unsure about the actual probabilities of the flying capabilities of the
actual individuals but still believes that, in average, every individual flies
with probability 0.9. Now consider the statement

r′ =def wX(flies(X)) = 0.9

154 relational probabilistic conditional logic

in L3. In order to interpret r′ we do not only need a probability function P1
but the current state of the world, i. e. an interpretation I, as well. Then r′ is
satisfied with respect to P1 and I if there are constants c1, . . . , cn such that
the interpretation of each ci flies in I (for i = 1, . . . , n) and P1({c1}) + . . . +
P1({cn}) = 0.9. Note that, in general, it may be the case that {c1, . . . , cn}
do not represent 90 % of the domain. If the agent believes r′ and it has
no idea of the underlying probability distribution on the domain elements
then r′ represents much less information than r. It could be the case that
in I there is only a single domain element that flies but the probability that
this element is chosen is 0.9 with respect to P1. Clearly, this interpretation
deviates substantially from the intuition of r. In many scenarios, P1 might
be assumed to be a uniform probability function, cf. (Halpern, 1990). Then
an interpretation I satisfies r′ if for 90 % of the domain elements flies(X)
is true in I. If an agent believes in both r′ and P1 being uniform then
the agent is unsure which of the present domain elements fly but is sure
that 90 % of them do fly. This interpretation is similar to the one for r
but more restraining. In particular, if the agent believes every situation to
be (equally) likely where 90 % of the elements do fly then it also believes
that every particular domain element flies with a probability of 0.9, i. e.,
from (I, P1, P2) |=

pr
3 r′ with P1 and P2 uniform it follows (I, P1, P2) |=

pr
3

w(flies(c)) = 0.9 for every c ∈ U. Imagine there are ten elements in
the domain, then there are ten possible situations where nine of the ten
elements fly and one does not. Therefore, every element flies in nine of
ten possible situations and—assuming that P2 is uniform—it follows the
claim. This implication is also known as Miller’s principle (Miller, 1966;
Skyrms, 1980) and direct inference in (Bacchus et al., 1996). But also assuming
a uniform P2 reduces probabilistic reasoning to simple counting.

Observe that P1 and P2 are basically independent when it comes to inter-
pretation. Let U = {c1, c2, c3} be the domain under discourse and consider
the following formula

(wX(flies(X)) = 0.9) ∧ w(flies(c1)) = 0.5∧ w(flies(c2)) = 0.5

∧w(flies(c2)) = 0.5 . (5.17)

Note that the above formula is satisfiable in L3 as the first sub-formula is
interpreted with respect to P1 while the latter three sub-formulas are inter-
preted with respect to P2. A similar example has also been used in (Jaeger,
1995) to show several inadequacies of L3 (see also below). Representing the
above formula in RPCL yields

r1 =def (flies(X))[0.9] r2 =def (flies(c1))[0.5]

r3 =def (flies(c2))[0.5] r4 =def (flies(c3))[0.5]

and obviously {r1, r2, r3, r4} is both ∅- and �-inconsistent with respect to
{c1, c2, c3}. Concerning formal interpretation, our approach makes no dis-
tinction between statistical probabilities and degrees of beliefs. In particular,

5.5 related work 155

in our approach all conditionals are interpreted using the same probability
function. Moreover, L3 allows for representing both statistical probabilities
involving undetermined domain elements and degrees of belief on deter-
mined domain elements but is not able to represent degrees of belief on
undetermined domain elements. More specifically, statements like r1 above
that represent average probabilities cannot be represented in L3 without
listing the involved constants explicitly.

In (Jaeger, 1995) Jaeger develops a probabilistic first-order logic Lβ that
fixes the problem of L3 regarding satisfiability of formulas like (5.17). Syn-
tactically, the logic Lβ is very similar to L3. On the one hand, Lβ extends
L3 by introducing a special set of event symbols which are treated differently
from ordinary constants, cf. (Jaeger, 1995). On the other hand, Lβ restricts
the syntax by disallowing nesting of statements with w.7 We do not go into
the details of the semantics of Lβ but only state that those are similar to the
ones of L3 with only subtle differences on the technical level that require a
huge notational introduction. We rather discuss some examples concerning
satisfiability. In particular, Jaeger shows in (Jaeger, 1995) that the formula

(¬∃X : p(X)) ∧ (w(p(c)) = 1)

is satisfiable in L3 but not in Lβ. This formula states that 1.) there is
no element a in the domain such that p(a) is true and 2.) our degree of
belief that p(c) is true is one. Obviously, the above formula should be
inconsistent but L3 allows satisfiability. Note that this example is similar in
spirit to the formula (5.17) discussed above. The straightforward translation
of the above formula to RPCL can be given viaR =def {(p(X))[0], (p(c))[1]}
which is both ∅- and �-inconsistent with respect to every D with c ∈ D.
Therefore, both RPCL and Lβ meet our intuition in interpreting the above
formula while L3 does not. Furthermore, consider the following example
that has also been taken from (Jaeger, 1995).

Let f be a movie with starring actors actorA and actorB. We
further know that 80 % of the movies starring actorA are Ameri-
can productions and only 20 % of the movies starring actorB are
American productions. We also know that f is the only movie
where actorA and actorB star together. We also think that f is an
American production with probability 0.5.

Intuitively, the above scenario makes sense from a commonsensical perspec-
tive. We formalize this scenario using the syntax L3 as follows.

∃=1X : starsActorA(X) ∧ starsActorB(X) ∧
wX(american(X) | starsActorA(X)) = 0.8 ∧
wX(american(X) | starsActorB(X)) = 0.2 ∧

7 Furthermore, Lβ restricts the syntax by disallowing free variables inside w statements but
this restriction has already been applied in the presentation of L3 above.

156 relational probabilistic conditional logic

w(starsActorA(f) ∧ starsActorB(f)) = 1 ∧
w(american(f)) = 0.5 .

In the above formula the symbol ∃=1 is meant to abbreviate “there exists ex-
actly one”. In (Jaeger, 1995) it is shown that the above formula is satisfiable
in L3 but not in Lβ. We can introduce the quantifier ∃=1 into the definition
of the otherwise quantifier-free language L/∀/∃(Σ, V) via I, VA |=F ∃=1X : φ

if and only if for some variable assignment VA′ that is the same as VA but
possibly VA′(X) 6= VA(X) it holds that I, VA′ |=F φ and for all VA′′ with
VA′′(X) 6= VA′(X) it holds that I, VA′′ 6|=F φ. Then, a translation of the
above formula in RPCL can be given via a knowledge base R = {r1, . . . , r5}
with

r1 =def (∃=1X : starsActorA(X) ∧ starsActorB(X))[1]

r2 =def (american(X) | starsActorA(X))[0.8]

r3 =def (american(X) | starsActorB(X))[0.2]

r4 =def (starsActorA(f) ∧ starsActorB(f))[1]

r5 =def (american(f))[0.5] .

Then R is both ∅- and �-consistent with respect to D with f ∈ D and
|D| > 4. More precisely, for D = {f, g1, . . . , g4} a probability function P
that satisfies

P(american(f)) = 0.5

P(starsActorA(f)) = P(starsActorB(f)) = 1

P(american(g1)) = P(american(g2)) = 0.95

P(starsActorA(g1)) = P(starsActorA(g2)) = 1

P(starsActorB(g1)) = P(starsActorB(g2)) = 0

P(american(g3)) = P(american(g4)) = 0.05

P(starsActorA(g3)) = P(starsActorA(g4)) = 0

P(starsActorB(g3)) = P(starsActorB(g4)) = 1

both ∅- and �-satisfies R with respect to D. Note that P satisfies r1 with
respect to D as f is the only movie where both actorA and actorB star (in
g1 and g2 only actorA stars and in g3 and g4 only actorB stars). Also,
r2 is satisfied as 0.95 + 0.95 + 0.5 = 3 · 0.8 and similarly r3 is satisfied
as 0.05 + 0.05 + 0.5 = 3 · 0.2. The conditionals r4 and r5 are satisfied by
definition. Therefore, both RPCL and L3 meet our intuition in interpreting
the above formula while Lβ does not.

The semantical approach of (Halpern, 1990) occurs with minor variations
in (Grove et al., 1994; Bacchus et al., 1996). Syntactically, the logics employed
in (Grove et al., 1994; Bacchus et al., 1996) are the same as L1 with the differ-

5.6 summary and discussion 157

ence that instead of the strict relations ≤ and =, that are used to represent
statistical statements, approximate relations � and ≈ are introduced. An
expression of the form wX(φ) ≈ α then is informally interpreted by saying
that “approximately a proportion of α elements of the domain satisfy φ”.
However, in (Grove et al., 1994) a statement like wX(φ) ≈ α is rewritten into
a statement of the form α− ε ≤ wX(φ) ≤ α + ε with some “small” ε > 0
and interpreted using the semantics of L1. Furthermore, the works (Grove
et al., 1994; Bacchus et al., 1996) simplify the setup for their logic a little bit
by assuming a uniform probability function on the domain elements for
interpretation. It follows that the above discussion also applies in the same
way to (Grove et al., 1994; Bacchus et al., 1996).

5.6 summary and discussion

In this chapter we introduced relational probabilistic conditional logic as
an extension to probabilistic conditional logic that bases on a simple rela-
tional signature for knowledge representation. While traditional semantics
for first-order probabilistic logics treat universal quantification in the strict
sense of first-order logic, we proposed two novel semantics that give alter-
native meanings to open probabilistic conditionals. In particular, we pre-
sented averaging and aggregating semantics which both allow for exceptions
to the probabilities represented by open probabilistic conditionals. While
averaging semantics demands that the average of the conditional proba-
bilities of instances of an open probabilistic conditional matches the con-
ditional’s probability, aggregating semantics employs a generalized defini-
tion of conditional probabilities that involves the instances of a probabilistic
conditional together and not separately. We compared both semantics and
showed that they coincide on restricted knowledge bases but also may dif-
fer significantly in the general case. We also compared our semantics with
similar approaches from the literature, in particular with the grounding se-
mantics of (Fisseler, 2010; Loh et al., 2010; Kern-Isberner and Lukasiewicz,
2004) and the works (Halpern, 1990; Grove et al., 1994; Bacchus et al., 1996;
Jaeger, 1995).

The ability to model relations among individuals is crucial in knowledge
representation and reasoning. In this chapter we presented a novel ap-
proach for incorporating relational aspects into a framework for probabilis-
tic reasoning. Our semantical notions differ significantly from previous
approaches as we do not extend the classical interpretation of universal
quantification. In Section 5.5 we investigated the relationships of our ap-
proaches with others from the literature. We showed that our semantical
notions seem to outperform existing semantics in terms of common sense
understanding. In particular, we have shown that the examples of (Jaeger,
1995)—that were used to illustrate shortcomings of the logics L3 and Lβ—
can be represented in RPCL and interpreted according to commonsense.
However, it is also clear that RPCL is less expressive in several aspects than
e. g. L3 as the latter uses full first-order logic and allows for nesting of prob-

158 relational probabilistic conditional logic

ability statements. For example, the statement “my degree of belief that
90 % of all birds fly is 0.7” is expressible in L3 but not in RPCL. From the
perspective of commonsense reasoning it is arguable whether such expres-
sivity is needed. Most people would probably be indifferent in deciding
whether the formalization w(wX(flies(X) | bird(X)) = 0.9) = 0.7 is neces-
sary or a probabilistic conditional like (flies(X) | bird(X))[0.8] describes an
adequately similar state of affairs (given our semantical notions).

While in Chapters 3 and 4 we adopted the standard semantics for prob-
abilistic conditional logic in order to analyze and resolve inconsistencies,
in this chapter we neglected standard semantics that rendered knowledge
bases like {(flies(X))[0.9], (flies(tweety))[0.1]} inconsistent in order to come
up with more adequate notions of consistency and inconsistency. In partic-
ular, we laid the foundations for further research in relational probabilistic
conditional logic. One possible direction for further research is now to
investigate inconsistency measures for relational probabilistic conditional
logic. However, our motivation for the investigation of inconsistency mea-
sures in propositional probabilistic conditional logic was the inability to
use model-based inductive reasoning processes—such as reasoning based
on the principle of maximum entropy—in the presence of inconsistent infor-
mation. In this chapter we just defined syntax and semantics for relational
probabilistic conditional logic and we have not yet touched the issue of
inductive reasoning. As a consequence, we postpone the issue for incon-
sistency measurement in relational probabilistic conditional logic for future
work and continue with an investigation of the issue of reasoning itself in
RPCL based on the semantics developed in this chapter.

6
R E A S O N I N G AT M A X I M U M E N T R O P Y I N RPCL

In the previous chapter we gave a semantical account for treating relational
probabilistic conditionals. In Section 2.3 we pointed out a simple way to
reason with (propositional) probabilistic conditionals that bases on deter-
mining upper and lower bounds for queries, i. e., by determining the set
of all models of a knowledge base and compute the range of probabilities
of a single conditional within this set. This approach is, of course, also ap-
plicable for relational probabilistic conditionals but suffers from the same
disadvantages as RPCL subsumes PCL for both averaging and aggregating
semantics. However, for PCL we already discussed reasoning based on the
principle of maximum entropy which turned out to be a satisfactory reason-
ing mechanism, cf. Definition 2.27 on page 32. Consequently, in this chapter
we discuss extending reasoning based on the principle of maximum entropy
to RPCL. Before doing so we first have a look on relational probabilistic rea-
soning in RPCL in general and illustrate possible problems with means of
several benchmark examples. As mentioned earlier, relational probabilis-
tic reasoning has been discussed before in the field of statistical relational
learning—see Section 2.4 on page 32—but not in the sense of default reason-
ing or reasoning with exceptions. However, there are some works that discuss
these topics as well for relational probabilistic frameworks, see e. g. (Jaeger,
1995; Bacchus et al., 1996). We give a comparison of those works with ours
later in this chapter and borrow several benchmark examples in order to
evaluate our approach. Besides benchmark examples another important
evaluation criterium is the satisfaction of properties. There are many works
that deal with properties for non-monotonic in general, see e. g. (Makin-
son, 1989). We also take a principled approach to the problem of relational
probabilistic reasoning and adopt several properties for non-monotonic rea-
soning from (Makinson, 1989) and also develop a series of desirable proper-
ties tailored specifically for relational probabilistic inference. We go on by
applying the principle of maximum entropy to define inference operators
based on the two semantics developed in the previous chapter and compare
these operators with existing approaches.

This chapter is organized as follows. In Section 6.1 we start by investi-
gating the problem of relational probabilistic reasoning using benchmark
examples and develop a series of rationality postulates. We go on in Sec-
tion 6.2 with proposing specific inference operators that base on the princi-
ple of maximum entropy and employ the semantical notions developed in
the previous chapter. In Section 6.3 we analyze and compare the behavior
of our inference operators and give hints to related work in Section 6.4. In
Section 6.5 we conclude this chapter with some final remarks.

159

160 reasoning at maximum entropy in rpcl

6.1 probabilistic reasoning and desirable properties

In this thesis we focus on inductive inference for RPCL, i. e., on the problem
of finding a “good” probability function PR that satisfies all probabilistic
conditionals of a knowledge base R, given one of the two proposed seman-
tics. More specifically, we are interested in an operator I(R, D) that takes a
knowledge base R and a finite set of constants D with Const(R) ⊆ D ⊆ U
with D 6= ∅ as input and returns a probability function P = I(R, D) ∈
PF(Σ) as output such that P describes R in a commonsensical manner.
In particular, the resulting function should be a model of R with respect
to D and therefore I should implement a model-based inductive reason-
ing process in the spirit of (Paris, 1994). For the rest of this section let
|=◦∈ {|=pr

∅ , |=pr
� } be one of the semantical entailment relations proposed

before. In the following, we discuss some benchmark examples and state
some properties that a reasonable model-based inference operator I should
observe.

In contrast to approaches for statistical relational learning our aim for
defining relational probabilistic reasoning lies in flexibility with respect to
reasoning with exceptions. This demand has already been illustrated in
Example 5.2 on page 5.2, see also (Delgrande, 1998). To clarify the expected
behavior of I with respect to this example we restate it again.

Example 6.1. Consider again the knowledge base Rzoo = {r1, r2, r3} from
Example 5.2 with

r1 = (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6] (6.1)

r2 = (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4] (6.2)

r3 = (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7] (6.3)

As a minimal requirement we demand I to agree at least with the following
demands. Clearly, I should obey that the probability of Clyde liking Fred
is 0.7 as this demand has been specified explicitly in Rzoo. Furthermore,
as r2 basically represents that Fred is liked less by elephants than the
average keeper there should be at least one elephant that likes Fred with
approximately the represented probability. As only Fred seems to be an
exceptional keeper, consequently, there should be another keeper that is
liked by some elephant with roughly the probability represented by r1.

Next, we consider a relational version of the well-known Tweety-example
that has also already been discussed before.

Example 6.2. Let Rbirds be the knowledge base Rbirds =def {r1, . . . , r6}
given via

r1 =def (bird(tweety))[1] (6.4)

r2 =def (bird(brian))[1] (6.5)

6.1 probabilistic reasoning and desirable properties 161

r3 =def (penguin(opus))[0.9] (6.6)

r4 =def (flies(X) | bird(X))[0.6] (6.7)

r5 =def (flies(X) | penguin(X))[0.01] (6.8)

r6 =def (bird(X) | penguin(X))[1.0] (6.9)

The above knowledge base represents a situation where we have three indi-
viduals Tweety, Brian, and Opus and we know that both Tweety and Brian
are birds (r1 and r2) and Opus is most likely a penguin (r3). Furthermore,
we know that birds are likely to fly (r4), penguins are unlikely to fly (r5),
and every penguin is a bird (r6). Note, that in difference to most formal-
izations of this example we are not completely sure whether Opus is a
penguin. However, we expect the probability of Opus flying to be much
more biased on the probability of r5 than r4. In particular, we expect that
the probability of Opus flying should be around 0.01 and the probability of
Tweety flying should be around 0.6. Furthermore, as we have represented
the same knowledge for both Tweety and Brian we expect inferences on
those to be the same.

The next example is inspired by (Fisseler, 2010).

Example 6.3. Let Rflu =def {r1, r2, r3} be the knowledge base given via

r1 =def (flu(X))[0.2] (6.10)

r2 =def (flu(X) | susceptible(X))[0.3] (6.11)

r3 =def (flu(X) | contact(X,Y) ∧ flu(Y))[0.4] (6.12)

The above knowledge base models contagiosity of flu within some popula-
tion. The probabilistic conditional r1 states that in general someone catches
a flu with probability 0.2, while the probabilistic conditional r2 gives a
higher probability of 0.3 to someone who is susceptible. Finally, the prob-
abilistic conditional r3 models a situation where someone can get infected
by someone who is already infected. In particular, we expect that the prob-
ability of a specific individual Anna catching a flu is heavily influenced by
the probabilities of other individuals of the domain catching a flu. More
precisely, we expect that the probability of Anna catching a flu increases
if she has contact with more individuals who have a high probability of
catching a flu.

The next example is adapted from (Bacchus et al., 1996).

Example 6.4. Consider the knowledge base Rchirps =def {r1, r2, r3, r4} with

r1 =def (chirps(X) | bird(X))[0.9]

162 reasoning at maximum entropy in rpcl

r2 =def (chirps(X) |magpie(X), moody(X))[0.2]

r3 =def (bird(X) |magpie(X))[1]

r4 =def (magpie(tweety))[1]

r5 =def (bird(huey))[1]

r6 =def (bird(dewey))[1]

The beliefs represented in Rchirps describe the default probabilities that a
bird chirps (r1) and that a moody magpie chirps (r2). Knowing that every
magpie is a bird (r3) and given an actual magpie Tweety (r4) and birds
Huey and Dewey (r5 and r6) the question at hand is to which probability
Tweety chirps. Having no belief whether Tweety is moody or not the
choice of the correct “reference class” is inconclusive. However, r2 seems
to model an exception to the general rule r1 in case of a moody magpie.
As a consequence, one would expect that the “normal” state of mind of a
magpie is not being moody. As it is not explicitly modeled that Tweety is
moody one would expect that the probability of Tweety chirping should be
biased on the probability of r1. The minimal requirement for I should be
to give a probability of Tweety chirping in between 0.9 and 0.2.

The above examples illustrate the expected behavior for I in specific sit-
uations. We now continue with a more principled approach to capture
desirable properties for relational probabilistic reasoning.

One of the most basic demands for default reasoning is satisfaction of the
system P properties (Makinson, 1989). These properties have been stated
for abstract inference relations and serve as a “lower” bound for approaches
to default reasoning. When departing from classical deduction—which is
not suitable for default reasoning, cf. Section 2.1.3—the first property one
has to abandon is monotonicity. Mainly, the system P properties aim at
giving other reasonable properties that take the place of monotonicity. In
our framework these properties can be stated as follows.

(Reflexivity) For all (ψ | φ)[d] ∈ R it holds that I(R, D), D |=◦ (ψ | φ)[d].

(Left Logical Equivalence) If R1 ≡◦ R2 then I(R1, D) = I(R2, D).

(Right Weakening) If both I(R, D), D |=◦ (ψ | φ)[d] and (ψ | φ)[d] |=pr

(ψ′ | φ′)[d′] then I(R, D), D |=◦ (ψ′ | φ′)[d′].

(Cumulativity) If I(R, D), D |=◦ (ψ | φ)[d] then I(R, D), D |=◦ (ψ′ | φ′)[d′]
if and only if I(R∪ {(ψ | φ)[d]}, D), D |=◦ (ψ′ | φ′)[d′].

Note that (Cumulativity) subsumes both cautious monotony and cut (Makin-
son, 1989).

Our next demand for an operator I is a more technical one. As an
inconsistent knowledge base R has no models and therefore an operator I

6.1 probabilistic reasoning and desirable properties 163

cannot determine any model of R for inference, let undef be a new symbol
for this case. Then we require the following property.

(Well-Definedness) It holds that I(R, D) ∈ PF(Σ) and I(R, D), D |=◦ R
if and only if D with Const(R) ⊆ D ⊆ U is finite and R is ◦-
consistent with respect to D. Otherwise it holds that I(R, D) =
undef.

Basically, the property (Well-Definedness) demands that if a knowledge
base is consistent then model-based reasoning should be possible.

When considering knowledge bases based on a relational language the
beliefs one obtains for specific individuals is of special interest. An impor-
tant demand to be made is that for indistinguishable individuals, the same
information should be obtained. Here, indistinguishability is defined with
respect to the information expressed by R. More specifically, if the explicit
information encoded in R for two different constants c1, c2 ∈ D is the same,
the probability function P = I(R, D) should treat them as indistinguish-
able. We formalize this indistinguishability by introducing an equivalence
relation on constants. Remember that [·] denotes the replacement operator,
cf. pages 16 and 27.

Definition 6.1 (R-equivalence). Let R be a knowledge base. The constants
c1, c2 ∈ U areR-equivalent, denoted by c1 ≡R c2, if and only ifR = R[c1 ↔
c2].

Observe that ≡R is indeed an equivalence relation, i. e., it is reflexive, tran-
sitive, and symmetric. Two R-equivalent constants c1 and c2 are indistin-
guishable with respect to knowledge base R. That is, R models exactly
the same knowledge on both c1 and c2 and, in particular, if R contains a
probabilistic conditional of the form (ψ(c1) | φ(c1))[d] then R also contains
the probabilistic conditional (ψ(c2) | φ(c2))[d]. Note also that every two
c1, c2 ∈ D with c1, c2 /∈ Const(R) are R-equivalent.

Definition 6.2 (R-equivalence class). A set S ⊆ U is called R-equivalence
class if and only if S = {c′ | c′ ≡R c} for some c ∈ U. Let S(R) denote the
set of all R-equivalence classes.

Note that the notion of R-equivalence bears a resemblance with the notion
of reference classes (Bacchus et al., 1996) but on a purely syntactical level.

Using R-equivalence we can state our demand for equal treatment of
indistinguishable individuals as follows.

(Prototypical Indifference) Let R be a knowledge base, D a finite set with
Const(R) ⊆ D ⊆ U and D 6= ∅, and ψ a ground sentence. If
I(R, D) 6= undef then for any c1, c2 ∈ D with c1 ≡R c2 it follows
I(R, D)(ψ) = I(R, D)(ψ[c1 ↔ c2]).

164 reasoning at maximum entropy in rpcl

The above property states that given two R-equivalent constants c1, c2, i. e.
c1 ≡R c2, a sentence φ should have the same inferred probability as the
sentence φ[c1 ↔ c2] which results in replacing c1 with c2 and vice versa.
For example, we expect b(c1, c2) to have the same probability as b(c2, c1)
but also c(c1) to have the same probability as c(c2) (if c1 ≡R c2).

Example 6.5. Consider again Example 6.2 from page 160. There, we expect
e. g. I(Rbirds, D)(flies(tweety)) = I(Rbirds, D)(flies(brian)) as tweety ≡Rbirds
brian.

Demanding satisfaction of the property (Prototypical Indifference) seems
reasonable due to the principle of symmetry, cf. e. g. (Paris, 2000). In its
most general form this principle states that “Similar problems should have
similar solutions”. For the case of R-equivalent constants the problems of
determining the probability of sentences that differ only in these constants
can be regarded not just as “similar” but, in fact, as “equivalent”. Following
the principle of symmetry it is self-evident that the solutions to both of
these problems should be similar or, in fact, identical. This means that the
probabilities of both sentences should be the same.

An even more basic demand than (Prototypical Indifference) is that re-
naming a constant should have no impact on the information that can be
derived for it.

(Name Irrelevance) Let R be a knowledge base, D finite with Const(R) ⊆
D ⊆ U and D 6= ∅, d ∈ U \ D a constant not appearing in D, and
ψ a ground sentence. If I(R, D) 6= undef then for every c ∈ D, it
holds that I(R[d/c], (D ∪ {d}) \ {c}) 6= undef and I(R, D)(ψ) =
I(R[d/c], (D ∪ {d}) \ {c})(ψ[d/c]).

This property simply states that renaming a constant c in R to d—thus re-
moving c from the underlying domain D but adding d—yields the same
inferences. The justification for demanding this property is obvious. An
inference operator should not depend on the syntactical identifier of an
individual but on the role an individual plays in the knowledge base. Al-
though (Name Irrelevance) seems to be the weaker demand, surprisingly,
every function I satisfying (Name irrelevance) also satisfies (Prototypical
Indifference).

Proposition 6.1. If I satisfies (Name Irrelevance) then I satisfies (Prototypical
Indifference).

Proof. Let R be a knowledge base, D finite with Const(R) ⊆ D ⊆ U, and
d1, d2 /∈ D with d1 6= d2 (as U is infinite such d1, d2 exist). Let furthermore
c1, c2 ∈ D with c1 ≡R c2 and c1 6= c2. Then it holds for ground φ:

6.1 probabilistic reasoning and desirable properties 165

I(R, D)(φ)

= I(R[d1/c1], (D ∪ {d1}) \ {c1})(φ[d1/c1])

= I(R[d1/c1, d2/c2], (D ∪ {d1, d2}) \ {c1, c2})(φ[d1/c1, d2/c2])

As c1, c2 /∈ (D ∪ {d1, d2}) \ {c1, c2} it holds that

I(R[d1/c1, d2/c2], (D ∪ {d1, d2}) \ {c1, c2})(φ[d1/c1, d2/c2])

= I(R[d1/c1, d2/c2][c2/d1, c1/d2],

(((D ∪ {d1, d2}) \ {c1, c2}) ∪ {c1, c2}) \ {d1, d2})
(φ[d1/c1, d2/c2][c2/d1, c1/d2]) .

Due to

R[d1/c1, d2/c2][c2/d1, c1/d2] = R[c2/c1, c1/c2] = R
(((D ∪ {d1, d2}) \ {c1, c2}) ∪ {c1, c2}) \ {d1, d2} = D

and

φ[d1/c1, d2/c2][c2/d1, c1/d2] = φ[c1/c2, c2/c1]

this yields I(R, D)(φ) = I(R, D)(φ[c1/c2, c2/c1]).

However, (Prototypical Indifference) and (Name Irrelevance) are, in general,
not equivalent as the following (artificial) example shows.

Example 6.6. Let R =def {r1, r2} be given via

r1 =def (a(c1))[0.3] r2 =def (a(c2))[0.3]

and let P = I(R, D) with D = {c1, c2} be such that1

P({a(c)}) = 0.3 for c ∈ {c1, c2}
P({a(c)}) = 0.0 for every c /∈ {c1, c2}

P(∅) = 0.4

P(ω) = 0.0 for every ω ∈ Ω(Σ) \ ({{a(c)} | c ∈ U} ∪ {∅})

and let I(R′, D′) = undef for any R′ 6= R and D′ 6= D. In particular, I
does not satisfy (Well-Definedness). However, note that P = I(R, D) is in
fact a probability function as P({a(c1)}) + P({a(c2)}) + P(∅) = 1. Then I
still satisfies (Prototypical Indifference) as c1 ≡R c2 and P is indifferent
with respect to c1 and c2 by definition, and c ≡R c′ for every c, c′ ∈
U \ D and P is indifferent with respect to c and c′ by definition as well.

1 ∅ is the empty Herbrand interpretation, i. e. the interpretation where each ground atom is
false.

166 reasoning at maximum entropy in rpcl

However, I does not satisfy (Name Irrelevance) as for c ∈ U \ D it holds
that I(R[c1/c], (D ∪ {c}) \ {c1}) = undef.

Although (Prototypical Indifference) is a weaker property than (Name Ir-
relevance) there are several generalizations that follow from (Prototypical
Indifference).

Proposition 6.2. Let I satisfy (Prototypical Indifference). Let R be a knowledge
base and D finite with Const(R) ⊆ D ⊆ U and D 6= ∅.

1. Let φ, ψ be two ground sentences. For c1, c2 ∈ D with c1 ≡R c2 it holds
that I(R, D)(ψ | φ) = I(R, D)(ψ[c1 ↔ c2] | φ[c1 ↔ c2]).

2. Let S ∈ S(R), c1, . . . , cn ∈ S, and σ : S→ S be a permutation on S, i. e. a
bijective function on S. Then it holds that

I(R, D)(φ) = I(R, D)(φ[σ(c1)/c1, . . . , σ(cn)/cn]) .

The proof of Proposition 6.2 can be found in Appendix A on page 243.
The following postulate focuses on the implications that a probabilistic

conditional r = (ψ(~X) | φ(~X))[d] should have for the probability of a proper
instantiation P(ψ(~a) | φ(~a)). Our intention about r is that, in general, the
conditional probability of ψ(~a) given φ(~a) “should” be (around) d. But
surely, we cannot guarantee that every possible instantiation r′ of r con-
forms to a strict interpretation of this demand. This follows mainly from the
fact, that using ground conditionals we should be able to give exceptions
to this rule, cf. Example 6.1 on page 160. What we really want to describe
when representing a population-based statement r is that given an adequate
large domain, the respective conditional probability for constant tuples that
may serve as prototypes converges towards d. This behavior resembles the
intuition behind the “Law of Large Numbers” (Bernoulli, 1713).

(Convergence) Let D1 (D2 (. . . be a sequence of finite sets satisfying
Const(R) ⊆ Di ⊆ U for all i ∈ N and D1 6= ∅. For a probabilistic
conditional r ∈ R with r = (ψ(~X) | φ(~X))[d] let (ψ(~a) | φ(~a))[d] be a
proper instantiation of r with constants~a that do not appear in R. If
I(R, Di) 6= undef for i ∈N then it holds that

lim
i→∞
I(R, Di)(ψ(~a) | φ(~a)) = α .

The important aspect of population-based statements is their capability of
expressing a general behavior within a population while allowing for excep-
tions. So, population-based statements are to reflect some kind of expected
value over the set of individual instantiations that aggregates individual
behaviors. As such, if the probability of one instantiation of a population-
based statements lies below the probability assigned to the statement there
has to be another instantiation with a probability higher than this probabil-
ity value in order to compensate for the other exception.

6.1 probabilistic reasoning and desirable properties 167

(Compensation) Let I(R, D) 6= undef and r ∈ R a non-ground conditional
with r = (ψ(~X) | φ(~X))[d] and 0 < d < 1. If ~a1 is a vector of constants
such that I(R, D)(ψ(~a1) | φ(~a1)) < d then there is another vector of
constants ~a2 with I(R, D)(ψ(~a2) | φ(~a2)) > d.

Furthermore, when considering non-ground conditionals (ψ(~X) | φ(~X))[d]
with d ∈ {0, 1} no compensation for exceptions is possible, thus requiring
direct inference (Bacchus et al., 1996) for this particular case.

(Strict Inference) Let R be a knowledge base and let (ψ(~X) | φ(~X))[d] ∈ R
be a non-ground conditional with d ∈ {0, 1}. If I(R, D) 6= undef then
for every (ψ(~a) | φ(~a)) ∈ gndD((ψ(~X) | φ(~X))) it follows

I(R, D)(ψ(~a) | φ(~a)) = d .

Table 7 gives an overview on the properties for inductive inference opera-
tors discussed so far.

Property Description

(Reflexivity) I(R, D), D |=◦ r for r ∈ R
(Left Logical Equivalence) If R1 ≡◦ R2 then I(R1, D) = I(R2, D)

(Right Weakening) I(R, D), D |=◦ r and r |=pr r′ implies
I(R, D), D |=◦ r′.

(Cumulativity) I(R, D), D |=◦ r implies I(R, D), D |=◦ r′

whenever I(R∪ {r}, D), D |=◦ r′

(Well-Definedness) I(R, D) is well-defined

(Prototypical Indifference) c1 ≡R c2 implies
I(R, D)(ψ) = I(R, D)(ψ[c1 ↔ c2])

(Name Irrelevance) I(R, D)(ψ) = I(R[d/c], (D ∪ {d})\
{c})(ψ[d/c]) for d ∈ U \ D

(Convergence) limi→∞ I(R, Di)(ψ(~a) | φ(~a)) = α for
(ψ(~X) | φ(~X))[d] ∈ R and some~a

(Compensation) If (ψ(~X) | φ(~X))[d] ∈ R then
I(R, D)(ψ(~a1) | φ(~a1)) < d implies ~a2 with
I(R, D)(ψ(~a2) | φ(~a2)) > d for some ~a1, ~a2.

(Strict Inference) I(R, D)(ψ(~a) | φ(~a)) = d for all~a if
(ψ(~X) | φ(~X))[d] ∈ R with d ∈ {0, 1}

Table 7: Properties of inductive inference operators

168 reasoning at maximum entropy in rpcl

6.2 probabilistic inference by maximizing entropy

In the propositional case, reasoning based on the principle of maximum en-
tropy has proven to be a suitable approach for commonsense reasoning as it
features several nice properties, cf. Section 2.3. To recall, for a propositional
signature At the entropy H(P) of a probability function P : Ω(At) → [0, 1]
is defined via

H(P) =def − ∑
ω∈Ω(At)

P(ω)ld P(ω)

and measures the amount of indeterminateness inherent in P, cf. Defini-
tion 2.26 on page 31. By selecting the unique probability function P∗ among
all probabilistic models of a propositional knowledge base R that has max-
imal entropy, i. e. by computing the solution to the optimization problem

P∗ =def ME(S) = arg max
P|=prR

H(P),

we get the one probability function that satisfies R and adds as little in-
formation as necessary. For the relational case we parametrize the entropy
HD(P) of a probability function P ∈ PF(Σ) with the set D ⊆ U of the
constants under consideration via

HD(P) =def − ∑
ω∈Ω(Σ,D)

P(ω)ld P(ω) . (6.13)

As both our semantics require P(ω) = 0 for ω /∈ Ω(Σ, D) in order for
P, D |=◦ R to hold, the above definition only neglects terms that are zero
anyway.

As we are interested in generalizing the propositional ME-operator to
the first-order case, we postulate a proper form of compatibility to the
propositional ME-inference, in addition to the postulates stated for general
inference operators in the previous section. Let R be a ground knowledge
base, i. e., each r ∈ R is ground. Let At be the set of ground atoms that
appear in R. Then R can also be considered as a propositional knowledge
base with respect to (L(At) | L(At))pr and the expression ME(R) is well-
defined, cf. Definition 2.27 on page 32. For ground knowledge bases the
operation I should coincide with the ME-operator.

(ME-Compatibility) Let R be a ground knowledge base. If φ is ground
then ME(R)(φ) = I(R,Const(R))(φ).

After having introduced the averaging and the aggregating semantics for
relational probabilistic knowledge bases, now we apply the maximum en-
tropy principle to the respective model sets to single out “best” models.

6.2 probabilistic inference by maximizing entropy 169

6.2.1 Averaging Inference

In the following we define our first variant of an ME-inference I∅ which
bases on the averaging semantics as proposed in Section 5.3.1. A prelimi-
nary discussion of this operator can also be found in (Thimm, 2009b). By
applying the principle of maximum entropy in a straightforward way we
would like to define I∅ via

I∅(R, D) = arg max
P,D|=pr

∅R
HD(P) (6.14)

with a knowledge baseR and finite D with Const(R) ⊆ D ⊆ U and D 6= ∅.
However, this definition would presuppose that the probability function
P that satisfies R with respect to D and maximizes HD(P) is uniquely
determined. While this is the case for standard probabilistic semantics
for propositional probabilistic conditional logic it is not necessarily true
for averaging semantics in relational probabilistic conditional logic. In
the propositional case the set of models of knowledge base is convex, i. e.,
for a propositional probabilistic conditional (ψ | φ)[d] and two probability
functions P1, P2 with P1 |=pr (ψ | φ)[d] and P2 |=pr (ψ | φ)[d] it follows
that Pδ |=pr (ψ | φ)[d] with Pδ(ω) =def δP1(ω) + (1 − δ)P2(ω) for every
ω ∈ Ω(At) and δ ∈ [0, 1], cf. Equation (2.6) on page 28. It also holds
that maximizing entropy (a strictly concave function) over a convex set has
a unique solution (Boyd and Vandenberghe, 2004). In the relational case
under the averaging semantics, the set of models of a relational probabilistic
knowledge baseR is not convex in general as the following example shows.

Example 6.7. Consider the knowledge base R =def {(b(X) | a(X))[0.3]} and
let D = {c1, c2}. Then let P1 be a probability function that satisfies

P1(b(c1)a(c1)) = 0.05 P1(a(c1)) = 0.5

P1(b(c2)a(c2)) = 0.01 P1(a(c2)) = 0.02

It follows that P1(b(c1) | a(c1)) = 0.1 and P1(b(c2) | a(c2)) = 0.5 and there-
fore P1, D |=pr

∅ R. Furthermore, let P2 be a probability function that satisfies

P2(b(c1)a(c1)) = 0.2 P2(a(c1)) = 1

P2(b(c2)a(c2)) = 0.1 P2(a(c2)) = 0.25

It follows that P2(b(c1) | a(c1)) = 0.2 and P2(b(c2) | a(c2)) = 0.4 and there-
fore P2, D |=pr

∅ R as well. Now consider the convex combination Q of P1
and P2 defined via Q(ω) =def 1/3P1(ω) + 2/3P2(ω) for all ω ∈ Ω(Σ). Then
it follows

Q(b(c1)a(c1)) =
1
3

P1(b(c1)a(c1)) +
2
3

P2(b(c1)a(c1))

170 reasoning at maximum entropy in rpcl

=
1
3

0.05 +
2
3

0.2 =
3

20

and similarly

Q(a(c1)) =
13
15

Q(b(c2)a(c2)) =
7

100
Q(a(c2)) =

13
75

.

It follows that

Q(b(c1) | a(c1)) = 0.18 Q(b(c2) | a(c2)) =
21
52
≈ 0.4038

and therefore Q, D 6|=pr
∅ R.

Although the set of models of a knowledge base R is not convex in general,
the optimization problem (6.15) may still be uniquely solvable as maximiz-
ing a strictly concave function over a convex set is only a sufficient but no
necessary condition for a unique solution. As for the knowledge base R
in the above example, I∅(R, D) is indeed well-defined, cf. Proposition 6.6
on page 177. However, up until now no formal proof for and against the
unique solvability of (6.14) has been found. As a consequence we take a
cautious approach and define I∅(R, D) via

I∅(R, D)=def


arg max

P,D|=pr
∅R

HD(P) if R ∅-consistent with respect to D
and Const(R) ⊆ D and D is finite
and solution is unique

undef otherwise
(6.15)

The second case in the above definition catches knowledge bases R that
are ∅-inconsistent with respect to D or where the optimization problem
of the first case is not uniquely solvable. Obviously, I∅ is a model-based
inductive inference operator using semantics |=pr

∅ .
In the following we give some theoretical results that the proposed oper-

ator I∅ fulfills several of the desired properties discussed in in the previous
section. However, due to the discussion above no formal proof for the sat-
isfaction or dissatisfaction of (Well-definedness) has been found yet.

Conjecture 6.1. I∅ satisfies (Well-definedness).

Theorem 6.1. I∅ satisfies (Reflexivity), (Left Logical Equivalence), (Right Weak-
ening), (Cumulativity), (Name Irrelevance), (Prototypical Indifference), (ME-Com-
patibility), (Compensation), and (Strict Inference). If Conjecture 6.1 is true then
I∅ also satisfies (Convergence).

The proof of Theorem 6.1 can be found in Appendix A on page 244.

6.2 probabilistic inference by maximizing entropy 171

We continue by investigating the behavior of I∅ on the benchmark exam-
ples from Section 6.1.

Example 6.8. We continue Example 6.1 (see page 160) and consider D =def
{clyde, dumbo, giddy, fred, dave}. Let Rzoo2 = Rzoo ∪ {r4, r5, r6, r7} with

r4 = (elephant(clyde))[1] (6.16)

r5 = (elephant(giddy))[1] (6.17)

r6 = (keeper(fred))[1] (6.18)

r7 = (keeper(dave))[1] (6.19)

Note that we have no belief of Dumbo being an elephant. In the following
we give the probabilities of several instantiations of likes in I∅(Rzoo2, D).

I∅(Rzoo2, D)(likes(clyde, dave)) ≈ 0.723 (6.20)

I∅(Rzoo2, D)(likes(dumbo, dave)) ≈ 0.642 (6.21)

I∅(Rzoo2, D)(likes(giddy, dave)) ≈ 0.723 (6.22)

I∅(Rzoo2, D)(likes(clyde, fred)) = 0.7 (6.23)

I∅(Rzoo2, D)(likes(dumbo, fred)) ≈ 0.387 (6.24)

I∅(Rzoo2, D)(likes(giddy, fred)) ≈ 0.36 (6.25)

I∅(Rzoo2, D)(elephant(dumbo)) ≈ 0.312 (6.26)

Note how the deviations brought about by the exceptional individuals
Clyde and Fred have to be balanced out by the other individuals. For ex-
ample, the probabilities of the individual elephants liking Dave are greater
than the probabilistic conditional r1 specified them to be. This is because
the probabilities of the elephants liking Fred is considerably smaller as de-
manded by the probabilistic conditional r2. Nonetheless, the average of the
conditional probabilities do indeed satisfy the conditionals in Rzoo. No-
tice furthermore, that the probability of Dumbo being an elephant is very
small—see (6.26)—considering that maximum entropy is achieved by devi-
ating only as little as possible from the uniform probability function. But
due to the interaction of the conditionals in Rzoo, a smaller probability of
Dumbo being an elephant is necessary in order to achieve the correct av-
erage conditional probabilities defined in the knowledge base. Thus, the
belief of Dumbo being an elephant alleviates due to the premise of be-
lieving in the defined conditionals. However, the resulting probabilities
(approximately) match our expectations from Example 6.1.

Example 6.9. Consider again the knowledge base Rbirds from Example 6.2
(see page 160) and D =def {tweety, brian, opus}. Applying I∅ on Rbirds
yields the following results on several queries:

I∅(Rbirds, D)(flies(tweety)) ≈ 0.84 (6.27)

I∅(Rbirds, D)(flies(brian)) ≈ 0.84 (6.28)

172 reasoning at maximum entropy in rpcl

I∅(Rbirds, D)(flies(opus)) ≈ 0.12 (6.29)

I∅(Rbirds, D)(penguin(tweety)) ≈ 0.079 (6.30)

I∅(Rbirds, D)(penguin(brian)) ≈ 0.079 (6.31)

Due to (Prototypical Indifference) both birds Tweety and Brian fly with a
probability of 0.84, see (6.27) and (6.28). As both Tweety and Brian are
birds—see (6.4) and (6.5)—this probability is slightly higher than expected,
cf. (6.7). This is due to the fact that the major deviation caused by Opus
has to be compensated for. Opus flies only with a probability of 0.12—see
(6.29)—as it is highly believed that Opus is a penguin and penguins fly with
a very small probability, cf. (6.8) and (6.9). Furthermore, both Tweety and
Brian are believed to be penguins with a very small probability of 0.079,
cf. (6.30) and (6.31). As our domain consists of only three birds and (6.7)
demands that the average probability of a bird flying is 0.6 the possibility
of Tweety and Brian being penguins diminishes.

Example 6.10. We continue Example 6.3 (see page 161). Applying I∅ on
Rflu yields the following results on several queries:

I∅(Rflu, D)(flu(anna)) ≈ 0.2 (6.32)

I∅(Rflu, D)(flu(anna) | contact(anna, bob)∧
flu(bob)) ≈ 0.4 (6.33)

I∅(Rflu, D)(flu(anna) | contact(anna, bob)∧
flu(bob) ∧ contact(anna, carl) ∧ flu(carl)) ≈ 0.6 (6.34)

I∅(Rflu, D)(contact(bob, carl)) ≈ 0.49 (6.35)

I∅(Rflu, D)(contact(bob, carl) | flu(bob), flu(carl))) ≈ 0.657 (6.36)

Observe that we also stated some conditional queries involving actually
present evidence. Formulating queries in this form—for example consider-
ing the second query that models “what is the probability of Anna having
a flu given that Anna had contact with Bob and Bob had the flu”—yields
in general different inferences than adding the evidence to the knowledge
base—in this case (contact(anna, bob))[1.0] and (flu(bob)[1.0]—and query-
ing the new knowledge base just for flu(anna), cf. (Pearl, 1998) for a discus-
sion on this topic.

The inferences drawn from Rflu using I∅ resemble quite nicely the in-
tuition behind the modeled beliefs. The probability of Anna having a flu
(6.32) exactly models the expected probability when including conditional
(6.10). The same is true for the probability of Anna having a flu given that
Anna had contact with Bob and Bob had the flu (6.33). Furthermore, if a
person had contact with multiple persons who have the flu the probability
of having a flu increases (6.34). Applying the principle of maximum en-

6.2 probabilistic inference by maximizing entropy 173

tropy to completely unspecified beliefs usually yields a probability function
that is as close to the uniform probability function as possible. As one can
see from the probability of Bob having contact with Carl (6.35) this might
decrease if the corresponding formula appears in the premise of another
conditional in the knowledge base (see 6.12 on page 161), see also (Paris,
1994) for a discussion. But knowing that two persons have a flu increases
the probability of these two persons having contact (6.36).

Example 6.11. We continue Example 6.4 (see page 161) with D =def {tweety,
huey, dewey}. Applying I∅ onRchirps yields the following results on several
queries:

I∅(Rchirps, D)(chirps(tweety)) ≈ 0.894 (6.37)

I∅(Rchirps, D)(moody(tweety)) ≈ 0 (6.38)

I∅(Rchirps, D)(magpie(huey)) ≈ 0.612 (6.39)

I∅(Rchirps, D)(chirps(huey)) ≈ 0.913 (6.40)

I∅(Rchirps, D)(moody(huey)) ≈ 0.432 (6.41)

Using averaging inference the probability of Tweety being moody is ap-
proximately zero and he chirps with nearly a probability of 0.9. It follows
that an implicit closed world assumption has been made on the probabil-
ity of Tweety being moody. This can be explained by the large differences
between the probabilities of moody magpies chirping (0.2) and the prob-
ability of ordinary bird chirping (0.9). As we have two birds that are not
specified to be magpies their probability of chirping is mainly influenced
by the probabilistic conditional r1. In order to get an average probability of
0.9 for Tweety, Huey, and Dewey chirping, the probability of Tweety chirp-
ing cannot be less than 0.7. It follows that it is unlikely for Tweety being
moody as moody magpies chirp only with small probability.

6.2.2 Aggregating Inference

In a similar manner like above, we define the ME-inference operator I�
that is based upon the semantics |=pr

� . Let

I�(R, D)=def


arg max

P,D|=pr
�R

HD(P) if R �-consistent with respect to D
and Const(R) ⊆ D and D is finite

undef otherwise
(6.42)

Obviously, I� is a model-based inductive inference operator using seman-
tics |=pr

� . In this semantical context, the probabilistic conditionals from R
induce linear constraints on the probabilities of the possible worlds so that
the set of probability functions satisfying R forms a convex set. This makes
the solution to the optimization problem (6.42) unique (if a solution exists).

174 reasoning at maximum entropy in rpcl

Lemma 6.1. Let r = (ψ(~X) | φ(~X))[d] be a probabilistic conditional, D finite with
Const(r) ⊆ D ⊆ U and D 6= ∅, and SolD

r the set of probability functions that
satisfy r, i. e., it holds that SolD

r = {P | P, D |=pr
� (ψ(~X) | φ(~X))[d]}. Then Solr

is convex.

The proof of Lemma 6.1 can be found in Appendix A on page 247.

Proposition 6.3. LetR be a�-consistent knowledge base with respect to D. Then
the value of I�(R, D) is uniquely determined.

Proof. For any knowledge baseR the set of probability functions that satisfy
R is a convex set due to Lemma 6.1 and the fact that the intersection of two
convex sets is again a convex set. The entropy is a strict concave function
and maximization of a strict concave function over a convex set has a unique
solution (Boyd and Vandenberghe, 2004).

Due to the above Proposition I� complies with all our desired properties.

Proposition 6.4. I� satisfies (Reflexivity), (Left Logical Equivalence), (Right
Weakening), (Cumulativity), (Well-Definedness), (Name Irrelevance), (Prototypi-
cal Indifference), (ME-Compatibility), (Convergence), (Strict Inference), and (Com-
pensation).

The proof of Proposition 6.4 can be found in (Thimm and Kern-Isberner,
2011) and (Thimm et al., 2011b). Note that, due to Lemma 6.1 and Proposi-
tion 6.3, proving (Well-Definedness) for I� is easy.

In the following we apply I� to the very same examples used in the
previous section.

Example 6.12. We apply I� onto the knowledge base Rzoo2 from Exam-
ple 6.8 (see page 171). This yields the following inferences:

I�(Rzoo2, D)(likes(clyde, dave)) ≈ 0.8 (6.43)

I�(Rzoo2, D)(likes(dumbo, dave)) ≈ 0.64 (6.44)

I�(Rzoo2, D)(likes(giddy, dave)) ≈ 0.8 (6.45)

I�(Rzoo2, D)(likes(clyde, fred)) = 0.7 (6.46)

I�(Rzoo2, D)(likes(dumbo, fred)) ≈ 0.356 (6.47)

I�(Rzoo2, D)(likes(giddy, fred)) ≈ 0.196 (6.48)

I�(Rzoo2, D)(elephant(dumbo)) ≈ 0.475 (6.49)

The results are similar to those computed by using I∅ in the example above.
In particular, with regard to liking Dave, both approaches calculate very
similar probabilities for all individuals mentioned in the queries. Here,
Dumbo—the individual not known to be an elephant—likes Dave with
a lower probability than the elephants Clyde and Giddy, cf. (6.43), (6.44),
and (6.45). More substantial differences can be noticed with respect to the

6.2 probabilistic inference by maximizing entropy 175

elephants’ liking the moody keeper Fred. For Giddy liking Fred, I� returns
a considerably lower probability than I∅, see (6.48). On the other hand, I�
is more cautious when processing information on Dumbo, its probability
of being an elephant is nearly 0.5 (6.49), while I∅ suggests that Dumbo is
not an elephant.

Example 6.13. We apply I� onto the knowledge base Rbirds from Exam-
ple 6.9 (see page 171). This yields the following inferences

I�(Rbirds, D)(flies(tweety)) ≈ 0.85 (6.50)

I�(Rbirds, D)(flies(brian)) ≈ 0.85 (6.51)

I�(Rbirds, D)(flies(opus)) ≈ 0.10 (6.52)

I�(Rbirds, D)(penguin(tweety)) ≈ 0.079 (6.53)

I�(Rbirds, D)(penguin(brian)) ≈ 0.079 (6.54)

As in the previous example, the inferences drawn using I� are very similar
to the ones using I∅. The probabilities of Tweety and Brian being penguins
(0.079) are exactly the same as in Example 6.9. There are only minor
differences in the probabilities of the instantiations of flies. While using
I∅ the probability of Tweety and Opus flying is, respectively, 0.84 and 0.12,
here we have 0.85 and 0.10.

As for Example 6.3 (see page 161), applying the operator I� on Rflu yields
the exact same inferences as I∅. This is due to the fact that both operators
fulfill (Prototypical indifference). Consider the probabilistic conditional
(flu(X) | susceptible(X))[0.3] ∈ Rflu. As no constant is mentioned in Rflu
all of anna, bob, carl belong to the same Rflu-equivalence class and therefore
it follows

I◦(Rflu, D)(flu(anna) | susceptible(anna))

= I◦(Rflu, D)(flu(bob) | susceptible(bob))

= I◦(Rflu, D)(flu(carl) | susceptible(carl))

for any ◦ ∈ {∅,�} due to Proposition 6.2 on page 166. This directly yields

I◦(Rflu, D)(flu(anna) | susceptible(anna)) = 0.3

for ◦ ∈ {∅,�} as can also be seen in Example 6.10 on page 172. If we
add probabilistic facts like (contact(anna, bob))[1] or (flu(bob))[1] to Rflu
the situation changes and now different inferences can be drawn from the
different semantics. One thing to notice about this particular special case of
a knowledge base—a knowledge base that mentions no constants—is that
there is a direct method to reasoning. As has been discussed above due
to (Prototypical Indifference) all inferences drawn from different instantia-
tions are identical. As a result, replacing (flu(X) | susceptible(X))[0.3] by its
universal instantiations

176 reasoning at maximum entropy in rpcl

(flu(anna) | susceptible(anna))[0.3]

(flu(bob) | susceptible(bob))[0.3]

(flu(carl) | susceptible(carl))[0.3]

amounts to the very same ME-function. We come back to this issue in the
next section.

Example 6.14. We continue Example 6.4 (see page 161) with D =def {tweety,
huey, dewey}. Applying I� on Rchirps yields the following results on sev-
eral queries:

I�(Rchirps, D)(chirps(tweety)) ≈ 0.863 (6.55)

I�(Rchirps, D)(moody(tweety)) ≈ 0.118 (6.56)

I�(Rchirps, D)(magpie(huey)) ≈ 0.361 (6.57)

I�(Rchirps, D)(chirps(huey)) ≈ 0.916 (6.58)

I�(Rchirps, D)(moody(huey)) ≈ 0.366 (6.59)

The above inferences are also very similar to the ones with averaging infer-
ence, cf. Example 6.11 on page 173. The main difference is that the proba-
bility of Tweety being moody is considerably higher (0.118 compared to 0).
This specific case illustrates one drawback of averaging inference. For the
knowledge base Rchirps the averaging inference operator determines such a
low probability of Tweety being moody because a higher probability would
influence the average probability of chirps(X) considerably. The higher the
probability of moody(tweety) the lower the probability of chirps(tweety) as
Tweety is the only (known) magpie in the domain and r2 (see page 161)
demands 0.2 to be the probability of moody magpies. As r1 demands an
average probability of 0.9 for chirps(X) the upper bound of 1 for probabili-
ties influences the lower bound for exceptions to r1. As a consequence, the
relatively small domain size imposes Tweety being not moody. This prob-
lem does not occur with aggregating semantics to such a large extent as the
probabilities of both the conclusion and the premise together with the con-
clusion are aggregated first, and the conditional probability is determined
afterwards. This allows for Tweety being moody with a larger probability.

6.3 analysis and comparison

One can notice that the inferences drawn from both operators are very sim-
ilar. This is not surprising as, basically, both operators satisfy the desired
properties which heavily restrict the choice for rational inference operators.
However, this observation is quite interesting from a computational point
of view as solving the optimization problems (6.15) (see page 170) and (6.42)
(see page 173) require different approaches: while (6.15) is a non-convex op-

6.3 analysis and comparison 177

timization problem Equation (6.42) describes a convex optimization prob-
lem. For the latter efficient solvers are available (Boyd and Vandenberghe,
2004).

By following the observations made in Section 5.4 concerning the rela-
tionships of averaging and aggregating semantics we can also state some
relationships between I∅ and I�.

Proposition 6.5. Let R be a knowledge base that consists only of probabilistic
facts and ground conditionals. Then for every finite D with Const(R) ⊆ D ⊆ U
it follows I∅(R, D) = I�(R, D).

Proof. By Proposition 5.1 on page 143 it follows that |=pr
∅ and |=pr

� agree
on probabilistic facts, that is, for every P it holds that P, D |=pr

∅ (ψ)[d]
whenever P, D |=pr

� (ψ)[d]. Due to remarks 5.1 on page 137 and 5.2 on
page 142 both semantics also agree on ground conditionals, i. e., it holds for
every P that P, D |=pr

∅ (ψ | φ)[d] whenever P, D |=pr
� (ψ | φ)[d] if (ψ | φ)[d]

is ground. It follows that for every P it holds that P, D |=pr
∅ R whenever

P, D |=pr
� R. Hence, the optimization problems (6.15) on page 170 and

(6.42) on page 173 are defined on the same set of probability functions and
it follows I∅(R, D) = I�(R, D).

As has already been hinted in the discussion of Example 6.3 for aggregating
inference on page 175, there is also another class where averaging and
aggregating inference coincides.

Proposition 6.6. LetR be a knowledge base with Const(R) = ∅. Then for every
finite D ⊆ U it holds that

I∅(R, D) = I�(R, D) .

Proof. Let R be �-consistent with respect to D and let P∗1 = I�(R, D). As
I� satisfies (Prototypical indifference) it follows that P∗1 (ψ) = P∗1 (ψ[c1 ↔
c2]) for every sentence ψ and every constant c1, c2 ∈ D as all constants
are in the same R-equivalence class. In particular, for (ψ | φ)[d] ∈ R with
{(ψ1 | φ1), . . . , (ψm | φm)} = gndD((ψ | φ)) it follows that P∗1 (ψ1φ1) = . . . =
P∗1 (ψmφm) and P∗1 (φ1) = . . . = P∗1 (φm). In order for P∗1 , D |=pr

� (ψ | φ)[d]
to hold it follows that P∗1 (ψ1 | φ1) = . . . = P∗1 (ψm | φm) = d and therefore
P∗1 , D |=pr

∅ (ψ | φ)[d] as well. Hence, it follows P∗1 , D |=pr
∅ R and R is also

∅-consistent with respect to D. Assume I∅(R, D) = P∗2 and P∗2 6= P∗1 . As
I∅ satisfies (Prototypical Indifference) P∗2 satisfies P∗2 (ψ) = P∗2 (ψ[c1 ↔ c2])
for every ψ and c1, c2 ∈ D. It follows that P∗2 , D |=pr

� R as well. Assume
that HD(P∗2) > HD(P∗1), then it can not be the case that P∗1 = I�(R, D) as
P∗2 has higher entropy and �-satisfies R. So assume HD(P∗2) < HD(P∗1).
But as discussed above P∗1 also ∅-satisfies R and therefore P∗2 cannot have
maximal entropy. It follows I∅(R, D) = I�(R, D).

178 reasoning at maximum entropy in rpcl

Note that the above proposition does not imply that ∅-satisfaction and
�-satisfaction coincides for a knowledge base R with Const(R) = ∅.
Consider again Example 5.8 on page 144 and the knowledge base R′ =
{(b(X) | a(X))[0.8]} which mentions no constants. In Example 5.8 it is
shown that there exists a probability function P with P, D |=pr

� R′ and
P, D 6|=pr

∅ R′ for some D. Therefore, ∅-satisfaction and �-satisfaction is not
equivalent for this case of knowledge bases.

For the general case, I∅ and I� may differ significantly. The following
result is a direct application of Corollary 5.1 on page 145.

Corollary 6.1. Let R be some knowledge base, let D be finite with Const(R) ⊆
D ⊆ U, and let (ψ | φ) be some conditional. Then the following statements hold:

1. If I∅(R, D), D |=pr
∅ (ψ | φ)[d1] and I∅(R, D), D |=pr

� (ψ | φ)[d2] then

|d1 − d2| <
|gndI∅(R,D)

D ((ψ | φ))| − 1

|gndI∅(R,D)
D ((ψ | φ))|

.

2. If I�(R, D), D |=pr
∅ (ψ | φ)[d′1] and I�(R, D), D |=pr

� (ψ | φ)[d′2] then

|d′1 − d′2| <
|gndI�(R,D)

D ((ψ | φ))| − 1

|gndI�(R,D)
D ((ψ | φ))|

.

The above corollary shows that, in general, the inference operators I∅ and
I� may come up with rather different probability functions for the same
knowledge base. We illustrate this situation with the following example.

Example 6.15. Consider the scenario of a bird sanctuary. We know that
there are exactly 1000 birds in this sanctuary, divided into two species: the
striped sea eagle and the rare snoring ostrich2. Statistically seen, 999 of
these birds are striped sea eagles and 1 of them is a snoring ostrich and no
bird can be both at the same time. It is common knowledge that all striped
sea eagles do fly and that snoring ostriches do not fly. Furthermore, only
a few striped sea eagles are pink but every snoring ostrich is pink. This
scenario can be represented as the knowledge base R1 =def {r1, . . . , r7}
given via

r1 =def (sse(X))[0.999] r2 =def (so(X))[0.001],

r3 =def (sse(X) ∧ so(X))[0] r4 =def (flies(X) | sse(X))[1],

r5 =def (flies(X) | so(X))[0] r6 =def (pink(X) | sse(X))[0.001]

r7 =def (pink(X) | so(X))[1]

where sse(X) means that X is a striped sea eagle, so(X) means that X is
a snoring ostrich, flies(X) means that X flies, and pink(X) means that X is

2 These species are just made up.

6.3 analysis and comparison 179

pink. Note that R1 does not mention any constants. Due to Proposition 6.6
we obtain

P1 =def I∅(R1, D) = I�(R1, D)

for every D with D 6= ∅. The question we want to address is “What is the
probability of a pink bird flying?”, i. e., we want to assess the probability of
the conditional (flies(X) | pink(X)). For R1 we get

P1, D |=pr
∅ (flies(X) | pink(X))[0.499]

P1, D |=pr
� (flies(X) | pink(X))[0.499]

because P1(flies(a) | pink(a)) = 0.499 for every a ∈ D. Consider now a
slightly different scenario where D =def {b1, . . . , b1000} is the actual set of
birds in the sanctuary and let b1, . . . , b999 be striped sea eagles and let there
be a single snoring ostrich b1000. This can be represented as the knowledge
base R2 =def {r′1,1, . . . , r′1,999, r′2, . . . , r′7} given via

r′1,i =def (sse(bi))[1] for i = 1, . . . , 999

r′2 =def (so(b1000))[1]

r′3 =def (sse(X) ∧ so(X))[0]

r′4 =def (flies(X) | sse(X))[1]

r′5 =def (flies(X) | so(X))[0],

r′6 =def (pink(X) | sse(X))[0.001]

r′7 =def (pink(X) | so(X))[1] .

For R2 we obtain

I∅(R2, D), D |=pr
∅ (flies(X) | pink(X))[0.999]

I�(R2, D), D |=pr
� (flies(X) | pink(X))[0.499] .

As one can see I� makes no distinction between the knowledge bases R1
and R2 with respect to the probabilistic conditional r = (flies(X) | pink(X))
and assigns the probability 0.499 in both cases. The operator I∅, how-
ever, assigns a probability 0.499 to r in R1 and 0.999 in R2. On the one
hand, representing the open probabilistic fact (sse(X)[0.999] as the set of
ground facts (sse(b1))[1], . . . , (sse(b999))[1] seems to be equivalent when fix-
ing the domain D. As a consequence, an inference operator should make
no distinction between R1 and R2. On the other hand, note that R1 and
R2 are neither ∅- nor �-equivalent with respect to D. The knowledge
base R1 gives no information on the actual distribution of b1, . . . , b1000 to
the different species. The operator I∅ is able to recognize this difference.
However, whether it is justified to assign the probability 0.999 to r in R2
depends on the interpretation of r from the point of view of commonsense

180 reasoning at maximum entropy in rpcl

reasoning. As for aggregating semantics the probability of r is interpreted
by taking the probabilities of the premises into account as well. On the
one hand, the probability of r is influenced by the probabilities of the in-
stances (flies(b1) | pink(b1)), . . . , (flies(b999) | pink(b999)) only to a small ex-
tent as the probability of the premises pink(b1), . . . , pink(b999) is rather low
(0.001 to be precise). On the other hand, the probability of r is heavily in-
fluenced by the probability of the instance (flies(b1000) | pink(b1000)) as the
premise pink(b1000) has probability one. As pink(b1000) has such a high
probability aggregating semantics classifies b1000 as a good “reference” for
the applicability of r. Averaging semantics on the other side is not influ-
enced by the actual probabilities of the premise. The ground conditionals
(flies(b1) | pink(b1)), . . . , (flies(b999) | pink(b999)) all hold with probability 1
as b1, . . . , b999 fly independently of their color. The ground conditional
(flies(b1000) | pink(b1000)) has probability 0 as b1000 does not fly indepen-
dently of the color. Therefore, interpreting r as “usually, pink objects fly”
on the given domain is ambiguous. Aggregating semantics acknowledges
this indifference by assigning a probability of approximately 0.5 to r which
is justifiable as flying objects are rarely pink and non-flying objects are al-
ways pink. However, the probability of (flies(c) | pink(c)) is one for 99.9 %
of the population (for both I∅(R2, D) and I�(R2, D)) which also justifies
assigning probability 0.999 to r.

There seems to be no definite answer to the question which of the both
semantics is more appropriate for interpreting relational conditionals. Both
meanings are justifiable by considering a specific perspective on their mean-
ing. This perspective might be influenced by the actual knowledge base and
the intended meaning of the probabilistic conditionals. It follows that there
are knowledge bases where the averaging semantics might be more suit-
able than the aggregating semantics and vice versa. In particular, in the
above example there are two different views which justify application of
one specific semantics.

We go on by comparing both our approaches to related work in the
literature.

6.4 related work

The related work for our approaches to inference is basically the same
as for the previous chapter. In particular, the most related works are
(Fisseler, 2010) and (Loh et al., 2010) which both use a relational extension
of probabilistic conditional logic and employ the principle of maximum
entropy for reasoning. Also, the work (Kern-Isberner and Lukasiewicz,
2004) falls into this category. Further related work comprises the work on
first-order probabilistic logics such as (Bacchus, 1990; Halpern, 1990; Grove
et al., 1994; Bacchus et al., 1996) and (Jaeger, 1995) and, of course, the field
of statistical relational learning, cf. Section 2.4. In the following, we have a
closer look on each of those works.

6.4 related work 181

6.4.1 Grounding Semantics and Maximum Entropy

In Section 5.5.1 we already established several relationships between aver-
aging and aggregating semantics with grounding semantics employed in
the works (Fisseler, 2010; Loh et al., 2010; Kern-Isberner and Lukasiewicz,
2004). As before, we focus discussion on the approach of (Loh et al., 2010)
as—syntactically and semantically—it subsumes the approach of relational
probabilistic conditional reasoning in (Fisseler, 2010) and is similar to the
one of (Kern-Isberner and Lukasiewicz, 2004). The way inference is de-
fined in (Kern-Isberner and Lukasiewicz, 2004) differs slightly from (Loh et
al., 2010) as it employes an explicit notion of a closed world assumption but
see (Loh, 2009) for a comparison of the approach of (Loh et al., 2010) with
(Kern-Isberner and Lukasiewicz, 2004). The work (Fisseler, 2010) also in-
vestigates the properties of reasoning based on the principle of maximum
entropy in more depth. In particular, (Fisseler, 2010) presents among other
things several criteria that, if satisfied by a knowledge base, allow for com-
puting the ME-function in a simplified manner. However, we do not go into
details of those features and concentrate on the semantical and inferential
approach of (Loh et al., 2010) which is the same as used in (Fisseler, 2010).

In the following, we restrict the approach of (Loh et al., 2010) to the
syntax of RPCL. In particular, we ignore the possibility to specify grounding
constraints for probabilistic conditionals, cf. Section 5.5.1. The work (Loh et
al., 2010) also employs the principle of maximum entropy for reasoning, just
like the present work. More precisely, if R is a knowledge base, D is finite
with Const(R) ⊆ D ⊆ U and D 6= ∅, and G is some grounding operator
(see Definition 5.3 on page 147), then the grounding inference operator IG with
respect to G is defined via

IG(R, D) =def arg max
P,D|=pr

G R
HD(P) (6.60)

if R is G-consistent with respect to D and IG(R, D) =def undef otherwise.
It is easy to see that IG satisfies several of our desired properties from
Section 6.1.

Theorem 6.2. Let G be some grounding operator. Then the inference operator
IG satisfies (Left Logical Equivalence), (Right Weakening), (Cumulativity), (Well-
Definedness), (Name Irrelevance), and (Prototypical Indifference).

The proof of Theorem 6.2 can be found in Appendix A on page 248. The
operator IG fails to satisfy (Reflexivity) in general as the following example
shows.

182 reasoning at maximum entropy in rpcl

Example 6.16. We continue Example 5.10 from page 148. Let Rzoo =
{r1, r2, r3} be given via

r1 = (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6]

r2 = (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]

r3 = (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7]

and let D =def {clyde, dumbo, fred, dave}. Consider the specificity ground-
ing operator Gsp, cf. Example 5.10. As pointed out in Example 5.10 it holds
that

(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.4] /∈ Gsp(R, D)

but also

(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7] ∈ Gsp(R, D) .

It follows that IGsp(likes(clyde, fred) | elephant(clyde) ∧ keeper(fred)) = 0.7
and therefore

IGsp(R, D), D 6|=pr
Gsp

(likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]

violating (Reflexivity).

The operator IG fails to satisfy (Reflexivity) as in determining IG(R, D) the
interactions of the conditionals are adhered for and specific instances of
Gsp(R, D) may be removed. When evaluating whether P, D |=pr

Gsp
r holds

there is no such interaction and the universal instantiation of r has to be
evaluated. However, this is not the case for the naive grounding operator.

Proposition 6.7. The inference operator IGU satisfies (Reflexivity).

Proof. Let R be a knowledge base that is GU-consistent with respect to
D. Then IGU (R, D), D |=pr

GU
GU(R, D). In particular, for every r ∈ R

the probability function IGU (R, D) satisfies every instance of r and hence
IGU (R, D), D |=pr

GU
r.

Note that Theorem 6.2 made no assumptions on the grounding operator
whatsoever. By requiring the reasonable property of G(R, D) = R for
ground R and every D we obtain another property.

Proposition 6.8. If G(R, D) = R for ground R and every D then IG satisfies
(ME-compatibility).

Proof. If G(R, D) = R then Equation (6.60) is semantically equivalent to
(2.8) (see page 32) and it follows ME(R)(φ) = IG(φ) for every sentence
φ.

6.4 related work 183

In particular, the above proposition is applicable for all grounding opera-
tors considered in (Loh et al., 2010) and especially for the naive and the
specificity grounding operator.

Proposition 6.9. If G satisfies

(ψ(~a) | φ(~a))[d] ∈ G(R, D) whenever (ψ(~X) | φ(~X))[d] ∈ R

and~a does not appear in R then IG satisfies (Convergence).

Proof. As (ψ(~a) | φ(~a))[d] ∈ G(R, D) it follows IG(R, D)(ψ(~a) | φ(~a)) = d.
When extending D this probability stays the same as ~a does not appear in
R.

Proposition 6.9 is also applicable for all grounding operators considered in
(Loh et al., 2010) and especially for the naive and the specificity grounding
operator.

In general, IG fails to satisfy (Compensation) for every grounding oper-
ator G considered in (Loh et al., 2010) and especially for the naive and the
specificity grounding operator.

Example 6.17. Consider the knowledge base R =def {r1, r2} given via

r1 =def (p(X))[0.7] r2 =def (p(c1))[0.4]

Let D =def {c1, c2} then it holds that Gsp(R, D) = {(p(c1))[0.4], (p(c2))[0.7]}
and it follows that IGsp(R, D)(p(c1)) = 0.4 < 0.7 but there is no c such that
IGsp(p(c)) > 0.7. By defining R′ = {r′1, r′2} via

r′1 =def (p(X))[1] r′2 =def (p(c1))[0]

one can also see that IGsp fails to satisfy (Strict inference) because it holds
that IGsp(R, D)(p(c1)) = 0. Note also that R′ is Gsp-consistent with respect
to D.

In the previous example it has also been shown that IGsp violates (Strict
Inference). This is not the case for IGU .

Proposition 6.10. The inference operator IGU satisfies (Strict Inference).

Proof. Let (ψ | φ)[d] ∈ R with d ∈ {0, 1}. Then (ψ′ | φ′)[d] ∈ GU(R) for
every instance (ψ′ | φ′)[d] of (ψ | φ)[d]. it follows IGU (R, D)(ψ′ | φ′) = d.

In terms of satisfaction of properties one can see that both I∅ and I�
outperform IG in general. But by exploiting Propositions 5.3 (see page 149)
and 6.6 (see page 177) we can find a class of knowledge bases where all
inference operators agree.

184 reasoning at maximum entropy in rpcl

Proposition 6.11. LetR be a knowledge base with Const(R) = ∅. Then it holds
that

IGU (R, D) = I∅(R, D) = I�(R, D) .

Proof. By Proposition 6.6 it already follows that I∅(R, D) = I�(R, D).
Furthermore, as shown in the proof of Proposition 6.6 it follows that for
(ψ | φ)[d] ∈ R with {(ψ1 | φ1), . . . , (ψm | φm)} = gndD((ψ | φ)) it holds that
I�(R, D)(ψ1 | φ1) = . . . = I�(R, D)(ψm | φm) = d. Hence, it holds that
I�(R, D) |=pr

GU
R as well. Assume I�(R, D) 6= IGU (R, D). Then there is

a P with P, D |=pr
GU
R with HD(P) > HD(I�(R, D)). By Proposition 5.3

it follows that P, D |=pr
� R as well, contradicting I�(R, D) to have max-

imal entropy. Hence, it follows I�(R, D) = IGU (R, D) = I∅(R, D). In
particular, if R is e. g. ∅-inconsistent with respect to D then R is also �-
inconsistent and GU-inconsistent with respect to D (and vice versa). In this
case it follows IGU (R, D) = I∅(R, D) = I�(R, D) = undef.

Proposition 6.11 allows for relying on the naive grounding inference opera-
tor for inference when a knowledge base mentions no constants. Employing
IGU rather than I∅ or I� gives computational advantages as propositional
ME-reasoner such as SPIRIT (Rödder and Meyer, 1996) can be facilitated.

6.4.2 First-order Probabilistic Logic and Random Worlds

As already discussed in Section 5.5.2 the work (Halpern, 1990) introduces
three logics that aim at augmenting first-order logic with concepts of sta-
tistical probabilities and degrees of belief. The work of (Halpern, 1990) is
continued in (Grove et al., 1994; Bacchus et al., 1996) with the proposal of a
specific account for reasoning based on the random-worlds method. The log-
ical framework L≈ of (Grove et al., 1994; Bacchus et al., 1996) bases on the
logic L1 from (Halpern, 1990) but allows for approximate relations in prob-
ability terms, e. g., the formula wX(flies(X) | bird(X)) ≈ 0.9 is interpreted as
“approximately 90 % of the birds in the domain do fly”. Grove et. al. intro-
duce these approximate relations in order to circumvent numerical anoma-
lies. For example, the statement wX(flies(X) | bird(X)) = 0.9 implies that the
number of elements in the domain is a multiple of 10. The logic L≈ can be
embedded in L1 by translating a formula wX(flies(X) | bird(X)) ≈ 0.9 into
0.9− ε ≤ wX(flies(X) | bird(X)) ≤ 0.9+ ε with some “small” ε > 0. Then the
semantics3 of L≈ is the same as for L1. However, (Grove et al., 1994; Bacchus
et al., 1996) assume that the probability function underlying the domain UI
for some interpretation I = (UI , f U

I , PredI , FuncI) ∈ Int(Σ) is a uniform
probability function. Consequently, the notion of satisfaction can be sim-
plified as follows. Let Σ =def (U, Pred, Func) be some first-order signature
with finite U. Then a formula of the form wX1,...,Xk(φ) ≈ α is satisfied with

3 We simplify semantics of L≈ a bit for ease of presentation.

6.4 related work 185

respect to ε > 0 and a first-order interpretation I = (UI , f U
I , PredI , FuncI) ∈

Int(Σ), denoted by I |=ε
≈ wX1,...,Xk(φ) ≈ α, if and only if

1
|U|k
|{(c1, . . . , ck) ∈ Uk | I |=ε

≈ φ[X1/c1, . . . ,Xk/ck]}| ∈ [α− ε, α + ε] .

This means that an interpretation I satisfies a formula wX1,...,Xk(φ) ≈ α if
“approximately” a number of α|U|k different selections of constants from U
of length k satisfies φ. For formulas in L(Σ, V) the relation |=ε

≈ is the same
as |=F. As an example for a formula in L≈ consider

φbirds =def wX(flies(X) | bird(X)) ≈ 0.9∧ wX(flies(X) | penguin(X)) ≈ 0

∧ (∀X : penguin(X)⇒ bird(X))

which represents the situation that most birds fly, nearly all penguins do
not fly, and all penguins are birds.

Inference in (Grove et al., 1994; Bacchus et al., 1996) is defined in terms
of degrees of belief with respect to a knowledge base like φbirds. The
random-worlds method assumes all interpretations of a first-order signa-
ture to be equally likely and computes the degree of belief of some sen-
tence ψ given φ to be the ratio of the number interpretations that satisfy
ψ ∧ φ and the number of interpretations that satisfy just φ. More pre-
cisely, let Int(Σ, n) ⊆ Int(Σ) denote the set of first-order interpretations
I = (UI , f U

I , PredI , FuncI) ∈ Int(Σ) such that |UI | = n and define

#worldsε
n(φ) =def |{I ∈ Int(Σ, n) | I |=ε

≈ φ}| (6.61)

to be the number of interpretations with domain size n that satisfy the
sentence φ with respect to a a parameter ε > 0. Then the degree of belief of
a sentence ψ with respect to a sentence φ and domain size n, denoted by
Prε

n(ψ | φ), is defined as

Prε
n(ψ | φ) =def

#worldsε
n(ψ ∧ φ)

#worldsε
n(φ)

. (6.62)

which is the ratio of the number worlds that satisfy ψ ∧ φ and the number
of worlds that satisfy just φ. In contrast to our definition of aggregating
semantics—see Equation (5.10) on page 142—defining the degree of belief
as in Equation (6.62) assumes a uniform distribution of the interpretations
as no particular probability function on the worlds is taken into account in
(6.62).

In (Grove et al., 1994; Bacchus et al., 1996), the limit when ε goes to zero
and n goes to infinity of this degree of belief is considered for practical
purposes. Provided that some convergence criteria are satisfied this can be
defined via

Pr∞(ψ | φ) =def lim
ε→0

lim
n→∞

Prε
n(ψ | φ) ,

186 reasoning at maximum entropy in rpcl

see (Grove et al., 1994; Bacchus et al., 1996) for technical details. For example,
considering again the formula φbirds we get

Pr∞(flies(tweety) ∧ penguin(tweety) | φbirds) = 0 . (6.63)

Let L≈1 denote the fragment of L≈ that contains only unary predicates. In
(Grove et al., 1994; Bacchus et al., 1996) a method based on the principle of
maximum entropy is proposed that eases computing (6.63) for L≈1 . How-
ever, the application of the entropy function differs significantly compared
to our understanding. More precisely, in our work we employ entropy as
a function on probability functions that gives an idea on the amount of
information represented by a probability function. Bacchus et. al. con-
sider the entropy as a function of first-order interpretations in order to clas-
sify interpretations with respect to their statistical information. Let Σ =def
(U, Pred, Func) be a first-order signature such that Pred = {p1, . . . , pm} con-
tains only unary predicates. Then an atom of Σ is defined to be an ex-
pression ṗ1 . . . ˙pm with ṗi ∈ {p1,¬p1}. For an atom A =def ṗ1 . . . ˙pm and a
first-order interpretation I =def (UI , f U

I , PredI , FuncI) ∈ Int(Σ) let

A(I) =def |{ f U
I (c) ∈ UI | I |=F ṗ1(c) ∧ . . . ∧ ˙pm(c)}|

be the number of elements of UI that satisfy A in I. Let {A1, . . . , Al} be
the set of all atoms of Σ. Then the entropy H(I) of an interpretation I is
defined as

H(I) =def −
l

∑
i=1

Ai(I)
|UI |

ld
Ai(I)
|UI |

.

In (Grove et al., 1994; Bacchus et al., 1996) it is shown that in order to
determine (6.62) it suffices to consider only a subset of interpretations in
(6.61), that is, the one that have “near” maximum entropy. In (Grove et
al., 1994; Bacchus et al., 1996) it is argued that this approach fails when the
signature under consideration contains non-unary predicates.

We already compared syntax and semantics of RPCL with the logic L1 in
Section 5.5.2. The most significant drawback of L1 (from the point of view
of our motivation) is the lack to express degrees of belief on individuals.
For example, it is not possible to state a statement like “I believe with a
degree of 0.7 that Tweety flies” in L1. The same applies to L≈ as L≈ can
be embedded in L1 as discussed above. The use of approximate relations
brings some benefits for knowledge representation issues but observe that
RPCL can be equipped easily with a similar notion by introducing approx-
imate relations into (5.3) (see page 137) and (5.10) (see page 142), respec-
tively. However, L1 allows the representation of statistical statements such
as “(approximately) 90 % of birds fly” which is also possible in RPCL but
interpreted a bit softer than in the statistical setting of L≈. Therefore, our
framework allows for combining both statistical (or rather population-based)
statements and statements on degrees of belief. If we omit representing

6.4 related work 187

information on particular individuals completely we obtain the following
observation.

Proposition 6.12. Let R = {r1, . . . , rn} with ri = (ψi(~Xi) | φi(~Xi))[di] for
i = 1, . . . , n be a knowledge base and Const(R) = ∅. Let D be finite with
∅ 6= D ⊆ U, then for every i = 1, . . . , n and every instance (ψi(~c) | φi(~c))[di] of
ri it holds that

I∅(R, D)(ψi(~c) | φi(~c)) = I�(R, D)(ψi(~c) | φi(~c))

= IGU (R, D)(ψi(~c) | φi(~c))

= Pr∞(ψi(~c) | φR ∧ φi(~c))

= di

with

φR =def w~X1
(ψ1(~X1) | φ1(~X1)) = d1 ∧ . . .∧w~Xn

(ψn(~Xn) | φn(~Xn)) = dn .

Proof. The first two equalities have already been stated in Proposition 6.11

on page 184. The final one is a direct application of Theorem 4.1 in (Grove
et al., 1994).

Nonetheless, reasoning bases on averaging or aggregating inference is not
the same as reasoning with Pr in general. Consider the knowledge base
R =def {(flies(X))[0.8]} with D =def {tweety, huey, louie, dewey, opus} and

ψ =def flies(tweety)∧ flies(huey)∧ flies(louie)∧ flies(dewey)∧ flies(opus) .

Then Prε
5(ψ | φR) = 0 (for ε < 0.2) as for every I with I |=ε

≈ φR it holds
that I 6|=F φ. However, it holds that I∅(R, D)(ψ) = I�(R, D)(ψ) ≈
0.3278. As one can see, the random-worlds method completely neglects the
possibility that all five domain elements may fly at the same time. From
the perspective of the random-worlds approach this is justified as it takes a
statistical perspective on knowledge bases. When statistics dictate that four
of five elements fly then it is impossible that five elements may fly at the
same time. This example also shows that both averaging and aggregating
semantics do not have a clear statistical interpretation but mix population-
based statements and statements on degrees of belief into a homogeneous
view on the modeled knowledge.

In (Grove et al., 1994; Bacchus et al., 1996) it is also claimed that reasoning
with maximum entropy fails when the signature contains non-unary pred-
icates. This is true for the logic of (Grove et al., 1994; Bacchus et al., 1996)
but not for our approach as the entropy is used in a completely different
context which is orthogonal to the context of (Grove et al., 1994; Bacchus
et al., 1996). The problem in extending the principle of maximum entropy
in (Grove et al., 1994; Bacchus et al., 1996) to non-unary signatures lies in
the lack of an adequate definition of the entropy of a first-order interpre-

188 reasoning at maximum entropy in rpcl

tation that bases on such a signature. In (Grove et al., 1994; Bacchus et al.,
1996) the entropy of an interpretation is defined based on the distribution
of the domain elements on the atoms of the signature. More precisely, the
elements are partitioned into sets of constants such that each set satisfies
the same atoms and the entropy is defined based on the size of those sets.
Note that this concept is similar to our concept of R-equivalence classes.
However, imagine there is a binary predicate p/2 in the signature. Then
it is hard to extend the definition of the entropy of a first-order interpreta-
tion in a meaningful manner as it is not clear how the concept of an atom
in the meaning of (Grove et al., 1994; Bacchus et al., 1996) can be general-
ized. In particular, it is not clear whether sets of pairs of constants have to
be considered or some nested classification of constants is more adequate.
Bacchus et. al. conclude that the principle of maximum entropy cannot
be employed for computing degrees of belief based on the random-worlds
method in arbitrary signatures. While this conclusion seems to be com-
pletely justified in the context of (Grove et al., 1994; Bacchus et al., 1996) it
should be noted that this statement does not apply to our application of
the entropy function. The entropy of a probability function is well-defined
even if the probability function is based on a non-unary language.

6.4.3 Statistical Relational Learning

The areas of statistical relational learning and probabilistic inductive logic
programming are concerned with the development of frameworks that com-
bine probabilistic reasoning and knowledge representation using first-order
logic. Many of these approaches focus on learning models from data and
not on knowledge representation and reasoning. In Section 2.4 we pre-
sented two representatives for approaches to statistical relational learning,
namely, Bayesian logic programs (BLPs) and Markov logic networks (MLNs).
In the following, we focus on comparing our framework with those two
approaches.

As has already been pointed out in Section 5.1, from the perspective of
knowledge representation BLPs suffer from the drawback that a complete
specification of the conditional probability distribution for each clause is
mandatory. This demand may become problematic when crucial informa-
tion has to be represented that may be unknown. For example, consider
some symptom s and some disease d. There may be probabilistic informa-
tion available that links the symptom to the disease such as “if symptom
s is present then the patient has disease d with probability 0.8”. How-
ever, when specifying this rule as a Bayesian clause, also the probability
for the statement “if symptom s is not present then patient has disease d”
has to be specified. Usually, such a probability is hard to assess or may
even be impossible. Our framework of RPCL does not exhibit this kind
of drawback but allows the specification of both uncertain and incomplete
information. Other drawbacks of BLPs include the inability of the repre-
sentation of rules with exceptions and the need to specify combining rules,

6.4 related work 189

see also Section 5.1. Another issue that can be raised is an implicit demand
on the structure of a BLP. Consider again Example 6.3 from page 161 with
Rflu = {r1, r2, r3} given via

r1 = (flu(X))[0.2]

r2 = (flu(X) | susceptible(X))[0.3]

r3 = (flu(X) | contact(X,Y) ∧ flu(Y))[0.4]

The above example cannot be represented as a BLP, even if one can pro-
vide for the missing probabilities. The problem is, that the ground Bayesian
network created when grounding a BLP for some query has to be acyclic.
In the example above the predicate contact is assumed to describe a sym-
metric relation: if person A had contact with person B it follows that per-
son B had contact with person A. Given a set of evidences of the form
{contact(anna, bob), contact(anna, carl), susceptible(anna), . . .} it should be re-
quired that these evidences obey the symmetry of contact. It follows that the
ground Bayesian network for some query like flu(anna) is cyclic, and there-
fore renders inference impossible. Nonetheless, by demanding that 1.) the
evidence for the corresponding BLP is not symmetric with respect to contact
and 2.) there are no cycles in the transitive closure of contact instances, con-
sistent reasoning becomes possible. But note that such restrictions may
result in unexpected inferences. However, from the perspective of compu-
tational complexity both averaging and aggregating inference are far more
demanding than inference with BLPs. For BLPs, existing algorithms for
constructing derivation trees as in Prolog (Covington et al., 1996) and both
exact and approximate inference algorithms for Bayesian networks can be
used. For RPCL, solving the optimization problems (6.15) (see page 170)
and (6.42) (see page 173) directly is, in general, infeasible as the number of
variables—i. e. the number of Herbrand interpretations—is exponential in
the size of the input. Although we have a closer look on this problem in
the next chapter, probabilistic inference with BLPs remains computationally
more attractive.

In contrast to most approaches discussed before MLNs do not suffer
from conflicts that arise in a plain grounding of the knowledge base as
the weights of an MLN have no probabilistic interpretation, see (Fisseler,
2008; Thimm et al., 2011a) for some discussion. Every formula in an MLN
is interpreted as an influence on the probabilities of certain interpretations
and the connection between weight and probability depends heavily on the
weights of other formulas. As a consequence, a weighted formula may have
different effects in different MLNs and (nearly) every MLN is consistent with
respect to the inferential semantics given by (2.11) (see page 40). From the
point of view of knowledge representation this property is problematic and
unintuitive. In contrast to MLNs our approach for relational probabilistic
conditionals have a clear probabilistic interpretations and consistency is
well-defined.

190 reasoning at maximum entropy in rpcl

6.5 summary and discussion

In this chapter we discussed inductive inference in relational probabilistic
conditional logic. We took a principled approach in investigating the space
of possible inductive inference operators by proposing a series of rational-
ity postulates and discussing several benchmark examples. We used the
semantical notions developed in the previous chapter to develop inference
operators that are based on the principle of maximum entropy. We showed
that (in principle) both operators satisfy our desired properties and we ana-
lyzed and compared these operators in more depth afterwards. In the pre-
vious section, we reviewed related work and compared other approaches
with our framework.

Probabilistic inference based on the principle of maximum entropy has
proven to be a powerful reasoning method in propositional frameworks
for knowledge representation and reasoning (Paris, 1994; Kern-Isberner,
2001). Indeed, this principle has been characterized as an optimal infer-
ence method in various frameworks and there are several axiomatic deriva-
tions, cf. e. g. (Shore and Johnson, 1980; Paris and Vencovská, 1997; Kern-
Isberner, 2001). In the past ten years a lot of work has been done on lifting
propositional models for probabilistic reasoning to the relational case so it
seems natural to investigate the possibilities of applying the principle of
maximum entropy on relational settings as we have done in this chapter.
Early attempts for combining first-order logic and probabilistic reasoning
had been made during the 90s by Bacchus, Halpern and colleagues, cf. Sec-
tion 6.4.2. Although many of those logics are more expressive than RPCL
they lack several features that are desirable from a commonsensical point of
view. For example, the language L3 of (Halpern, 1990) allows for the spec-
ification of both statistical statements and statements on degrees of belief.
However, the semantics for these two types of information is completely de-
coupled which results in such surprising observations like that the formula

(¬∃X : p(X)) ∧ (w(p(c)) = 1)

is satisfiable in L3, cf. Section 5.5.2. Both our notions of averaging and ag-
gregating semantics make no difference in the interpretation of population-
based statements and statements on degree of belief. In RPCL only one
probability function is used for interpretation and probabilities stemming
from population-based statements and probabilities stemming from state-
ments on degrees of belief influence each other yielding a complete and
homogeneous picture on the domain of interest. By employing the prin-
ciple of maximum entropy for reasoning we obtain an inductive inference
mechanism that is both flexible and simple in usage. Furthermore, in con-
trast to other works on applying ME-inference in relational settings such as
(Fisseler, 2010; Loh et al., 2010; Kern-Isberner and Lukasiewicz, 2004) our
approach does not feature a direct propositional correspondent and thus
cannot be modeled with existing propositional frameworks in a concise

6.5 summary and discussion 191

way. On the one hand this is a drawback as we cannot employ existing
reasoners for propositional ME-inference like SPIRIT (Rödder and Meyer,
1996). On the other hand this shows the advantage of our approach. Al-
though employing a rather restricted first-order language our semantical
proposals clearly extend the expressive power of other approaches and al-
low for the representation of complex interrelationships between different
pieces of information, as shown in Section 6.4.1. Furthermore, approaches
to statistical relational learning are not apt for allowing a non-monotonic
reasoning behavior. The focus of this field clearly lies in machine learning
tasks on structured domains that contain no exceptional individuals. From
the perspective of knowledge representation both BLPs and MLNs are too
restricting and their semantical notions is hard to comprehend, see also
(Finthammer and Thimm, 2011) and (Thimm et al., 2011a).

To summarize, in contrast to the approaches discussed in the previous
section the work presented here does not treat conditionals with free vari-
ables as schemas for their instances. If (ψ′ | φ′) is an instance of (ψ | φ), then
the actual probability in the ME-model of a ground probabilistic conditional
(ψ′ | φ′) may differ significantly from the probability of some (ψ | φ)[d] rep-
resented in the knowledge base. Given that the underlying language con-
tains some minimum number of constants, exceptions to a probabilistic con-
ditional can be compensated. This allows for a great flexibility when repre-
senting relational probabilistic beliefs and is also inherently important for
a non-monotonic reasoning behavior. Our approaches aim at reflecting an
overall behavior within a population to which each individual contributes,
while at the same time allowing individuals to deviate drastically from that
behavior. In this way, both class beliefs and individual beliefs can be repre-
sented and processed within one framework.

Both operators fulfill (in principle) the catalogue of desired properties
so the question remains which semantics and therefore which inference
operator is the more favorable choice? And are there other reasonable pos-
sibilities for semantics and inference operators that should be investigated?
Clearly, the second question cannot be answered with a “no” as none of
the proposed inference operators is characterized by our desired princi-
ples for reasoning. To do so other principles have to be found that may
fully characterize ME-inference in relational settings like e. g. (Shore and
Johnson, 1980; Paris and Vencovská, 1997; Kern-Isberner, 2001) for propo-
sitional frameworks. As for the first question, we already discussed this
question in Example 6.15 (see page 178) and showed that there may be
no definite answer. From a computational point of view the operator I�
and thus the semantics |=pr

� seems to be the favorable choice for reason-
ing in first-order conditional logic. While Equation (6.15) (see page 170)
describes a non-convex optimization problem that is hard to solve in prac-
tice, Equation (6.42) (see page 173) induces a convex optimization problem
for which efficient algorithms are available (Boyd and Vandenberghe, 2004).
Still, a straightforward implementation of both problems yields an exponen-
tial transformation due to the exponential number of Herbrand interpreta-

192 reasoning at maximum entropy in rpcl

tions. Implementations of both inference operators are available within the
Tweety library for artificial intelligence4. Performing inference using these
prototypical implementations took from hours up to days for all but the
smallest examples. Accordingly, there is need for a more usable algorithm
to compute an ME-function based on our semantics. In the next chapter,
we have a look at a more effective method for reasoning in RPCL.

4 http://sourceforge.net/projects/tweety/

http://sourceforge.net/projects/tweety/

7L I F T E D I N F E R E N C E I N RPCL

In the previous chapter we discussed reasoning in RPCL based on the
principle of maximum entropy. One important property of the developed
approaches—and any reasonable approach for probabilistic reasoning in
relational settings—is (Prototypical Indifference). Basically, this property
states that if a knowledge base R contains exactly the same information for
two different constants c1 and c2 then reasoning with R is indifferent with
respect to c1 and c2, i. e., the probability of every statement, either a prob-
abilistic fact or a probabilistic conditional, is the same as the probability of
the same statement when c1 and c2 are exchanged. It follows that a prob-
ability function P∗ that is obtained by an inductive reasoning mechanism
that obeys (Prototypical Indifference)—such as averaging and aggregating
inference—carries a lot of redundant information. For one, P∗ is defined
on the whole set of Herbrand interpretations Ω(Σ) which is infinite due
to U being infinite. However, due to the demand that P∗(ω) 6= 0 only for
finitely many ω ∈ Ω(Σ) only a finite number of Herbrand interpretations
are needed to specify P∗. Moreover, as we defined probabilistic satisfaction
for averaging and aggregating semantics via the condition that P(ω) = 0
for every ω ∈ Ω(Σ) with Const(ω) 6⊆ D—see pages 137 and 142—we can re-
strict our discussion to probability functions defined on all ω ∈ Ω(Σ) with
Const(ω) ⊆ D only. Nonetheless, as pointed out above P∗ still carries a lot
of redundant information due to its indifference on constants that are in the
same R-equivalence class. In this chapter we introduce condensed probabil-
ity functions as a compact way to represent a probability function that is the
result of the application of an inductive inference mechanism that obeys
(Prototypical Indifference). Condensed probability functions are defined
on reference worlds which subsume a whole set of Herbrand interpretations
that, basically, model the same situation modulo exchanging constants from
the same R-equivalence class. Using reference worlds and condensed prob-
ability functions we are able to rephrase the optimization problems (6.15)
and (6.42) (see pages 170 and 173, respectively) in a computationally feasi-
ble way. It turns out, that if we restrict the language under consideration
to unary predicates we avoid the exponential blow-up deriving from con-
sidering all Herbrand interpretations for a finite D ⊆ U. Of course, con-
sidering languages that contain only unary predicates is a huge restriction
but unfortunately the approach we develop does not significantly lower the
computational complexity for more general languages.

The problem of encompassing the computational complexity of relational
probabilistic reasoning is a relatively novel area within the field of statisti-
cal relational learning and similar research areas. Most efficient inference
algorithms for current approaches to statistical relational learning rely on

193

194 lifted inference in rpcl

approximation algorithms, such as the standard inference algorithm for
Markov logic networks—see Section 2.4.2—employed in the Alchemy sys-
tem1 which bases on Markov chain Monte Carlo methods (Richardson and
Domingos, 2006). There are only very few approaches that discuss exact
inference such as (Poole, 2003; de Salvo Braz et al., 2005; Milch et al., 2008).
The approach developed in this chapter is exact as well, provided that the
optimization algorithm used for maximizing entropy is exact.

This chapter is organized as follows. In Section 7.1 we discuss lifted in-
ference in RPCL by introducing condensed probability functions and devel-
oping an approach to reason with condensed probability functions instead
of ordinary probability functions. Afterwards in Section 7.2 we analyze
the computational advantages we gain by employing lifted inference. In
Section 7.3 we briefly discuss extending lifted inference to non-unary lan-
guages which turns out to be infeasible. We discuss related topics to lifted
inference in Section 7.4 and conclude with some final remarks in Section 7.5.

7.1 lifted inference

In this section we develop an approach for lifted inference in RPCL. This
approach bases on a compact representation of probability functions that
we introduce in the subsequent section. Due to combinatorial issues the
approach we develop is limited to languages that contain only predicates
of arity one. As a consequence, let Σ =def (U, Pred, ∅) be a simple relational
signature that contains only predicates of arity one. For the rest of this sec-
tion, let Σ be fixed. Before giving an overview of our approach to lifted
inference we discuss the problem of the standard representation of proba-
bility functions that derive from the application of an inductive inference
operator that satisfies (Prototypical Indifference) by means of an example.

Example 7.1. Let D =def {tweety, huey, dewey, louie} be the domain under
discourse and let Rbirds2

=def {r1, r2} be the knowledge base given via

r1 =def (flies(X))[0.8] r2 =def (flies(tweety))[0.3] .

Let I be an inference operator that satisfies (Prototypical Indifference) and
let P∗ =def I(R, D) with P∗ 6= undef. In general, P∗ is defined on the
whole set of Herbrand interpretations Ω(Σ) which is infinite as U is infinite.
However, we are only interested in statements concerning the constants in
D and therefore only Herbrand interpretations ω0, . . . , ω15 given via

ω0 =def ∅

ω1 =def {flies(tweety)}
ω2 =def {flies(huey)}

1 alchemy.cs.washington.edu

alchemy.cs.washington.edu

7.1 lifted inference 195

ω3 =def {flies(dewey)}
ω4 =def {flies(louie)}
ω5 =def {flies(tweety), flies(huey)}
ω6 =def {flies(tweety), flies(dewey)}
ω7 =def {flies(tweety), flies(louie)}
ω8 =def {flies(huey), flies(dewey)}
ω9 =def {flies(huey), flies(louie)}

ω10 =def {flies(dewey), flies(louie)}
ω11 =def {flies(tweety), flies(huey), flies(dewey)}
ω12 =def {flies(tweety), flies(huey), flies(louie)}
ω13 =def {flies(tweety), flies(dewey), flies(louie)}
ω14 =def {flies(huey), flies(dewey), flies(louie)}
ω15 =def {flies(tweety), flies(huey), flies(dewey), flies(louie)}

are of interest to us. It is easy to see, that we can rewrite P∗ into a
probability function Q∗ that is defined on ω0, . . . , ω15 and that satisfies
Q∗(ψ) = P∗(ψ) for any ground sentence ψ that does not mention any con-
stant in U \ D (we give the detailed definitions below). However, even Q∗

needs exponential space as the number of interpretations to be considered
is exponential in the number of constants |D|. The R-equivalence classes
S(R) = {S1, S2} of R are given via

S1 = {tweety} S2 = {huey, dewey, louie} ∪U \ D .

and as P∗ and Q∗ are the results of an inference operator that satisfies (Pro-
totypical Indifference) it follows that e. g. Q∗(ψ) = Q∗(ψ[huey ↔ dewey])
for every ground sentence ψ. In particular, as Herbrand interpretations can
be understood as ground conjunctions we obtain

Q∗(ω2) = Q∗(ω3) = Q∗(ω4)

Q∗(ω5) = Q∗(ω6) = Q∗(ω7)

Q∗(ω8) = Q∗(ω9) = Q∗(ω10)

Q∗(ω11) = Q∗(ω12) = Q∗(ω13) .

Therefore, it suffices to represent Q∗ by only eight Herbrand
interpretations—i. e., only by ω0, ω1, ω2, ω5, ω8, ω11, ω14, and ω15—as the
other eight contain only redundant information.

In the following we elaborate on the idea suggested in the above exam-
ple. First, we clarify the idea of rewriting a probability function to fit

196 lifted inference in rpcl

into exponential space when D ⊆ U is fixed. Remember that Ω(Σ, D) =
Ω((D, Pred, ∅)) is the set of set of relevant Herbrand interpretations, cf. Defini-
tion 5.2 on page 136.

Definition 7.1 (Expansion set). Let D ⊆ U be finite. Then the expansion set
$(ω) of ω ∈ Ω(Σ, D) is defined via

$(ω) =def {ω′ ∈ Ω(Σ) | ω ⊆ ω′ and Const(ω′ \ω) ∩ D = ∅} .

The expansion set $(ω) of a Herbrand interpretation of ω ∈ Ω(Σ, D) con-
tains all Herbrand interpretations that agree with ω on the part relevant
with respect to D. Note that it is always the case that ω ∈ $(ω).

Example 7.2. We continue Example 7.1. Consider U =def D ∪ {c1, c2, . . .}.
Then clearly Ω(Σ, D) = {ω0, . . . , ω15} and e. g.

$(ω1) = { ω1,

{flies(tweety), flies(c1)},
{flies(tweety), flies(c2)},
{flies(tweety), flies(c1), flies(c2)}, . . . } .

Definition 7.2 (Focused probability function). Let P : Ω(Σ) → [0, 1] be a
probability function and D ⊆ U finite. Then the focused probability function
P|D of P is the probability function P|D : Ω(Σ, D)→ [0, 1] with

P|D(ω) =def ∑
ω′∈$(ω)

P(ω′) for all ω ∈ Ω(Σ, D) .

Note that a focused probability function is a similar notion than a marginal
probability function, cf. (Jaynes, 2003).

Proposition 7.1. Let P be a probability function, D ⊆ U finite, and ψ a ground
sentence with Const(ψ) ⊆ D. Then it holds that P(ψ) = P|D(ψ).

Proof. Note that if for ω ∈ Ω(Σ, D) it holds that ω |=F ψ then ω′ |=F ψ for
every ω′ ∈ $(ω). Furthermore, if for ω′ ∈ Ω(Σ) it holds that ω′ |=F ψ then
ω′ ∈ $(ω) for some ω ∈ Ω(Σ, D) with ω |=F ψ by definition of $(·) and the
fact that Const(ψ) ⊆ D. It follows that

P|D(ψ) = ∑
ω∈Ω(Σ,D),ω|=Fψ

P|D(ω)

= ∑
ω∈Ω(Σ,D),ω|=Fψ

∑
ω′∈$(ω)

P(ω′)

7.1 lifted inference 197

= ∑
ω′∈Ω(Σ),ω′|=Fψ

P(ω)

= P(ψ) .

The above proposition states that we can reason with I(R, D)|D instead
of I(R, D) as I(R, D)(ω) = 0 for every ω ∈ Ω(Σ) with Const(ω) 6⊆ D
anyway. However, I(R, D)|D still needs exponential space for storage.

Proposition 7.2. It holds that |Ω(Σ, D)| = 2|D||Pred|.

Proof. The size of the Herbrand base At(Σ′) of Σ′ = (D, Pred, ∅) is |D||Pred|
as Pred consists only of predicates of arity one. Consequently, the number
of subsets of At(Σ′) is 2|D||Pred|.

In the following we introduce condensed probability functions that allow for an
even more compact way to represent a probability function that is the result
of the application of an inductive inference operator I that satisfies (Proto-
typical Indifference). For the rest of this section let R be a fixed knowledge
base, I an inductive inference operator that satisfies (Prototypical Indiffer-
ence), such as I∅ or I�, D a fixed and finite set with Const(R) ⊆ D ⊆ U,
and P∗ = I(R, D)|D. Let furthermore S(R) = {S1, . . . , Sn} be the set of
R-equivalence classes of R, see Definition 6.2 on page 163. As we are only
interested in the constants in D let S|D(R) =def {S1, . . . , Sn} be the projec-
tion of S(R) onto D, i. e., it holds that Si = Si ∩ D for every i = 1, . . . , n.

7.1.1 Condensed Probability Functions

In Section 6.1 the notion ofR-equivalence has been introduced as a relation
among constants, cf. Definition 6.1 on page 163. We can generalize this
relation to be applicable on Herbrand interpretations as follows.

Definition 7.3 (R-equivalence II). Let ω1, ω2 ∈ Ω(Σ, D). We say that ω1
and ω2 are R-equivalent, denoted by ω1 ≡R ω2, if there is a set T =
{(c1

1, c1
2), . . . , (cG

1 , cG
2)} ⊆ S1 × S1 ∪ . . . ∪ Sn × Sn such that

ω1 = ω2[c
1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2] .

Basically, two Herbrand interpretations ω1 and ω2 are R-equivalent if we
can permute elements within each R-equivalence class such that ω2 be-
comes ω1.

Example 7.3. We continue Example 7.1. Here we have

ω2 ≡Rbirds2
ω3 ≡Rbirds2

ω4

198 lifted inference in rpcl

ω5 ≡Rbirds2
ω6 ≡Rbirds2

ω7

ω8 ≡Rbirds2
ω9 ≡Rbirds2

ω10

ω11 ≡Rbirds2
ω12 ≡Rbirds2

ω13

Proposition 7.3. ≡R is an equivalence relation.

The proof of Proposition 7.3 can be found in Appendix A on page 249.
As ≡R is an equivalence relation on elements of Ω(Σ, D) both the R-
equivalence class [ω] of ω ∈ Ω(Σ, D) given via

[ω] =def {ω′ ∈ Ω(Σ, D) | ω ≡R ω′}

and the quotient set Ω(Σ, D)/≡R of Ω(Σ, D) given via

Ω(Σ, D)/≡R =def {[ω] | ω ∈ Ω(Σ, D)}

are well-defined.

Proposition 7.4. For every ω1, ω2 ∈ Ω(Σ, D) with ω1 ≡R ω2 it holds that
P∗(ω1) = P∗(ω2).

Proof. Let Aω1 and Aω2 be the complete conjunctions characterizing ω1 and
ω2, respectively, i. e., Aω1 and Aω2 are defined via (remember that At(Σ)
denotes the Herbrand base with respect to the signature Σ)

Aω1 =def
∧

ω1 ∧ ¬
∨

At((D, Pred, ∅)) \ω1

Aω2 =def
∧

ω2 ∧ ¬
∨

At((D, Pred, ∅)) \ω2 .

Note that both Aω1 and Aω2 can be written as conjunctions by applying De
Morgan’s Law. It follows that ω1 is the only model that satisfies Aω1 and ω2
is the only model that satisfies Aω2 . Hence, it holds that P∗(ω1) = P∗(Aω1)
and P∗(ω2) = P∗(Aω2). For ω1 ≡R ω2 there is a set T = {(c1

1, c1
2), . . . ,

(cG
1 , cG

2)} ⊆ S1 × S1 ∪ . . . ∪ Sn × Sn with

ω1 = ω2[c
1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2] .

It follows that

Aω1 = Aω2 [c
1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2]

holds as well (note that applying the above replacement on the not-negated
part of Aω2 results in the not-negated part of Aω1 ; as both Aω1 and Aω2 list
every ground atom and a replacement maintains the structure of a formula
the negated part of Aω2 has to become the negated part of Aω1 ; otherwise
the not-negated part has to change as well). Via iterative application of
2.) in Proposition 6.2 (see page 166) it follows that P∗(Aω1) = P∗(Aω2)

7.1 lifted inference 199

and therefore P∗(ω1) = P∗(ω2) (note that every replacement above only
substitutes constants with constants of the same R-equivalence class).

The above proposition shows that the probability function P∗ carries a
lot of redundant information stemming from the R-equivalence of certain
Herbrand interpretations. In the following, we exploit this observation by
using Ω(Σ, D)/≡R instead of Ω(Σ, D) for redefining P∗. To do so, we go
on by developing a method that enumerates the elements of Ω(Σ, D)/≡R
in an efficient way.

For the rest of this section let Pred =def {p1, . . . , pP} be the set of (unary)
predicates of Σ.

Definition 7.4 (Truth configuration). A truth configuration t for p1, . . . , pP
is an expression t =def ṗ1 . . . ṗP with ṗi ∈ {pi, pi} for i = 1, . . . , P. Let Θ
denote the set of all truth configurations.

A truth configuration describes a specific situation that can be assigned to
a constant c. Thus, a truth configuration that is assigned to c characterizes
the state of c in some interpretation as it enumerates which attributes
(unary predicates) apply for c and which do not. The concept of truth
configurations has also been employed under the notion of atom in (Grove
et al., 1994; Bacchus et al., 1996), see also Section 6.4.2. For a constant c and
a truth configuration t = ṗ1 . . . ṗP define

t(c) =def { ṗ1(c), . . . , ṗP(c)}
t∧(c) =def ṗ1(c) ∧ . . . ∧ ṗP(c)

t+(c) =def t(c) ∩At((D, Pred, ∅))

t−(c) =def t(c) \ t+(c) .

Furthermore, for a ground sentence φ and constants c1, . . . , cn let

Θ(φ, c1) =def {t ∈ Θ | t∧(c1) ∧ φ 6|=F⊥}
Θ(φ, c1, . . . , cn) =def Θ(φ, c1)× . . .×Θ(φ, cn) .

The set Θ(φ, c1) contains all those truth configurations t for a constant c1
that are compatible with some sentence φ. The set Θ(φ, c1, . . . , cn) extends
this notion to tuples of constants.

Example 7.4. Let Pred =def {p1/1, p2/1} and let ψ =def p1(c) ∧ (p2(c) ∨
p2(d)). Then it holds that Θ(φ, c) = {p1 p2, p1 p2}.

Definition 7.5 (Instance assignment). An instance assignment I is a function
I : S|D(R)→N0 that satisfies I(Si) ≤ |Si| for all i = 1, . . . , n. Let I denote
the set of all instance assignments.

200 lifted inference in rpcl

Definition 7.6 (Reference world). A reference world ω̂ is a function ω̂ : Θ→
I that satisfies

∑
t∈Θ

ω̂(t)(Si) = |Si| (for all i = 1, . . . , n) . (7.1)

Let Ω̂ be the set of all reference worlds.

Basically, a reference world is a function that maps a truth configuration to
the number of constants of each R-equivalence class that satisfy this truth
configuration. As we show later, a reference world is a compact represen-
tation of [ω] for some ω ∈ Ω(Σ, D). The normalization constraint (7.1)
ensures that each constant in D is assigned exactly one truth configuration.

Example 7.5. We continue Example 7.1. The set of truth configurations
Θ = {t1, t2} with respect to D and R is given via

t1 = flies t2 = flies .

Furthermore, the set of instance assignments I = {I1, . . . , I8} with respect
to D and R is given via

I1(S1) = 0 I1(S2) = 0 I2(S1) = 0 I2(S2) = 1

I3(S1) = 0 I3(S2) = 2 I4(S1) = 0 I4(S2) = 3

I5(S1) = 1 I5(S2) = 0 I6(S1) = 1 I6(S2) = 1

I7(S1) = 1 I7(S2) = 2 I8(S1) = 1 I8(S2) = 3 .

Finally, the set Ω̂ = {ω̂1, . . . , ω̂8} of reference worlds with respect to D and
R is given via

ω̂1(t1) = I1 ω̂1(t2) = I8 ω̂2(t1) = I2 ω̂2(t2) = I7

ω̂3(t1) = I3 ω̂3(t2) = I6 ω̂4(t1) = I4 ω̂4(t2) = I5

ω̂5(t1) = I5 ω̂5(t2) = I4 ω̂6(t1) = I6 ω̂6(t2) = I3

ω̂7(t1) = I7 ω̂7(t2) = I2 ω̂8(t1) = I8 ω̂8(t2) = I1 .

For example, the intuitive description of the reference world ω̂3 is that
ω̂3 represents a state where the one element of S1 does not fly and two
elements of S2 do fly. Therefore ω̂3 subsumes the Herbrand interpretations
ω8, ω9, and ω10 from Example 7.1.

In the following we show that Ω̂ is indeed a characterization of the quotient
set Ω(Σ, D)/≡R . For that, consider the following definition.

7.1 lifted inference 201

Definition 7.7 (Equivalence mapping). The equivalence mapping κ is the
function κ : Ω(Σ, D)→ Ω̂ defined as κ(ω) =def ω̂ with

ω̂(ṗ1 . . . ṗP)(Si) =def |{c ∈ Si | ω |=F ṗ1(c) ∧ . . . ∧ ṗP(c)}|

for every ṗ1 . . . ṗP ∈ Θ and i = 1, . . . , n.

The function κ maps a Herbrand interpretation ω ∈ Ω(Σ, D) onto a refer-
ence world ω̂ ∈ Ω̂ with the intended meaning that κ(ω) is the (unique)
reference world that represents ω. It holds that κ(ω) = ω̂ whenever ω̂

assigns the same number of elements of an R-equivalence class Si to some
truth configuration t as ω contains specific instances of this truth configu-
ration for elements in Si.

Example 7.6. We continue Examples 7.1 and 7.5 and consider the Herbrand
interpretation

ω2 = {flies(huey)} .

For the R-equivalence class S1 = {tweety} and the single element tweety ∈
S1 it holds that ω2 satisfies ω2 |=F t∧2 (tweety) with t2 = flies. Therefore,
it has to hold that κ(ω2)(t2)(S1) = 1. For the R-equivalence class S2 =
{huey, dewey, louie} there is the one element huey ∈ S2 for which it holds
that ω2 satisfies ω2 |=F t∧1 (huey) with t1 = flies. Furthermore, there are
two elements dewey, louie ∈ S2 with ω2 |=F t∧2 (dewey) and ω2 |=F t∧2 (louie),
respectively. Therefore, it has to hold that both κ(ω2)(t2)(S2) = 2 and
κ(ω2)(t1)(S2) = 1. It follows that κ(ω2) = ω̂2.

Proposition 7.5. The function κ is surjective.

Proof. Let ω̂ ∈ Ω̂ be a reference world, let Θ = {t1, . . . , tT}, and let Si =
{ci

1, . . . , ci
ni
} for every Si ∈ S|D(R). Let ω ∈ Ω(Σ, D) be the Herbrand

interpretation defined via

ω =def

T⋃
i=1

n⋃
j=1

{p ∈ t+(cj
k) |

i−1

∑
l=1

ω̂(tl)(Sj) < k ≤
i

∑
l=1

ω̂(tl)(Sj)} (7.2)

It is clear that ω is indeed a Herbrand interpretation, i. e., it holds that ω ⊆
At((D, Pred, ∅)), as ω is constructed from elements from t+(c1), . . . , t+(cm)
for constants c1, . . . , cm and each t+(c1) is a subset of At(Σ). Furthermore
it holds that κ(ω) = ω̂ as ω contains at least

i

∑
l=1

ω̂(tl)(Sj)−
i−1

∑
l=1

ω̂(tl)(Sj) = ω̂(ti)(Sj)

202 lifted inference in rpcl

instances satisfying ti for Si and no constant c ∈ Si is used to satisfy two
different truth configurations by the construction in Equation (7.2). Notice
also, that each c

j
k in Equation (7.2) is well-defined as k > 0 and

k ≤
n

∑
l=1

ω̂(tl)(Sj) = |Sj| .

Now, let the span number ρω̂ of a reference world ω̂ ∈ Ω̂ be defined as

ρω̂ =def

n

∏
i=1

(
|Si|

ω̂(t1)(Si), . . . , ω̂(tT)(Si)

)
with Θ = {t1, . . . , tT} and(

n
k1, . . . , kr

)
=def

n!
k1! · · · kr!

being the multinomial coefficient indexed by n and k1, . . . , kr with n = k1 +
. . . + kr. We define(

n
k1, . . . , kr

)
=def 0

if any ki < 0 for i = 1, . . . , n. Note that ρω̂ is well-defined as ω̂(t1)(Si) +
. . . + ω̂(tT)(Si) = |Si| for every reference world ω̂. The span number of a
reference world ω̂ is exactly the number of Herbrand interpretations that
are subsumed by ω̂.

Proposition 7.6. It holds that |κ−1(ω̂)| = ρω̂ for every ω̂ ∈ Ω̂.

Proof. Let ω̂ ∈ Ω̂ be a reference world, let Θ = {t1, . . . , tT}, and let Si be
some R-equivalence class. The value ω̂(t, Si) = H represents the fact that
in ω̂ there are H different constants from the R-equivalence class Si that
satisfy t ∈ Θ. Note that every two truth configurations t, t′ ∈ Θ describe
mutual exclusive scenarios for some constant c and the set Θ is exhaustive,
i. e., for every constant c there applies exactly one truth configuration in
a Herbrand interpretation ω. It follows that the set of constants Si has to
be distributed among the truth configurations. This is equivalent to the
combinatorial interpretation of multinomial coefficients. The term(

|Si|
ω̂(t1)(Si), . . . , ω̂(tT)(Si)

)
denotes the number of combinations of partitioning the set Si into T subsets
of sizes ω̂(t1)(Si), . . . , ω̂(tT)(Si), respectively. Each such combination can
be combined with a similar selection for the other R-equivalence classes.

7.1 lifted inference 203

To each such joint combination an actual Herbrand interpretation can be
constructed that is mapped to ω̂ by κ. Hence it follows that

|κ−1(ω̂)| =
n

∏
i=1

(
|Si|

ω̂(t1)(Si), . . . , ω̂(tT)(Si)

)
= ρω̂ .

The following proposition states that Ω̂ indeed characterizes ΩD/≡R .

Proposition 7.7. For every ω1, ω2 ∈ Ω(Σ, D) it holds that ω1 ≡R ω2 if and
only if κ(ω1) = κ(ω2).

Proof. We have to show both directions. First, let it hold that ω1 ≡R ω2.
Then there is a set T = {(c1

1, c1
2), . . . , (cG

1 , cG
2)} ⊆ S1 × S1 ∪ . . . ∪ Sn × Sn

with

ω1 = ω2[c
1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2] .

As c1
1, c1

2 ∈ Si for some i it follows that κ(ω2)(t)(Si) = κ(ω2[c
1
1 ↔ c1

2])(t)(Si)
for every t ∈ Θ, i. e., the number of constants of Si that satisfy t keeps
the same when exchanging c1

1 with c1
2. Furthermore, for k 6= i it holds

that κ(ω2)(t)(Sk) = κ(ω2[c
1
1 ↔ c1

2])(t)(Sk) for every j = 1, . . . , P as well
as no constant of Sk that satisfies t is affected by the replacement. This
condition is maintained for multiple exchanges of constants from the same
R-equivalence class. It follows that κ(ω2)(t)(Si) = κ(ω1)(t)(Si) for every
i = 1, . . . , n and every t ∈ Θ, i. e. κ(ω1) = κ(ω2). For the other direction, let
κ(ω1) = κ(ω2) = ω̂. For every t ∈ Θ let L(t, ω1) denote the set of constants
that satisfy t in ω1 and let L(t, ω2) denote the set of constants that satisfy t
in ω2. As κ(ω1) = κ(ω2) it follows

|L(t, ω1) ∩ Si| = ω̂(t)(Si) = |L(t, ω2) ∩ Si|

for every i = 1, . . . , n. Furthermore, it holds that L(t, ω) ∩ L(t′, ω) =
∅ for different t, t′ ∈ Θ and ω ∈ {ω1, ω2} as truth configurations are
mutual exclusive. As truth configurations are also exhaustive we can define
bijections σt,i : L(t, ω1) ∩ Si → L(t, ω2) ∩ Si for every t ∈ Θ and i = 1, . . . , n.
In other words, applying σt,i as a replacement onto ω1 amounts to

σt,i

 ⋃
c∈Si

{p ∈ t+(c)} ∩ω1

 =
⋃
c∈Si

{p ∈ t+(c)} ∩ω2 .

As ⋃
t∈Θ

Dom σt,i = Si and
⋃

t∈Θ

Im σt,i = Si

the function σi : Si → Si with σi(c) = σt,i(c) for c ∈ Dom σt,i is a permu-
tation on Si. As Si ∩ Sj = ∅ for i 6= j and S1 ∪ . . . ∪ Sn = D the function

204 lifted inference in rpcl

σ : D → D with σ(c) = σi(c) for c ∈ Dom σi is a permutation on D. By
construction it holds that ω2 = σ(ω1). By the fact that every permutation
can be represented as a product of transpositions (Beachy and Blair, 2005)
it follows that ω1 ≡R ω2

Rephrasing the above proposition we obtain the following concise state-
ment.

Corollary 7.1. The function ι : Ω(Σ, D)/≡R → Ω̂ with ι([ω]) = κ(ω) is a
bijection.

Example 7.7. We continue Example 7.5. There it holds that

[ω0] = {ω0} [ω1] = {ω1} [ω2] = {ω2, ω3, ω4}
[ω5] = {ω5, ω6, ω7} [ω8] = {ω8, ω9, ω10} [ω11] = {ω11, ω12ω13}
[ω14] = {ω14} [ω15] = {ω15}

and

ι([ω0] = ω̂0 ι([ω1] = ω̂5 ι([ω2] = ω̂2 ι([ω5] = ω̂6

ι([ω8] = ω̂3 ι([ω11] = ω̂7 ι([ω14] = ω̂4 ι([ω15] = ω̂8 .

After having established the equivalence of Ω(Σ, D)/≡R and Ω̂ we now
turn to the issue of representing P∗ on the basis of Ω̂. For that we need the
following notation.

Definition 7.8 (Prototypical uniformity). A probability function P : Ω(Σ, D)
→ [0, 1] is called prototypically uniform with respect to D if for ω1, ω2 ∈
Ω(Σ, D) with ω1 ≡R ω2 it follows that P(ω1) = P(ω2).

Corollary 7.2. P∗ is prototypically uniform with respect to D.

Proof. This follows directly from Proposition 7.4.

Prototypically uniform probability functions can be be concisely repre-
sented using condensed probability functions.

Definition 7.9 (Condensed probability function). Let P be a probability
function P : Ω(Σ, D)→ [0, 1] that is prototypically uniform with respect to
D. Then the condensed probability function P̂ for P is the probability function
P̂ : Ω̂→ [0, 1] defined via

P̂(ω̂) =def P(ω) for some ω with κ(ω) = ω̂ and for all ω̂ ∈ Ω̂ .

Let P̂D denote the set of all condensed probability functions.

7.1 lifted inference 205

As P(ω1) = P(ω2) follows from κ(ω1) = κ(ω2) for prototypically uniform
P, the probability function P̂ is well-defined. It also holds that the map-
ping between prototypically uniform probability functions and condensed
probability functions is bijective.

Proposition 7.8. Let P1, P2 be prototypically uniform probability functions with
respect to D. If P1 6= P2 then P̂1 6= P̂2.

Proof. If P1 6= P2 then there is a Herbrand interpretation ω ∈ Ω(Σ, D) with
P1(ω) 6= P2(ω). It follows directly that P̂1(κ(ω)) = P1(ω) 6= P2(ω) =
P̂2(κ(ω)) and therefore P̂1 6= P̂2.

For the prototypically uniform probability function P∗, its condensed prob-
ability function P̂∗, and a ground sentence ψ it follows directly by definition
that

P̂∗(ψ) =def P∗(ψ) = ∑
ω∈Ω(Σ,D), ω|=Fψ

P̂∗(κ(ω)) . (7.3)

As one can see, one can determine the probability of any ground sentence
using P̂∗ instead of P∗. However, the sum in the above equation still
considers every Herbrand interpretation in Ω(Σ, D) and there may be a
ω̂ ∈ Ω̂ such that P̂∗(ω̂) appears more than once as ω, ω′ ∈ Ω(Σ, D) may
yield κ(ω) = κ(ω′) = ω̂. In the next section we consider the question
of how to determine the probability of ψ without considering Ω(Σ, D) but
only Ω̂ instead, i. e. we want to consider each ω̂ ∈ Ω̂ only once. Afterwards,
we address the issue of determining P̂∗ directly from a knowledge base R
without determining P∗ first.

7.1.2 Lifted Inference and Maximum Entropy

Looking closer at Equation (7.3) one can see that the probability of a single
reference world ω̂ may occur more than once within the sum as for different
ω, ω′ ∈ Ω(Σ, D) with ω |=F ψ and ω′ |=F ψ it may hold that κ(ω) = κ(ω′).
Therefore, (7.3) can be rewritten to

P̂(ψ) = ∑
ω̂∈Ω̂

Λ(ω̂, ψ)P̂(ω̂) . (7.4)

for some Λ(ω̂, ψ) ∈ N0 that represents the number of occurrences of P̂(ω̂)
in (7.3). More specifically, it holds that

Λ(ω̂, ψ) = |{ω ∈ Ω(Σ, D) | κ(ω) = ω̂ ∧ω |=F ψ}|,

i. e., Λ(ω̂, ψ) is the number of Herbrand interpretations in (7.3) that satisfy
ψ and are mapped by κ to ω̂.

206 lifted inference in rpcl

Example 7.8. We continue Example 7.7. There we have that

P∗(flies(tweety)) = 1 · P̂∗(ω̂5) + 3 · P̂∗(ω̂6) + 3 · P̂∗(ω̂7) + 1 · P̂∗(ω̂8)

P∗(flies(huey)) = 1 · P̂∗(ω̂2) + 2 · P̂∗(ω̂3) + 1 · P̂∗(ω̂4) + 1 · P̂∗(ω̂6)+

2 · P̂∗(ω̂7) + 1 · P̂∗(ω̂8)

= P̂∗(flies(dewey)) = P̂∗(flies(louie)) .

In particular, we have Λ(ω̂6, flies(tweety)) = 3 as ι−1(ω̂6) = {ω5, ω6, ω7}
with

ω5 = {flies(tweety), flies(huey)}
ω6 = {flies(tweety), flies(dewey)}
ω7 = {flies(tweety), flies(louie)}

and it holds that ωi |=F flies(tweety) for i = 5, 6, 7.

Note, however, that determining Λ(ω̂, ψ) by its definition above still re-
quires considering all Herbrand interpretations in Ω(Σ, D). By exploiting
combinatorial patterns within the structure of Ω(Σ, D) we can avoid con-
sidering Ω(Σ, D) as a whole and characterize Λ(ω̂, ψ) as follows.

Proposition 7.9. Let ψ be a conjunction of ground literals, let Const(ψ) =
{c1, . . . , cm}, and let Θ = {t1, . . . , tT}. Then

Λ(ω̂, ψ) = ∑
(t′1,...,t′m)∈Θ(ψ,c1,...,cm)

n

∏
i=1

(|Si \ Const(φ)|
α

t1
i (t
′
1, . . . , t′m), . . . , αtT

i (t′1, . . . , t′m)

)

with αt
i(t
′
1, . . . , t′m) =def ω̂(t)(Si)− |{k | t′k = t ∧ ck ∈ Si}|.

The proof of Proposition 7.9 can be found in Appendix A on page 249. Note
that there is no more reference to Ω(Σ, D) in the above characterization of
Λ(ω̂, ψ).

In order to determine P̂∗(ψ) for an arbitrary ground sentence ψ remem-
ber that ψ can be rewritten to be in disjunctive normal form, see e. g. (Rus-
sell and Norvig, 2009). Assume ψ to be in disjunctive normal form and
let c(ψ) denote the set of conjuncts of ψ. By iterative application of 2.) of
Proposition 2.1 (see page 20) it follows for every probability function P that

P(ψ) = ∑
ψ′∈c(ψ)

P(ψ′)− ∑
(ψ′,ψ′′)∈c(ψ)2, ψ′ 6=ψ′′

P(ψ′ ∧ ψ′′) .

As for P̂∗, for every ψ′, ψ′′ ∈ c(ψ) the terms P̂∗(ψ′) and P̂∗(ψ′ ∧ ψ′′) are
well-defined by Equation (7.4) and Proposition 7.9. If we require ψ to be in

7.1 lifted inference 207

a disjunctive form such that every two disjuncts are mutually exclusive we
get the even simpler form

P(ψ) = ∑
ψ′∈c(ψ)

P(ψ′)

which derives directly from above as P(ψ′ ∧ ψ′′) = 0 for every ψ′, ψ′′ ∈
c(ψ)2 with ψ′ 6= ψ′′.

Hitherto we have shown that P̂∗ compactly represents P∗ and that P̂∗

can be used for reasoning just as P∗. Nonetheless, in order to determine P̂∗

one needs to compute P∗ first using e. g. the optimization problems stated
in Equation (6.15) or Equation (6.42), see pages 170 and 173, respectively.
These optimization problems still need exponential space as P∗ needs ex-
ponential space. In the following, we show that we can modify both (6.15)
and (6.42) in a straightforward fashion to determine P̂∗ directly without
exponential overhead. Although the approach of condensed probability
distributions is applicable to any inductive inference mechanism that obeys
(Prototypical Indifference) we restrain our attention to I∅ and I� as devel-
oped in the previous chapter. As a consequence, from now one we assume
that P∗ has been determined either by (6.15) or (6.42).

For a condensed probability function P̂ we define the entropy HD(P̂) of P̂
to be the entropy of P, i. e. HD(P̂) =def HD(P), which is equivalent to

HD(P̂) = HD(P)

= − ∑
ω∈Ω(Σ), Const(ω)⊆D

P(ω)ld P(ω)

= − ∑
ω∈Ω(Σ,D)

P(ω)ld P(ω)

= − ∑
ω∈Ω(Σ,D)

P̂(κ(ω))ld P̂(κ(ω))

= − ∑
ω̂∈Ω̂

∑
ω∈κ−1(ω̂)

P̂(κ(ω))ld P̂(κ(ω))

= − ∑
ω̂∈Ω̂

ρω̂ P̂(ω̂)ld P̂(ω̂)

and thus can be determined by just considering Ω̂.

Proposition 7.10. Let S be a set of prototypically uniform probability functions
with respect to D and

Ŝ =def {P̂ | P ∈ S} .

If the probability function P∗ = arg maxP∈S HD(P) is uniquely determined so is
Q̂∗ = arg maxP̂∈Ŝ HD(P̂), and it holds that Q̂∗ = P̂∗.

Proof. Let P∗ = arg maxP∈S HD(P) be uniquely determined and assume
that there are Q̂∗1 and Q̂∗2 with Q̂∗1 6= Q̂∗2 and HD(Q̂∗1) = HD(Q̂∗2) =

208 lifted inference in rpcl

maxP̂∈Ŝ HD(P̂). As HD(P) = HD(P̂) for every P ∈ S it follows that
HD(Q∗1) = HD(Q∗2) as well and also maxP∈S HD(P) = maxP̂∈Ŝ HD(P̂). By
Proposition 7.8 on page 205 it also holds that Q∗1 6= Q∗2 and it follows that
HD(Q∗1) = HD(Q∗2) = HD(P∗) = maxP∈S HD(P) and therefore the function
P∗ would not be uniquely determined, contradicting the assumptions. It
follows that Q∗1 = Q∗2 = P∗ and therefore Q̂∗1 = Q̂∗2 = P̂∗ proving the
second part of the claim.

Proposition 7.11. Let |=◦∈ {|=pr
∅ , |=pr

� }. For a knowledge base R and a finite D
with Const(R) ⊆ D ⊆ U let

S =def {P | P, D |=◦ R} ,

and let S ′ ⊆ S be its subset of prototypically uniform probability functions with
respect to D. If arg maxP∈S HD(P) is uniquely determined then it holds that

arg max
P∈S ′

HD(P) = arg max
P∈S

HD(P) .

Proof. Corollary 7.2 on page 204 already stated that I◦(R, D) is prototyp-
ically uniform with respect to D if I◦ satisfies (Prototypical Indifference).
When determining the solution to arg maxP∈S HD(P) we can therefore re-
strain attention to the set of prototypically uniform probability functions
S ′.

The implications of the above two propositions are as follows. Instead of
determining first P∗ = I(R, D)|D via (6.15) or (6.42) and then determining
P̂∗ we can directly determine P̂∗ by rewriting (6.15) or (6.42). For (6.15) this
is

̂I∅(R, D)|D =


arg max

P̂∈P̂D and P̂,D|=pr
∅R

HD(P) if R ∅-consistent wrt. D
and Const(R) ⊆ D
and D is finite
and solution is unique

undef otherwise
(7.5)

and similarly for (6.42) this is

̂I�(R, D)|D =


arg max

P̂∈P̂D and P̂,D|=pr
�R

HD(P) if R �-consistent wrt. D
and Const(R) ⊆ D
and D is finite

undef otherwise

(7.6)

Note that both P̂, D |=pr
∅ R and P̂, D |=pr

� R can be checked directly for P̂
by employing Equation (7.4) on page 205 and Proposition 7.9 on page 206.

7.2 analysis 209

7.2 analysis

In the following we analyze the computational benefits of using P̂∗ instead
of P∗. In particular, we are interested in the question how the cardinality
of Ω̂ compares to the cardinality of Ω(Σ, D) with respect to the number of
constants |D| considered. Proposition 7.2 on page 197 already established
that |Ω(Σ, D)| = 2|D||Pred| and therefore the space needed to represent
P∗ is exponential in both |D| and |Pred|. We do not expect to avoid an
exponential blow-up in the number of predicates in Pred but we show that
|Ω̂| is not exponential in |D| any more.

Remember that each ω̂ ∈ Ω̂ satisfies

∑
t∈Θ

ω̂(t)(Si) = |Si| (for all i = 1, . . . , n),

see Definition 7.6 on page 199. This means, that for each ω̂ the constants of
each Si are distributed among the truth configurations in Θ. Note that the
number of truth configurations is 2|Pred|, i. e. |Θ| = 2|Pred|. A distribution
of constants of Si among Θ can be combined with any distribution of
constants of Sj for every i 6= j, yielding a single reference world ω̂. In
order to count the number of reference worlds we need to multiply the
number of combinations one can distribute the constants of Si onto the
truth configurations in Θ with the number of combinations for every other
Sj (i 6= j). Remember that S|D(R) = {S1, . . . , Sn}. Then the previous
considerations amount to

|Ω̂| =
n

∏
i=1
|{(l1, . . . , l2|Pred|) ∈N2|Pred|

0 | l1 + . . . + l2|Pred| = |Si|}| . (7.7)

Each factor in the product of the above equation represents the number
of combinations the constants of a single R-equivalence class can be dis-
tributed among the possible truth configurations in Θ. The condition
l1 + . . . + l2|Pred| = |Si| ensures that each constant is exactly assigned one
truth configuration in every combination. By multiplying the number of
the combinations for each R-equivalence class we get the number of combi-
nations the R-equivalence classes can be distributed among the truth con-
figurations in Θ which is exactly the number of reference worlds.

Equation (7.7) gives no direct hint on the space needed to represent Ω̂ in
terms of |D| and |Pred|. But it is possible to rewrite (7.7) as follows.

Definition 7.10 (Cardinality generator). The cardinality generator gc is the
function gc : N2

0 →N0 defined via

gc(n1, n2) =def

 ∑n2
i=0 gc(n1 − 1, n2 − i) if n2 > 0 and n1 > 0

1 if n2 = 0
0 otherwise

.

210 lifted inference in rpcl

Basically, the cardinality generator gc is a recursive function that maps two
integers n1 and n2 to the sum gc(n1 − 1, 0) + . . . + gc(n1 − 1, n2). The in-
tuition behind using gc to enumerate the number of reference worlds is as
follows. The first argument of gc is meant to represent the number of truth
configurations and the second the number of constants in a R-equivalence
class. By defining gc(n1, n2) = gc(n1 − 1, 0) + . . . + gc(n1 − 1, n2) we say
that the number of combinations to distribute n2 constants on n1 truth con-
figuration is equal to the number of combinations to distribute zero con-
stants on n1 − 1 truth configurations plus the number of combinations to
distribute one constant on n1 − 1 truth configurations, and so on. The first
case describes a setting where we assign all n2 constants to the n1th truth
configuration and as there are no remaining constants left this amounts
to the number of gc(n1 − 1, 0) remaining combinations. The second case
describes a setting where we assign n2 − 1 constants to the n1th truth con-
figuration and the remaining single constant to the remaining n1 − 1 truth
configurations. The final case describes the setting of assigning no constant
the n1th truth configuration and the remaining n2 constants to the remain-
ing n1 − 1 truth configurations. The second case of the definition of gc is
the basic case for the setting that we have to distribute zero constants on
n1 truth configurations. Obviously, there is only one possible assignment,
namely, assigning to each truth configuration zero constants. The third case
of the definition of gc ensures that there are no combinations if the number
of truth configurations is zero. Consider gc(1, 3) as the number of combina-
tions to distribute three constants on one truth configuration. Applying the
first case of the definition of gc yields

gc(1, 3) = gc(0, 0) + gc(0, 1) + gc(0, 2) + gc(0, 3)

and therefore the number of combinations to distribute 3 constants on 1
truth configuration is to assign all three constants to the one truth config-
uration, or to assign zero, one, or two to it. Obviously, the latter cases are
not valid and the only valid assignment is that three constants are assigned
to the one truth configuration. Due to the third case in the definition of gc
the terms gc(0, 1), gc(0, 2), and gc(0, 3) are set to zero.

Proposition 7.12. It holds that

|Ω̂| =
n

∏
i=1

gc(2|Pred|, |Si|) . (7.8)

Proof. We already established that gc(2|Pred|, |Si|) is the number of combina-
tions of distributing |Si| constants to 2|Pred| truth configurations. It follows
that

gc(2|Pred|, |Si|) = |{(l1, . . . , l2|Pred|) ∈N2|Pred|
0 | l1 + . . . + l2|Pred| = |Si|}| .

By applying the above to (7.7) we obtain the claim.

7.2 analysis 211

Still, Equation (7.8) does not allow to get an idea of the size of |Ω̂|. However,
the function gc can be bounded from above as follows.

Lemma 7.1. For n1, n2, n′2 ∈ N0 with n1, n2, n′2 > 0 it holds that n2 < n′2
implies gc(n1, n2) ≤ gc(n1, n′2).

Proof. For n2 < n′2 it holds that

gc(n1, n2) =
n2

∑
i=0

gc(n1 − 1, n2 − i)

≤
n2

∑
i=0

gc(n1 − 1, n2 − i) +
n′2

∑
i=n2+1

gc(n1 − 1, n′2 − i)

=
n′2

∑
i=0

gc(n1 − 1, n2 − i) = gc(n1, n′2)

Lemma 7.2. It holds that gc(n1, n2) ≤ (n2 + 1)n1 for every n1, n2 ∈N0.

Proof. We prove the above statement by induction on the structure of gc.
First, consider n2 = 0 and n1 ∈N0. Then

gc(n1, n2) = 1 = 1n1 = (n2 + 1)n1 .

Now consider n1 = 0 and n2 ∈N0 with n2 > 0. Then

gc(n1, n2) = 0 ≤ 1 = (n2 + 1)n1 .

Now assume gc(n′1, n′2) ≤ (n′2 + 1)n′1 for every n′1 < n1 and n′2 ≤ n2. It
remains to show gc(n1, n2) ≤ (n2 + 1)n1 for n1 > 0 and n2 > 0. Remember
that for this case gc is monotonously increasing in the second argument, cf.
Lemma 7.1.

gc(n1, n2) =
n2

∑
i=0

gc(n1 − 1, n2 − i) ≤ (n2 + 1)gc(n1 − 1, n2)

≤ (n2 + 1)(n2 + 1)n1−1 = (n2 + 1)n1

As a direct consequence from the above lemma we can give an upper bound
on |Ω̂| as follows.

Theorem 7.1. Let R be a knowledge base. Then

|Ω̂| ≤ (|Const(R)|+ 1)(|D|+ 1)2|Pred|
.

Proof. By Proposition 7.12 it holds that

|Ω̂| =
n

∏
i=1

gc(2|Pred|, |Si|) .

212 lifted inference in rpcl

As R mentions exactly |Const(R)| different constants it follows

|S(R)| ≥ |Const(R)|+ 1

as all constants not appearing in R belong to the same R-equivalent class.
Furthermore, each S ∈ S|D(R) contains at most |D| constants. It follows
that

|Ω̂| ≤ (|Const(R)|+ 1)gc(2|Pred|, |D|)

and by Lemma 7.2 it follows

|Ω̂| ≤ (|Const(R)|+ 1)(|D|+ 1)2|Pred|
.

The obvious observation to be made when comparing |Ω(Σ, D)| to the
upper bound of |Ω̂| is that the latter is not exponential in the number
of constants |D|. But note that the complexity increased with respect to
|Pred|. While |Ω(Σ, D)| is exponential in |Pred|, the above bound for |Ω̂|
is exponential in 2|Pred|. However, we believe that this is due to the very
coarse estimation in Lemma 7.2. Experiments suggest that gc can be much
better estimated.

Conjecture 7.1. It holds that gc(n1, n2) ≤ (n2 + 1)2ld n1 for every n1, n2 ∈ N0
(with ld 0 = 0).

Confirmation of the above conjecture would result in an upper bound
of (|Const(R)| + 1)(|D| + 1)2|Pred| which is far more beneficial than the
result of Theorem 7.1. However, until now no formal proof for the above
conjecture has been found.

Table 8 shows some exemplary cardinalities of Ω(Σ, D) and Ω̂ for dif-
ferent value of |D| and |Pred|. The knowledge base R used to deter-
mine the R-equivalences classes in Ω̂ mentions a single constant yielding
S(R) = {{c}, U \ {c}} for Const(R) = {c}. Table 8 shows that especially
for this kind of scenarios employing Ω̂ rather than Ω(Σ, D) is computa-
tionally beneficial. The numbers in Table 8 also justify the belief in Conjec-
ture 7.1.

7.3 generalizing lifted inference

In the following we discuss the problem of generalizing lifted inference
to first-order signatures containing predicates of arity greater one. Let
Ω(Σ) be the set of interpretations for some simple relational signature
Σ =def (U, Pred, ∅) that contains at least one non-unary predicate and
let R be some knowledge base on Σ. In contrast to the case without
non-unary predicates there is no simple and compact representation of
Ω(Σ, D)/≡R and, in particular, no compact way to enumerate the elements
of Ω(Σ, D)/≡R . In contrast to a strictly unary signature there is no similar

7.3 generalizing lifted inference 213

|Pred| |D| |Ω(Σ, D)| |Ω̂|
1 1 2 2
1 2 4 4
1 3 8 6
1 4 16 8
1 8 256 16
1 16 65536 32
1 32 4294967296 64
2 1 4 4
2 2 16 16
2 3 64 36
2 4 256 64
2 8 65536 256

Table 8: Comparison of |Ω(Σ, D)| and |Ω̂| with respect to a simple rela-
tional signature Σ = (U, Pred, ∅) and a knowledge base R with
|Const(R)| = 1

concept of truth configuration if the signature contains a non-unary predicate.
Consider a predicate p/2 and R-equivalence classes S1 and S2. Then there
are six different instantiations of p that have to be considered as essentially
different with respect to R-equivalence. For constants c1 ∈ S1 and c2 ∈ S2
we have the variants p(c1, c2) and p(c2, c1); for c1 ∈ Si we have p(c1, c1)
for i = 1, 2; for c1, c2 ∈ Si with c1 6= c2 we have p(c1, c2) for i = 1, 2. An
extended notion of truth configuration must adhere to this combinatorial
observation and also take the relations into account that arise by transitivity.
Consider the following example.

Example 7.9. Let R =def {r1, r2, r3} be the knowledge base given via

r1 =def (d(a, b))[1]

r2 =def (d(b, a))[1]

r3 =def (p(X,X) | d(X,Y), d(Y,X))[1] .

Let D =def {a, b, c1, . . . , cn} be the set of constants, then the R-equivalence
classes are S1 = {a, b} and S2 = {c1, . . . , cn} ∪U \ D. Consider the Her-
brand interpretations ω1 and ω2 given via

ω1 =def {p(a, b), p(a, a)} ω2 =def {p(a, b), p(b, b)} .

Both interpretations mention the same constants from the same R-equiva-
lence class and both interpretations instantiate p once with the same con-
stant in both arguments and once with different constants in the argu-
ments. However, it holds that ω1 6≡R ω2 as by switching a and b in ω1
yields {p(b, a), p(b, b)} which might not have the same probability of ω2 in
I(R, D).

214 lifted inference in rpcl

In the unary case, we used truth configurations to be able to enumerate the
elements of Ω(Σ, D)/≡R in an effective way without considering Ω(Σ, D)
itself. In the non-unary case there seems to be no simple way to extend
the concept of truth configuration. This observation has also been made
by Grove et. al. in (Grove et al., 1994) when they attempted to generalize
the notion of entropy of an interpretation to non-unary languages, cf. Sec-
tion 6.4.2. In particular, the argumentation of Grove et. al. is as follows.2

“In a unary language, [truth configurations] are useful because
they are simple descriptions that summarize everything that
might be known about a domain element in a model. But
consider a language with a single binary predicate [p(X,Y)].
Worlds over this language include all finite graphs (where we
think of [p(X,Y)] as holding if there is an edge from [X] to [Y]).
In this language, there are infinitely many properties that may
be true or false about a domain element. For example, the as-
sertions ‘the node [X] has m neighbors’ are expressible in the
language for each m. Thus, in order to partition the domain el-
ements according to the properties they satisfy, we would need
to define infinitely many partitions. Furthermore, it can be
shown that ‘typically’ (i.e., in almost all graphs of sufficiently
great size) each node satisfies a different set of first-order prop-
erties. Thus, in most graphs, all the nodes are ‘different’, so
a partition of domain elements into a finite number of ‘[truth
configurations]’ makes little sense.”

Although the framework of (Grove et al., 1994) makes more use of first-
order elements than we do, the above argumentation is also applicable for
our situation.

However, the approach of lifted inference developed in this chapter can
be applied for non-unary languages by determining first Ω(Σ, D) and af-
terwards (by pair-wise comparisons) merge R-equivalent interpretations to
reference worlds (yielding the quotient set Ω(Σ, D)/≡R). Note that we lose
the computational advantage of avoiding to consider the full set Ω(Σ, D) in
this approach. It is also questionable whether using Ω(Σ, D)/≡R instead of
Ω(Σ, D) for inference is beneficial. In Example 7.9 we illustrated that many
Herbrand interpretations turn out to be not R-equivalent. Table 9 shows
the cardinalities of both Ω(Σ, D) and Ω(Σ, D)/≡R , depending on the size of
D and with respect to a signature containing a single binary predicate and a
knowledge base R with Const(R) = ∅. As R mentions no constants there
is only a single R-equivalence class which makes this scenario the simplest
imaginable. Nonetheless, the cardinality of Ω(Σ, D)/≡R—although being
significantly smaller than the cardinality of Ω(Σ, D)—still seems to grow
exponentially in the number of constants considered. Until now, no formal
proofs for lower or upper bounds on the growing behavior of |Ω(Σ, D)/≡R |

2 The excerpt is taken from (Grove et al., 1994), p. 67

7.4 related work 215

|D| |Ω(Σ, D)| |Ω(Σ, D)/≡R |
1 2 2
2 16 10
3 512 244
4 65536 12235

Table 9: Comparison of |Ω(Σ, D)| and |Ω(Σ, D)/≡R | with respect to a sim-
ple relational signature that contains a single binary predicate and
a knowledge base R with Const(R) = ∅

have been found. However, Table 9 gives reason to believe that there is no
polynomial upper bound for |Ω(Σ, D)/≡R | in |D|. As a consequence, lifted
inference can be doubted to be beneficial at all for non-unary languages (in
our setting).

7.4 related work

As our semantical notions and the use of reasoning based on the principle
of maximum entropy is novel for treating relational probabilistic condition-
als there are only few works related to the approach developed in this
chapter. The observation that a probability function stemming from the
application of entropy maximization carries redundant information with
respect to indistinguishable constants has also been made in (Fisseler, 2010)
for the case of grounding semantics. There, the term involution invariance is
used to catch the equivalent behavior of ground conditionals with respect
to their Lagrange multipliers in (6.60) on page 181. However, (Fisseler, 2010)
does not consider exploiting this observation in order to represent the ME-
function explicitly by reference worlds. The notion of lifted inference used in
this chapter has been adopted from the works (Poole, 2003; de Salvo Braz et
al., 2005; Milch et al., 2008) which also use this notion to describe effective
reasoning procedures for relational probabilistic knowledge. Although the
knowledge representation formalisms of those works differ from our work,
the motivation and ideas of those works are similar to ours. We have a
closer look on those works in the following.

The work (de Salvo Braz et al., 2005)—which extends work begun in
(Poole, 2003)—develops an algorithm for lifted probabilistic inference in
parametrized belief networks (Horsch and Poole, 1990) which are similar
to Bayesian logic programs, cf. Section 2.4.1. Consequently, we use BLPs
to illustrate the ideas of (de Salvo Braz et al., 2005) and (Poole, 2003). The
basic idea of (Poole, 2003; de Salvo Braz et al., 2005) is the observation that in
order to determine the probability of some query, the information used to
infer the probability can be partitioned with respect to the information we
have for specific individuals. This approach uses the technique of variable
elimination of (Zhang and Poole, 1996) to simplify equations like (2.10) on
page 37 with respect to equivalencies of undistinguishable constants. We do

216 lifted inference in rpcl

not give a formal description of the algorithms developed in (Poole, 2003;
de Salvo Braz et al., 2005) but rather give an idea of the approach by means
of an example. Consider the Bayesian clause c given via

c =def (p(X) | q(X,Y), r(Y))

and some arbitrary conditional probability distribution cpdc for c. Let
furthermore noisy-or be the designated combining rule for c and let

En,m =def {q(c, d1), . . . , q(c, dn+m)}∪
{r(d1), . . . , r(dn),¬r(dn+1), . . . ,¬r(dn+m)}

be some evidence with n, m ∈N. In order to compute the probability of the
query Q = (p(c) | E) one has to instantiate a ground Bayesian network for
the node p(c) with parents q(d1), . . . , q(dn+m), r(c, d1), . . . , r(c, dn+m). This
amounts to

P(Q) = 1− (1− P(p(c) | q(c, d1), r(d1))) · . . . ·
(1− P(p(c) | q(c, dn+m), r(dn+m))) .

Note that we have the same information for the constants d1, . . . , dn and
dn+1, . . . , dm, respectively. It follows that it holds that

P(p(c) | q(c, d1), r(d1)) = . . . = P(p(c) | q(c, dn), r(dn))

= cpdc(true, true, true)

P(p(c) | q(c, dn+1), r(dn+1)) = . . . = P(p(c) | q(c, dn+m), r(dn+m))

= cpdc(true, true, false)

and therefore

P(Q) = 1− (1− cpdc(true, true, true))n(1− cpdc(true, true, false))m .

As one can see, we can avoid grounding the full Bayesian logic program by
just considering prototypical groundings for c. In (Poole, 2003; de Salvo Braz
et al., 2005) this idea is elaborated and a series of algorithms is devel-
oped that apply this approach to general parametrized belief networks
(or Bayesian logic programs). Obviously, the ideas of (Poole, 2003; de
Salvo Braz et al., 2005) are very similar to ours and differences lie mainly in
the framework used for knowledge representation and the technical imple-
mentation. The work (Poole, 2003) uses parametrized belief networks and
inference bases on Bayesian networks and (de Salvo Braz et al., 2005) uses a
framework similar to Markov logic networks (see Section 2.4.2). Note that
both formalisms are first-order extensions of probabilistic networks as dis-
cussed in Section 2.2. We use relational probabilistic conditional logic and
inference based on the principle of maximum entropy. Furthermore, we
developed an explicit computational model for representing prototypically

7.5 summary and discussion 217

uniform probability functions and showed that the use of this model is ben-
eficial in terms of computational complexity. In (Poole, 2003) no hints on
the computational advantages of applying first-order variable elimination
are given but (de Salvo Braz et al., 2005) gives an experimental evaluation
that resembles our observations from Conjecture 7.1 on page 212.

The work (Milch et al., 2008) extends the approaches of (de Salvo Braz
et al., 2005) and (Poole, 2003) by considering counting formulas. A counting
formula is a probabilistic rule like e. g.

c′ =def (expert(X) | #Y[publication(X,Y)])

which states that the probability of X being an expert (in some field) de-
pends on his or her number of publications (in the very same field). The
notion of conditional probability distributions can be extended to adhere
for counting formulas by allowing natural number to occur as parameters.
For example, a suitable conditional probability distribution cpdc′ for c′ is a
function cpdc′ : B×N → [0, 1] with e. g. cpdc′(true, 5) = 0.7. So, cpdc′ as-
signs the probability 0.7 to X being an expert if X has 5 publications. Count-
ing formulas do not take the actual instances, i. e. the actual publications,
but only the number of them into account. In (Milch et al., 2008) it is argued
that there are many probabilistic relationships that can be modeled more
appropriately with counting formulas than with ordinary clauses. Having
enriched the knowledge representation formalism with counting formulas
the work (Milch et al., 2008) shows that the approach of (de Salvo Braz et al.,
2005; Poole, 2003) can be generalized to allow for a lifted way to deal with
these formulas as well. More recent work extends lifted inference to other
aggregation functions such as maximum, minimum, or average (Kisyński and
Poole, 2009).

7.5 summary and discussion

In this chapter, we developed a computational account for effective prob-
abilistic inference with relational probabilistic conditionals. In particular,
we introduced the notions of reference worlds and condensed probability
functions which allow for a compact representation of probability functions
that arise from the application of inference operators satisfying (Prototyp-
ical Indifference). Due to the equivalence of interpretations that only dif-
fer in constants from the same R-equivalence class, those interpretations
can be pooled together and used as a single entity. Condensed probabil-
ity functions are defined on the set of reference worlds and exhibit the
same reasoning behavior as the original probability functions, given that
those are indifferent with respect to constants from the sameR-equivalence
class. We also developed an inference procedure that determines the prob-
ability of some sentence without considering all interpretations but only
reference worlds. Furthermore, we showed that the inference operators de-
veloped in the previous chapter can be modified in order to compute the

218 lifted inference in rpcl

condensed ME-function in a single step without considering the Herbrand
interpretations at all. We analyzed the computational benefits of our ap-
proach and concluded that we avoid the exponential blow-up in the num-
ber of constants that have to be considered. Our approach is—using the
given formalization—only applicable for unary languages and we briefly
discussed the issues that arise when considering non-unary languages. Fi-
nally, we compared our approach to the existing literature on lifted infer-
ence in first-order probabilistic models.

The approach developed in this chapter gives directions for efficient
implementation of reasoning based on the principle of maximum entropy.
However, the work reported is only a first step towards this goal and suffers
from two major discrepancies. Firstly, we restricted lifted inference to
the case of unary languages which, in practice, is a demand that cannot
be easily fulfilled. One of the main advantages of first-order extensions
of probabilistic reasoning is the capability to reason over relations. By
abandoning non-unary predicates we lose much of the expressive power
of relational probabilistic conditional logic. However, note that even by
restricting attention to unary languages we do not get the equivalence
to propositional probabilistic models due to our semantical notions. For
example, the knowledge base R =def {r1, r2} with

r1 =def (flies(X))[0.9]

r2 =def (flies(tweety))[0.3]

cannot be represented with a propositional probabilistic model that exhibits
the same inference behavior. Secondly, in order to determine the (con-
densed) ME-function of a knowledge base R we have to solve a complex
optimization problem. The amount of time needed to obtain an optimal
solution is hard to predict in general as it depends on both the structure
of the knowledge base and the optimization algorithm used for solving
the problem, cf. (Boyd and Vandenberghe, 2004). However, there are ap-
proaches to avoid solving problems like (6.15) and (6.42) (see pages 170

and 173, respectively) for the propositional case. For example, in (Meyer,
1997) an approximate algorithm for computing the ME-function for propo-
sitional probabilistic conditional logic is developed. This algorithm bases
on an iterative computation of the ME-function using a compact represen-
tation that employs clique trees. In this approach the ME-function is not
represented using interpretations but sub-interpretations that stem from
certain relationships and independences of propositions in the knowledge
base. Furthermore, instead of solving the optimization problem (2.8) (see
page 32) in a direct fashion, a series of probability functions is determined
that converges to the ME-function. The algorithm of (Meyer, 1997) benefits
from several characteristic properties of the ME-function in the proposi-
tional case and it is to investigate if these properties (or similar ones) can
be found for our semantical approaches.

8S U M M A RY A N D F I N A L R E M A R K S

In this chapter we conclude this thesis by summarizing its content, giving
hints to further and future work, and by making some final remarks.

8.1 summary

In this thesis we discussed the problem of probabilistic reasoning with
incomplete and inconsistent information. We addressed this problem using
both propositional and relational conditional logic.

In Chapters 3 and 4 we studied inconsistencies in propositional proba-
bilistic conditional logic. Inconsistencies arise easily when experts share
their beliefs to build up a common knowledge base. When relying on
model-based inference methods such as inference via the principle of maxi-
mum entropy then inconsistencies render a knowledge base useless as there
is no model to select from. Consequently, we investigated the problem of
inconsistent knowledge bases from both an analytical and practical perspec-
tive. In Chapter 3 we introduced inconsistency measures for the framework
of probabilistic conditional logic. Inconsistency measures are analytical
tools to assess the severity of inconsistencies in a knowledge base and have
been used previously in classical frameworks only. To our knowledge, our
investigation of inconsistency measures on probabilistic conditional logic is
the first one that covered this matter in such a breadth. We developed a
list of rationality postulates for measuring inconsistency in a probabilistic
framework and developed an approach that satisfies most of those. This
measure bases on the distance of an inconsistent knowledge base to the
nearest consistent knowledge base by interpreting probabilities of condi-
tionals as coordinates. Though computationally this novel measure is hard
to handle we developed approximations that are fast in practice. We con-
tinued with a more practical perspective on inconsistencies in probabilistic
conditional logic in Chapter 4. First, we extended the concept of inconsis-
tency measures towards culpability measures. A culpability measures as-
signs no degree of inconsistency to the whole knowledge base but to each
probabilistic conditional of a knowledge base. That way one can determine
the conditionals to be blamed for the inconsistency. We developed two cul-
pability measures—one employing the Shapley value from coalition game
theory and one extending the inconsistency measure of Chapter 3—and
showed that these measures satisfy several desirable properties. We contin-
ued by employing inconsistency and culpability measures for the task of
solving conflicts. We presented a series of rationality postulates for restor-
ing consistency in inconsistent knowledge bases and developed two fam-
ilies of consistency restoring methods. The first one bases on the notion

219

220 summary and final remarks

of a creeping function and is constructive in nature. The second one is
declarative and employs distance minimization in a balanced fashion. Both
approaches satisfy several rationality postulates and we illustrated their ad-
vantages and disadvantages in several examples.

Probabilistic conditional logic has been well-studied in the literature be-
fore but we also addressed the problem of relational probabilistic reasoning
in probabilistic conditional logic. Chapters 5, 6, and 7 covered the issue of
representing and reasoning with relational probabilistic conditionals. As
this is quite a novel research area we started in Chapter 5 with laying the
syntactical and semantical foundations for knowledge representation with
relational probabilistic conditional logic. We introduced novel semantical
approaches that incorporate information on the population under consider-
ation into the formal interpretation of conditionals. We continued in Chap-
ter 6 with a discussion on the problem of reasoning in this novel framework
and developed a series of postulates for model-based inductive inference.
As the principle of maximum entropy has proven to be a powerful approach
for reasoning in propositional probabilistic conditional logic we extended
this principle to the relational case and developed inference methods based
on maximum entropy for the new semantics. These approaches satisfy
(most of) the rationality postulates and we illustrated their use on several
examples. Though, the computational task of determining a probability
function with maximum entropy in relational probabilistic conditional logic
is quite demanding. That is why we investigated lifted inference with re-
lational probabilistic conditionals in Chapter 7. Due to the satisfaction of
(Prototypical Indifference) of the ME-inference methods, a probability func-
tion with maximum entropy can be compactly represented by a condensed
probability function. We developed constructive approaches for computing
a condensed probability function with maximum entropy and determining
the probability of an arbitrary sentence. We showed that by using lifted in-
ference in unary languages we gain substantial advantages regarding com-
putational complexity.

8.2 further and future work

The work reported in this thesis is not the only one that investigates proba-
bilistic reasoning with incomplete and inconsistent information. Although
we have given pointers to relevant literature throughout this thesis we want
to stress two specific works that are highly related to our works. The prob-
lem of measuring and dealing with inconsistency in probabilistic frame-
works has also been investigated in (Daniel, 2009) which has already been
discussed in Section 3.5 and in Section 4.5. The main difference of the
course of action followed in (Daniel, 2009) in comparison to the one here, is
that in (Daniel, 2009) reasoning based on the principle of maximum entropy
is extended to be applicable on inconsistent knowledge bases. There is no
modification of the existing knowledge base which is the approach pursued
in this thesis. But this distinction is merely of relevance as each approach

8.2 further and future work 221

can be transformed into the other without problems. Having a method for
restoring consistency and an inference mechanism that only works on con-
sistent knowledge bases, by combining these two into one process one gets
an inference mechanism on inconsistent knowledge bases. Further, hav-
ing an inference mechanism that works on inconsistent knowledge bases
allows for consistent modification of the knowledge base as new probabil-
ities for the conditionals can be determined by the inference mechanism.
More differences arise on a technical level which were already discussed in
Section 3.5 and in Section 4.5. The second work we like to highlight is (Fis-
seler, 2010) which discusses learning and modeling with probabilistic con-
ditional logic and also considers reasoning based on the principle of max-
imum entropy in a relational context. However, (Fisseler, 2010) focuses an
grounding semantics and encompasses the problem of inconsistent knowl-
edge bases by introducing constraint formulas on variables. This approach
requires that the knowledge engineer is capable of identifying exceptions
for open probabilistic conditionals himself and we already argued that this
requirement hampers a modular usage of knowledge bases, cf. Section 5.5.1.
Nonetheless, (Fisseler, 2010) investigates the properties of the ME-function
for a knowledge base in great detail and identifies several criteria that allow
for an effective computation of this function. The work (Loh et al., 2010) ex-
tends the grounding semantics of (Fisseler, 2010) by considering different
grounding strategies and an in-depth comparison of our work with (Loh et
al., 2010) has been already given in Sections 5.5.1 and 6.4.1.

Current and future work on the areas covered in this thesis include ex-
tending the approaches to inconsistency measurement and solving conflicts
on more expressive probabilistic languages. We already addressed some
of these issues in Section 3.4.3 where we extended the distance minimiza-
tion inconsistency measure to bounded conditionals and linear knowledge
bases. These extensions have to be investigated in more depth and other
language extensions such as polynomial probabilistic knowledge bases (Daniel,
2009) should be looked into as well. The issue of consistency restoration
of probabilistic conditional knowledge bases is quite novel to the scientific
community. To our knowledge, only the works (Finthammer et al., 2007;
Rödder and Xu, 2001) have discussed this problem before, see Sections 4.5.2
and 4.5.3. Consequently, we only took first steps and more research and
(empirical) evaluation is required. This also applies to some extent to the
work on relational probabilistic conditional logic. However, the main issue
for future work there lies in efficient inference algorithms. Even by employ-
ing lifted inference the bound on the size of the application is too low for
real-world applications. One particular direction for future research here
is investigating whether the approach of (Meyer, 1997) is applicable in the
relational domain, cf. Section 7.5. Furthermore, the issue of inconsistency
is present in the relational context as well and another direction for future
research lies in investigating to what extent the discussion on inconsistency
measures in this thesis also applies to the relational case.

Most of the methods developed in this thesis are already prototypically

222 summary and final remarks

implemented and available within the Tweety library for artificial intelli-
gence1. Future work also includes further development of these implemen-
tations.

8.3 conclusion

In this thesis we discussed semantical problems of probabilistic conditional
logic. On the one hand, we discussed inconsistencies in propositional prob-
abilistic conditional logic and hence investigated semantical deficiencies on
contradictory information. On the other hand, we lay semantical founda-
tions for relational probabilistic conditional logic that allow for a consistent
treatment of “contradictory” information from the beginning. For the latter,
“contradictory” means differing information on population and individuals.
We addressed and answered the research questions, that were posed in the
introduction (see Section 1.2), as follows. In particular, we discussed the
question

How to analyze inconsistencies in probabilistic conditional logic and
how to measure their severities?

in great detail by translating inconsistency measures for classical theories
into the probabilistic setting and developing a novel inconsistency measure
that is apt for probabilistic conditional logic. We showed that this measure
can be approximated with effective methods and extended it to more ex-
pressive probabilistic settings. These tools help the knowledge engineer to
fulfill his or her task of building a consistent knowledge base that can be
used for reasoning. For settings where a manual repair of an inconsistent
knowledge base is infeasible we discussed the research question

How to restore consistency in inconsistent probabilistic knowledge?

by investigating several approaches for automatic restoration of consistency
that are based on culpability measures. It turned out to be quite hard to
show the satisfaction of several desirable properties for consistency restor-
ers but, nevertheless, we gave a set of different consistency restorers the
knowledge engineer can choose from. Both inconsistency measures and
consistency restorers give many insights into to semantical notion of con-
sistency in probabilistic conditional logic. However, when turning to rela-
tional extensions for probabilistic reasoning we discovered that the notion
of consistency is hard to grasp due to the inadequacy of the traditional
semantics in a relational setting. Consequently, we discussed the question

How to express relational knowledge in probabilistic conditional logic
and what is a meaningful interpretation of relational conditionals?

1 http://sourceforge.net/projects/tweety/

http://sourceforge.net/projects/tweety/

8.3 conclusion 223

and introduced two novel semantics for relational probabilistic conditional
logic. These semantics extend classical semantics by allowing the treatment
of both population-based statements and statements on the degree of belief.
We used these semantical notions to obtain an answer to the question

How can one reason with relational probabilistic conditionals?

and extended the reasoning based on the principle of maximum entropy to
the relational setting. Our inference operators turned out to be powerful
with respect to many commonsense properties and we illustrated their
behavior on several benchmark examples. Although reasoning in RPCL
in a straightforward fashion is hardly feasible in general we proposed a
mechanism that allows for a polynomial representation in the number of
constants.

To summarize, in this thesis we discussed the general research question

How to infer knowledge from incomplete, uncertain, and possibly
inconsistent information?

in both propositional and relational probabilistic conditional logic. We al-
lowed for incomplete information in knowledge bases as reasoning based
on the principle of maximum entropy allows completing this information
in an unbiased and sound way. Uncertainty can be expressed using proba-
bilities and we differentiated between uncertainty of subjective beliefs (for
propositional probabilistic conditional logic and for statements on the de-
gree of belief in relational probabilistic conditional logic) and uncertainty of
population-based statements (in relational probabilistic conditional logic).
We dealt with inconsistency in propositional probabilistic conditional logic
by investigating inconsistency measures, culpability measures, and consis-
tency restorers and we dealt with inconsistency in relational probabilistic
conditional logic by investigating novel semantical notions that circumvent
inconsistencies when the information represented is to be treated as consis-
tent from a commonsensical perspective.

Reasoning with incomplete, uncertain, and possibly inconsistent informa-
tion is of crucial concern in every real-world expert system as complete and
correct information is rarely available. In this thesis we dealt with several
problems in this area, with a focus on inconsistent information.

AP R O O F S O F T E C H N I C A L R E S U LT S

Proposition 2.1 (page 20). Let X1, X2 ⊆ X. Then it holds that

1. P(X1) = ∑x∈X1
P(x),

2. P(X1 ∪ X2) = P(X1) + P(X2)− P(X1 ∩ X2), and

3. P(X \ X1) = 1− P(X1).

Proof.

1. We prove the statement by induction on the cardinality of X1. For
X1 = {x1} of cardinality one it holds that P(X1) = P({x1}) =

∑x∈X1
P(x) by definition. Let X1 be of cardinality n, i. e., X1 =

X′1 ∪ {xn} for some X′1 ⊆ X of cardinality n− 1 and some xn ∈ X. By
assumption P(X′1) = ∑x∈X′1

P(x) and due to the second Kolmogorov
axiom of probability (see Definition 2.15 on page 19) it holds that
P(X1) = P(X′1)+ P(xn) and it follows P(X1) = ∑x∈X′1

P(x)+ P(xn) =

∑x∈X1
P(x). If the cardinality of X1 = {x1, x2, . . .} is infinite then the

observation holds for every finite subset of X1 and as P(X) is finite
due to the first Kolmogorov axiom of probability (see Definition 2.15

on page 19) every sum on probabilities of elements of X is finite as
well yielding

P(X1) = lim
n→∞

P

(
n⋃

i=1

{xi}
)

= lim
n→∞

n

∑
i=1

P(xi)

=
∞

∑
i=1

P(xi) .

2. From the second Kolmogorov axiom (see Definition 2.15 on page 19)
and (S \ S′) ∩ (S ∩ S′) = ∅ for sets S, S′ it follows that

P(X1) + P(X2)− P(X1 ∩ X2)

= P(X1 \ X2) + P(X1 ∩ X2)+

P(X2 \ X1) + P(X1 ∩ X2)− P(X1 ∩ X2)

= P(X1 \ X2) + P(X1 ∩ X2) + P(X2 \ X1)

= P((X1 \ X2) ∪ (X1 ∩ X2) ∪ (X2 \ X1))

= P(X1 ∪ X2)

3. As (X \ X1) ∩ X1 = ∅, it holds, due to the second Kolmogorov ax-
iom of probability (see Definition 2.15 on page 19), that P(X \ X1) +

225

226 proofs of technical results

P(X1) = P(X \ X1 ∪ X1) = P(X) and, due to the first Kolmogorov
axiom of probability, P(X) = 1.

Proposition 2.2 (page 21). Let P be a probability function on L(At) and φ, ψ ∈
L(At).

1. If φ |=P⊥ then P(φ) = 0.

2. If > |=P φ then P(φ) = 1.

3. If φ ≡P ψ then P(φ) = P(ψ).

4. If φ ∧ ψ |=P⊥ then P(φ ∨ ψ) = P(φ) + P(ψ).

5. It holds that P(¬φ) = 1− P(ψ).

6. If φ |=P ψ then P(φ) ≤ P(ψ).

Proof.

1. If φ |=P⊥ then ModP(φ) ⊆ ModP(⊥) = ∅, i. e. ModP(φ) = ∅. It
follows that there is no ω ∈ Ω(At) with ω |=P φ and therefore
P(φ) = ∑ω|=Pφ, ω∈Ω(At) P(ω) = 0.

2. If > |=P φ then ModP(>) ⊆ ModP(φ), i. e. ModP(φ) = Int(At). It
follows that for every ω ∈ Ω(At) it holds that ω |=P φ and therefore
P(φ) = ∑ω|=Pφ, ω∈Ω(At) P(ω) = ∑ω∈Ω(At) P(ω) = 1.

3. If φ ≡P ψ then ModP(φ) = ModP(ψ) and therefore ω |=P φ whenever
ω |=P ψ for every ω ∈ Ω(At). It follows that

P(φ) = ∑
ω|=Pφ, ω∈Ω(At)

P(ω) = ∑
ω|=Pψ, ω∈Ω(At)

P(ω) = P(ψ) .

4. This follows directly from the second Kolmogorov axiom (see Defini-
tion 2.15 on page 19) and due to ModP(φ ∧ ψ) = ModP(φ)∩ModP(ψ)
and ModP(φ ∨ ψ) = ModP(φ) ∪ModP(ψ).

5. This follows directly from property 3.) of Proposition 2.1 on page 20.

6. If φ |=P ψ then ModP(φ) ⊆ ModP(ψ) and therefore {ω ∈ Ω(At) |
ω |=P φ} ⊆ {ω ∈ Ω(At) | ω |=P ψ}. It follows that

P(φ) = ∑
ω|=Pφ, ω∈Ω(At)

P(ω) ≤ ∑
ω|=Pψ, ω∈Ω(At)

P(ω) = P(ψ)

as P(ω) ≥ 0 for every ω ∈ Ω(At).

Proposition 2.3 (page 29). Let (ψ | φ)[d] and (ψ′ | φ′)[d′] be some probabilistic
conditionals. It holds that (ψ | φ)[d] ≡pr (ψ′ | φ′)[d′] if and only if either

1. φ ≡P φ′ and ψ ∧ φ ≡P ψ′ ∧ φ′ and d = d′ or

proofs of technical results 227

2. φ ≡P φ′ and ψ ∧ φ ≡P ψ′ ∧ φ′ and d = 1− d′ or

3. both (ψ | φ)[d] and (ψ′ | φ′)[d′] are not self-consistent or

4. both (ψ | φ)[d] and (ψ′ | φ′)[d′] are tautological.

Proof. We have to show both directions. First, let it hold that φ ≡P φ′,
ψ ∧ φ ≡P ψ′ ∧ φ′, and d = d′. Then it holds that

P |=pr (ψ | φ)[d] iff P(ψ ∧ φ) = d · P(φ)
iff P(ψ′ ∧ φ′) = d′ · P(φ′)
iff P |=pr (ψ′ | φ′)[d′]

for every probability function P. It follows (ψ | φ)[d] ≡pr (ψ′ | φ′)[d′]. A sim-
ilar reasoning applies for the case of φ ≡P φ′ and ψ ≡P ψ′ and d = 1− d′.
If both (ψ | φ)[d] and (ψ′ | φ′)[d′] are not self-consistent or are tautological
then the condition of equivalence is trivially satisfied. For the other direc-
tion, let it be the case that (ψ | φ)[d] ≡pr (ψ′ | φ′)[d′] and assume that 1.), 2.),
3.), and 4.) are false. We abbreviate

M12 =def ModP(φ ∧ ψ) M1 =def ModP(φ)

M′12 =def ModP(φ′ ∧ ψ′) M′1 =def ModP(φ′)

Note that it holds that M12 ⊆ M1 and M′12 ⊆ M′1. As 4.) is assumed to
be false, not both (ψ | φ)[d] and (ψ′ | φ′)[d′] are tautological. Without loss
of generality, assume that (ψ | φ)[d] is tautological but (ψ′ | φ′)[d′] is not. In
this case there is a P with P |=pr (ψ | φ)[d] but P 6|=pr (ψ′ | φ′)[d′], so it
cannot be the case that (ψ | φ)[d] ≡pr (ψ′ | φ′)[d′] contradicting the premise.
It follows that both (ψ | φ)[d] and (ψ′ | φ′)[d′] are not tautological. With a
similar argumentation it follows that both (ψ | φ)[d] and (ψ′ | φ′)[d′] are self-
consistent. It follows that M12 6= M1 and M′12 6= M′1 as e. g. for (ψ | φ)[d]
with M12 = M1 it follows that φ ≡P φ ∧ ψ and consecutively φ |=P ψ which
means that (ψ | φ)[d] is tautological for d = 1 and not self-consistent for
d ∈ (0, 1] contradicting the previous observation. Consider the following
case differentiation:

1. M1 ∩M′1 = ∅ :
Define P1 : Ω(At)→ [0, 1] as follows

P1(ωI) =def
d
3
· 1
|M12|

for I ∈ M12

P1(ωI) =def
1− d

3
1

|M1 \M12|
for I ∈ M1 \M12

P1(ωI) =def 0 for I ∈ M′1 \M′12

P1(ωI) =def
2
3

1
|M′12|

for I ∈ M′12

P1(ωI) =def 0 otherwise

228 proofs of technical results

Furthermore, define P2 : Ω(At)→ [0, 1] as follows

P2(ωI) =def P1(ωI) for I ∈ M1

P2(ωI) =def
2
3

1
|M′1|

for I ∈ M′1

P2(ωI) =def 0 otherwise

Then P1 is a probability function as

∑
ω∈Ω(At)

P1(ω) = |M12| ·
d
3
· 1
|M12|

+

|M1 \M12| ·
1− d

3
1

|M1 \M12|
+

|M′12| ·
2
3

1
|M′12|

= 1

and it holds that

P1(ψ | φ) =
P1(φ ∧ ψ)

P1(φ)

=
|M12| · d

3 ·
1
|M12|

|M12| · d
3 ·

1
|M12|

+ |M1 \M12| · 1−d
3

1
|M1\M12|

= d

and

P1(ψ
′ | φ′) = P1(φ

′ ∧ ψ′)

P1(φ′)
= 1 .

Furthermore, P2 is a probability function as

∑
ω∈Ω(At)

P2(ω) = |M12| ·
d
3
· 1
|M12|

+

|M1 \M12| ·
1− d

3
1

|M1 \M12|
+

|M′1| ·
2
3

1
|M′1|

= 1

and it holds that P2(ψ | φ) = d and

P2(ψ
′ | φ′) = P2(φ

′ ∧ ψ′)

P2(φ′
=

∑I∈M12
P(ωI)

∑I∈M1
P(ωI)

=
|M12| · 1

|M′1|

|M1| · 1
|M′1|

< 1

proofs of technical results 229

as |M′1| > |M′12| due to M′1 6= M′12 and M′12 ⊆ M′1. It follows that
both P1 and P2 satisfy (ψ | φ)[d] but at least one of P1 and P2 cannot
satisfy (ψ′ | φ′)[d′]. Therefore (ψ | φ)[d] 6≡pr (ψ′ | φ′)[d′] contradicting
the premise.

2. M1 ∩M′1 6= ∅, M1 6⊆ M′1, M′1 6⊆ M1, M12 6⊆ M′1, and M′12 6⊆ M1 :
We abbreviate L =def M1 ∩M′1. Define P1 : Ω(At)→ [0, 1] as follows

P1(ωI) =def
d
3
· 1
|M12 \ L| for I ∈ M12 \ L

P1(ωI) =def
1− d

3
· 1
|(M1 \M12) \ L| for I ∈ (M1 \M12) \ L

P1(ωI) =def
2
3
· 1
|M′12 \ L| for I ∈ M′12 \ L

P1(ωI) =def 0 otherwise

Furthermore, define P2 : Ω(At)→ [0, 1] as follows

P2(ωI) =def
d
3
· 1
|M12 \ L| for I ∈ M12 \ L

P2(ωI) =def
1− d

3
· 1
|(M1 \M12) \ L| for I ∈ (M1 \M12) \ L

P2(ωI) =def
2
3
· 1
|(M′1 \M′12) \ L| for I ∈ (M′1 \M′12) \ L

P2(ωI) =def 0 otherwise

Note that all sets M12 \ L, (M1 \M12) \ L, M′12 \ L, (M′1 \M′12) \ L are
non-empty due to the above assumptions. Then P1 is a probability
function as

∑
ω∈Ω(At)

P1(ω)

= |M12 \ L| · d
3
· 1
|M12 \ L|+

|(M1 \M12) \ L| · 1− d
3
· 1
|(M1 \M12) \ L|+

|(M′1 \M′12) \ L| · 2
3
· 1
|(M′1 \M′12) \ L|

= 1

and as in the previous case it holds that P1(ψ | φ) = d and P1(ψ
′ | φ′) =

1. Furthermore, with a similar argumentation P2 is a probability
function and it holds that P2(ψ | φ) = d and P2(ψ

′ | φ′) < 1. It
follows that both P1 and P2 satisfy (ψ | φ)[d] but at least one of P1
and P2 cannot satisfy (ψ′ | φ′)[d′]. Therefore (ψ | φ)[d] 6≡pr (ψ′ | φ′)[d′]
contradicting the premise.

230 proofs of technical results

For the remaining cases with M1 ∩ M′1 6= ∅ similar constructions for P1
and P2 can be given which all result in a contradiction to the premises. This
means that either 1.), 2.), 3.), or 4.) must be true.

Lemma 3.1 (page 49). Let R be a knowledge base and let r be a probabilistic
conditional with r /∈ R. If At({r}) ∩ At(R) = ∅ then r is a free conditional in
R∪ {r}.

Proof. Assume that r is not a free conditional in R ∪ {r}. Then there is
a set M ∈ MI(R) with r ∈ M. As M\ {r} is consistent and At(M\
{r})∩At({r}) = ∅ let P1 be a probability function on L(At \At({r})) with
P1 |=pr M\ {r}. As r is self-consistent let P2 be a probability function on
L(At({r})) with P2 |=pr r. Let ω ∈ Ω(At) and define ωA with A ⊆ At to
be the projection of ω on A, i. e. ωA =def

∧{l ∈ Lit(A) | ω |=P l}. Define a
probability function P on L(At) via

P(ω) =def P1

(
ωAt\At({r})

)
· P2

(
ωAt({r})

)
.

Note that f : Ω(At)→ Ω(At \At({r}))×Ω(At({r})) with

f (ω) =def

(
ωAt\At({r}), ωAt({r})

)
is a bijection. It follows that P is indeed a probability function as

∑
ω∈Ω(At)

P(ω) = ∑
ω∈Ω(At)

P1

(
ωAt\At({r})

)
· P2

(
ωAt({r})

)
= ∑

(ω1,ω2)∈Ω(At\At({r}))×Ω(At({r}))
P1(ω1)P2(ω2)

= ∑
ω1∈Ω(At\At({r}))

∑
ω2∈Ω(At({r}))

P1(ω1)P2(ω2)

= ∑
ω1∈Ω(At\At({r}))

P1(ω1) · ∑
ω2∈Ω(At({r}))

P2(ω2)


= 1

Furthermore, for ω ∈ Ω(At \At({r})) it holds that

P(ω) = ∑
ω′∈Ω(At({r}))

P(ω ∧ω′)

= ∑
ω′∈Ω(At({r}))

P1(ω)P2(ω
′)

= P1(ω) ∑
ω′∈Ω(At({r}))

P2(ω
′)

= P1(ω)

proofs of technical results 231

and similarly P(ω′) = P2(ω
′). It follows that P |=pr M\ {r} and P |=pr r

contradicting the assumption thatM is a minimal inconsistent subset.

Proposition 3.9 (page 53). The function Incd satisfies (Consistency), (Irrelevance
of Syntax), (Monotonicity), (Weak Independence), (Independence), and (Normal-
ization).

Proof. We only show that Incd satisfies (Consistency), (Irrelevance of Syn-
tax), (Monotonicity), (Independence), and (Normalization) as (Weak Inde-
pendence) follows from (Independence) due to Proposition 3.6 on page 49.

(Consistency) A knowledge base R is consistent if and only if Incd(R) = 0
by definition.

(Irrelevance of Syntax) From R1 ≡cond R2 follows R1 ≡kb R2 by Proposi-
tion 2.5 on page 30. Therefore, R1 is inconsistent if and only if R2 is
inconsistent. It follows Incd(R1) = Incd(R2).

(Monotonicity) If R is inconsistent so is any superset of R. It follows
Incd(R) = 1 = Incd(R∪ {r}). If R is consistent then Incd(R∪ {r}) ≥
0 by definition.

(Independence) If R is consistent and r is a free conditional in R ∪ {r}
then R ∪ {r} is consistent due to Proposition 3.3 on page 48 and
Incd(R∪ {r}) = 0 = Incd(R). If R is inconsistent so is any superset
of R and hence Incd(R∪ {r}) = 1 = Incd(R).

(Normalization) For every R it holds that either Incd(R) = 0 or Incd(R) =
1 and therefore Incd(R) ∈ [0, 1].

Proposition 3.11 (page 54). The function IncMI satisfies (Consistency), (Mono-
tonicity), (Super-Additivity), (Weak Independence), (Independence), (MinInc sep-
arability), and (Penalty).

Proof. We only show that IncMI satisfies (Consistency), (Super-Additi-
vity), (MinInc Separability), and (Penalty), as (Monotonicity) follows from
(Super-Additivity) due to Proposition 3.2 on page 47, (Weak Independence)
follows from (Independence) due to Proposition 3.6 on page 49, and (In-
dependence) follows from (MinInc Separability) due to Proposition 3.7 on
page 50.

(Consistency) If R is consistent it follows that MI(R) = ∅ and therefore
IncMI(R) = 0. If R is inconsistent then MI(R) 6= ∅ and IncMI(R) > 0.

(Super-Additivity) Let R ∩R′ = ∅. Due to Proposition 3.5 on page 49 it
holds that MI(R) ⊆ MI(R ∪ R′) and MI(R′) ⊆ MI(R ∪ R′). Due
to R ∩ R′ = ∅ it follows that MI(R) ∩MI(R′) = ∅ and therefore
IncMI(R ∪ R′) = |MI(R ∪ R′)| ≥ |MI(R) ∪MI(R′)| = |MI(R)| +
|MI(R′)| = IncMI(R′) + IncMI(R′).

232 proofs of technical results

(MinInc Separability) Let R1,R2 be knowledge bases with MI(R1 ∪
R2) = MI(R1) ∪ MI(R2) and MI(R1) ∩ MI(R2) = ∅. It
follows directly that IncMI(R1 ∪ R2) = |MI(R1 ∪ R2)| =
|MI(R1)|+ |MI(R2)| = IncMI(R1) + IncMI(R2).

(Penalty) Let r /∈ R be a conditional that is not free in R ∪ {r}. By the
facts that MI(R) ⊆ MI(R∪ {r}) and that there is aM ∈ MI(R∪ {r})
with r ∈ M it follows that |MI(R)| < |MI(R ∪ {r})| and therefore
IncMI(R) < IncMI(R∪ {r}).

Proposition 3.12 (page 55). The function IncMI
0 satisfies (Consistency) and (Nor-

malization).

Proof.

(Consistency) It holds that IncMI
0 (R) = 0 for consistent R by Proposi-

tion 3.11 on page 54. It holds that IncMI
0 (R) > 0 for inconsistent

R by Proposition 3.11 on page 54 and the fact that γR 6= 0 because R
is inconsistent and therefore non-empty.

(Normalization) For empty R it follows IncMI
0 (R) = 0. By Proposition 3.1

on page 55 it follows for non-empty R that

IncMI
0 (R) = IncMI(R)

γR
≤ γR

γR
= 1 .

Proposition 3.13 (page 57). The function IncMI
C satisfies (Consistency), (Mono-

tonicity), (Super-Additivity), (Weak Independence), (Independence), (MinInc Sep-
arability), and (Penalty).

Proof. We only show that IncMI
C satisfies (Consistency), (Super-Additi-

vity), (MinInc Separability), and (Penalty) as (Monotonicity) follows from
(Super-Additivity) due to Proposition 3.2 on page 47, (Weak Independence)
follows from (Independence) due to Proposition 3.6 on page 49, and (In-
dependence) follows from (MinInc Separability) due to Proposition 3.7 on
page 50.

(Consistency) If R is consistent it follows that MI(R) = ∅ and therefore
IncMI

C (R) = 0 (the empty sum). If R is inconsistent then MI(R) 6= ∅
withM ∈ MI(R) and |M| > 0. It follows that IncMI

C (R) > 0.

(Super-Additivity) Let R ∩R′ = ∅. Due to Proposition 3.5 on page 49 it
holds that MI(R) ⊆ MI(R∪R′) and MI(R′) ⊆ MI(R∪R′). Due to
R∩R′ = ∅ it follows that MI(R) ∩MI(R′) = ∅ and therefore

IncMI
C (R∪R′) = ∑

M∈MI(R∪R′)

1
|M|

proofs of technical results 233

≥ ∑
M∈MI(R)

1
|M| + ∑

M∈MI(R′)

1
|M|

= IncMI
C (R) + IncMI

C (R′) .

(MinInc Separability) Let R1,R2 be knowledge bases with MI(R1 ∪
R2) = MI(R1) ∪MI(R2) and MI(R1) ∩MI(R2) = ∅. It follows
directly that

IncMI
C (R1 ∪R2) = ∑

M∈MI(R1∪R2)

1
|M|

= ∑
M∈MI(R1)

1
|M| + ∑

M∈MI(R2)

1
|M|

= IncMI
C (R1) + IncMI

C (R2) .

(Penalty) Let r /∈ R be a conditional that is not free in R ∪ {r}. By the
facts that MI(R) ⊆ MI(R∪ {r}) and that there is aM ∈ MI(R∪ {r})
with r ∈ M it follows that |MI(R)| < |MI(R ∪ {r})| and therefore
IncMI

C (R) < IncMI
C (R∪ {r}).

Proposition 3.15 (page 58). The function IncMI
C,0 satisfies (Consistency) and (Nor-

malization).

Proof.

(Consistency) It holds that IncMI
C,0(R) = 0 for consistent R by Proposi-

tion 3.13 on page 57. It holds that IncMI
C,0(R) > 0 for inconsistent

R by Proposition 3.13 on page 57 and the fact that γR 6= 0 as R is
inconsistent and therefore non-empty.

(Normalization) For empty R it follows IncMI
C,0(R) = 0. By Proposition 3.14

on page 58 it follows for non-empty R that

IncMI
C,0(R) = 2

IncMI
C,0(R)
γR

≤ 2
γR

2γR
= 1 .

Theorem 3.1 (page 65). Inc∗ satisfies (Consistency), (Monotonicity), (Super-
Additivity), (Weak Independence), (Independence), and (Continuity).

Proof. We only show that Inc∗ satisfies (Consistency), (Super-Additivity),
(Independence), and (Continuity) as (Monotonicity) follows from (Super-
Additivity) due to Proposition 3.2 on page 47 and (Weak Independence)
follows from (Independence) due to Proposition 3.6 on page 49.

(Consistency) If R with 〈R〉 = ((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn]) is consistent
so is ΛR(d1, . . . , dn) and therefore Inc∗(R) = 0.

234 proofs of technical results

(Super-Additivity) Let R1 with 〈R1〉 = (r1, . . . , rn) and R2 with 〈R2〉 =
(rn+1, . . . , rm) be two knowledge bases with ri =def (ψi | φi)[di] for
i = 1, . . . , m, R1 ∩ R2 = ∅ and let R =def R1 ∪ R2 with 〈R〉 =
(r1, . . . , rm). Let x1, . . . , xm ∈ [0, 1] such that ΛR(x1, . . . , xm) is con-
sistent and Inc∗(R) = |d1 − x1| + . . . + |dm − xm|. As the knowl-
edge base ΛR(x1, . . . , xm) is consistent so is any subset of ΛR(x1, . . . ,
xm), in particular ΛR1(x1, . . . , xn) and ΛR2(xn+1, . . . , xm) are con-
sistent. It follows that Inc∗(R1) ≤ |d1 − x1| + . . . + |dn − xn| and
Inc∗(R2) ≤ |dn+1 − xn+1|+ . . . + |dm − xm| and therefore Inc∗(R) ≥
Inc∗(R1) + Inc∗(R2).

(Independence) Before proving (Independence) we first show that from
bothR∪{(ψ | φ)[d1]} andR∪{(ψ | φ)[d2]} being consistent for some
knowledge base R and d1 ≤ d2 it follows that R ∪ {(ψ | φ)[y]} is
consistent for every y ∈ [0, 1] that satisfies d1 ≤ y ≤ d2. So let R
be some consistent knowledge base and (ψ | φ)[d1] be a probabilistic
conditional such that both R∪ {(ψ | φ)[d1]} and R∪ {(ψ | φ)[d2]} are
consistent with d1 ≤ d2. Let P1 |=◦ R ∪ {(ψ | φ)[d1]} and let P2 |=◦
R∪ {(ψ | φ)[d2]}. If P1(φ) = 0 then clearly P1 |=◦ R∪ {(ψ | φ)[y]} for
every y ∈ [0, 1] due to our definition of probabilistic satisfaction. If
P2(φ) = 0 then P2 |=◦ R∪ {(ψ | φ)[y]} for every y ∈ [0, 1] accordingly.
So assume P1(φ) > 0 and P2(φ) > 0. Let δ ∈ [0, 1] and consider the
probability function Pδ defined via Pδ(ω) = δP1(ω) + (1− δ)P2(ω)
for all ω ∈ Ω(At). Then Pδ |=◦ R for all δ ∈ [0, 1] as the set of models
of a knowledge base is a convex set, cf. (Paris, 1994). Furthermore,
note that Pδ(φ) > 0 for every δ ∈ [0, 1] as both P1(φ) > 0 and
P2(φ) > 0. Then Pδ(ψ | φ) is continuous in δ and for every y ∈ [d1, d2]
there is a δy ∈ [0, 1] such that Pδy(ψ | φ) = y. It follows that Pδy |=◦
R ∪ {(ψ | φ)[y]} for every y ∈ [d1, d2] and therefore R ∪ {(ψ | φ)[y]}
is consistent for every y ∈ [d1, d2].

Let nowRwith 〈R〉 = (r1, . . . , rn) and ri = (ψi | φi)[di] for i = 1, . . . , n
be a knowledge base and let r = (ψ | φ)[d] be free in R∪{r}. Assume
that R is also a minimal inconsistent set, i. e. MI(R) = {R}. Let
Inc∗(R) = x and let (x1, . . . , xn) ∈ [0, 1]n be such that ΛR(x1, . . . , xn)
is consistent and |d1− x1|+ . . .+ |dn− xn| = x. Consider nowR′ with
〈R〉 = ((ψ1 | φ1)[d1], . . . , (ψn | φn)[dn], (ψ | φ)[d]). It suffices to show
that ΛR′(x1, . . . , xn, d) is consistent. Define Cj = R\ {(ψj | φj)[dj]} for
every j = 1, . . . , n. Then both Cj and Cj ∪ {r} are consistent. Let dj
be such that there is a P with P |=◦ Cj ∪ {r}, P |=◦ (ψj | φj)[d′j] and
|dj− d′j| is minimal. It follows that |dj− d′j| ≥ x (otherwise this would
contradict Inc∗(R) = x). Assume w.l.o.g. d′j > dj. As {r, rj} is con-
sistent as well (as r is free) it follows that {r, (ψj | φj)[y] is consistent
for every y ∈ [dj, d′j] due to our elaboration above. As |dj − xj| ≤ x
it follows xj ∈ [dj, d′j] as well (or xj ∈ [d′j, dj] if dj > d′j). Hence,
{r, (ψj | φj)[xj]} is consistent for every j = 1, . . . , n. As ΛR(x1, . . . , xn)

proofs of technical results 235

is consistent and r is consistent with every combination of condition-
als in ΛR(x1, . . . , xn) it follows that ΛR′(x1, . . . , xn, d) is consistent.
The above can be generalized if R contains multiple minimal incon-
sistent subsets by iteratively considering each minimal inconsistent
subset of R.

(Continuity) Let r = (ψ | φ)[d] be a self-consistent and non-tautological
probabilistic conditional and consider πr : [0, 1] × R|Ω(At)| → [0, 1]
that maps a value x ∈ [0, 1] and a point p ∈ R|Ω(At)| to the Euclidean
distance, i. e. the 2-norm distance, from p to H(ψ | φ)[x]. Hence, πr is
defined via πr(x, p) = d(p, H(ψ | φ)[x]) if d(·, ·) is the 2-norm distance.
We show now that πr is continuous with respect to the standard
topology. Let {ω1, . . . , ωm} = Ω(At) be the set of possible worlds.
Then H(ψ | φ)[x] is the set of points (α1, . . . , αm) that satisfy

m

∑
i=1, ωi∈ModP(ψφ)

(1− x)αi −
m

∑
i=1, ωi∈ModP(ψiφi)

xαi = 0 , (3.1)

see also Equation (3.2) on page 45. By reordering the elements of
Ω(At) we can write Equation (3.1) as

(1− x)α1 + . . . + (1− x)αk1 − xαk1+1 − . . .− xαk2 = 0

for some k1, k2 ∈ N with k1 ≤ k2 ≤ m. Then the Euclidean dis-
tance d(p, H(ψ | φ)[x]) from a point p = (p1, . . . , pm) to the hyperplane
H(ψ | φ)[x] can be computed via

d(p, H(ψ | φ)[x]) =

(1− x)p1 + . . . + (1− x)pk1 − xpk1+1 − . . .− xpk2√
k1(1− x)2 + (k2 − k1)x2

(3.2)

where
√

k1(1− x)2 + (k2 − k1)x2 is the length of the normal vector

((1− x), . . . , (1− x)︸ ︷︷ ︸
k1 times

, x, . . . , x︸ ︷︷ ︸
k2−k1 times

, 0, . . . , 0︸ ︷︷ ︸
m−k2−k1 times

)

of H(ψ | φ)[x]. Note that the denominator of (3.2) is always greater than
zero as r is both self-consistent and non-tautological which amounts
to k1 > 0 and k2 − k1 > 0. As (3.2) is continuous with respect to
p1, . . . , pm and x it follows that πr(x, p) is continuous in both x and p.
Note also that the minimum function is continuous if its arguments
are continuous. Now consider θInc∗,R which can be characterized as

θInc∗,R(x1, . . . , xn) =

min{πr(x1, p) + . . . + πr(xn, p) | p ∈ R|Ω(At)| ∩ H0} .

236 proofs of technical results

It follows that θInc∗,R is continuous.

Proposition 3.21 (page 66). The function Inc∗0 satisfies (Consistency), (Continu-
ity), and (Normalization).

Proof.

(Consistency) If R = ∅ then R is trivially consistent and Inc∗0(R) = 0. Fur-
thermore, it holds that R 6= ∅ is consistent if and only if Inc∗0(R) = 0
as Inc∗(R) satisfies (Consistency).

(Continuity) For R 6= ∅ the function θInc∗0 ,R is continuous as θInc∗,R is
continuous. For R = ∅ the constant function 0 is trivially continuous.

(Normalization) This follows directly from Proposition 3.20 on page 66.

Theorem 3.2 (page 81). The function Incgd satisfies (Consistency), (Monotonic-
ity), (Super-Additivity), (Weak Independence), (Independence), and (Continuity).

Proof. We only give the proofs for (Consistency) and (Super-Additivity)
to show the similarity to the corresponding proofs of Inc∗. The remaining
proofs are also similar to the ones of Inc∗.

(Consistency) Let R with 〈R〉 = (r1, . . . , rn) and ri =def (ψi | φi)[di] for i =
1, . . . , n. For consistent R there is a probability function P with P |=pr

R. It follows that for each i = 1, . . . , n it holds that (1− di)P(ψiφi) =
diP(ψiφi). Therefore setting, yi = zi = (1 − di)P(ψiφi) fulfills the
constraints yi = (1− di)P(ψiφi) and zi = diP(ψiφi) for i = 1, . . . , n,
and it also holds that D2(~y,~z) = 0. This amounts to Incgd(R) = 0.
If R is inconsistent then for all P ∈ PP(At) there is a j ∈ {1, . . . , n}
such that (1− dj)P(ψiφj) 6= djP(ψjφj) which amounts to yj 6= zj. As
D2(~y,~z) > 0 if yj 6= zj for some j, it follows Incgd(R) > 0.

(Super-Additivity) Let R1 with 〈R1〉 = (r1, . . . , rn) and R2 with
〈R2〉 = (rn+1, . . . , rm) be two knowledge bases with ri = (ψi | φi)[di]
for i = 1, . . . , m, R1 ∩ R2 = ∅ and let R =def R1 ∪ R2 with
〈R〉 = (r1, . . . , rm). Let ~y,~z ∈ (0, 1]m be such that

Incgd(R) = D2(~y,~z) (3.3)

and there is a P∗ that such yi = (1− di)P∗(ψiφi) and zi = diP∗(ψiφi).
Let ~yk,l denote the restriction of the vector ~y to the coordinates k to l
with k ≤ l. Observe that it holds that

D2(~y,~z) = D2(~y1,n,~z1,n) + D2(~yn+1,m,~yn+1,m) (3.4)

proofs of technical results 237

and D2(~y1,n,~z1,n) is a valid element of the set in (3.31) on page 81

with respect to P and R1, and same applies for D2(~yn+1,m,~yn+1,m)
with respect to P and R2. It follows

D2(~y1,n,~z1,n) ≥ Incgd(R1)

D2(~yn+1,m,~yn+1,m) ≥ Incgd(R2)

and together with (3.3) and (3.4) it follows Incgd(R) ≥ Incgd(R1) +
Incgd(R2).

Theorem 4.2 (page 111). ΥU satisfies (Existence), (Uniqueness), (Structural
Preservation), (Success), (Irrelevance of Syntax), (Consistency), (Rational Non-
Imposition), and (Continuity).

Proof.

(Existence) This is clear as undef /∈ Dom ΥU and ΞU
R is well-defined as

ucp(ψ | φ) is well-defined.

(Uniqueness) This is clear due to the functional definition of ΥU and Re-
mark 4.1 on page 109.

(Structural Preservation) This follows directly from Definition 4.8 on
page 109.

(Success) This follows from the fact that ΞU
R(1) is guaranteed to be consis-

tent, see Proposition 3.17 on page 60.

(Irrelevance of Syntax) Let R1,R2 be knowledge bases with R1 ≡cond R2.
First, we show that

ΞU
R1

(δ) ≡cond ΞU
R2

(δ)

for every δ ∈ [0, 1]. Let r1 ∈ R1 with r1 = (ψ | φ)[d] and r2 ∈ R2
with r2 = (ψ′ | φ′)[d′] such that r1 ≡pr r2. Let u1 =def ucp(ψ | φ) and
u2 =def ucp(ψ

′ | φ′). Consider the following case differentiation.

1. If r1 is tautological so is r2 by Proposition 2.3 on page 29). It
follows u1 = d and u2 = d′ and therefore ΞU

{r1}
(δ) ≡cond ΞU

{r2}
(δ)

for every δ ∈ [0, 1] as both r1 and r2 are not modified during
creeping.

2. Assume that r1 is not tautological. As r1 is also self-consistent
it follows that r2 has the form 1.) or 2.) in Proposition 2.3 on
page 29. Without loss of generality assume it holds that φ ≡P φ′

and ψ ∧ φ ≡P ψ′ ∧ φ′ and d = d′. It also follows u1 = u2 as
(ψ | φ) has the same probability in P0 as the equivalent (ψ′ | φ′).
It follows that ΞU

{r1}
(δ) ≡cond ΞU

{r2}
(δ) for every δ ∈ [0, 1] as

r′1 ∈ ΞU
{r1}

(δ) has the form r′1 = (ψ | φ)[d′′] and r′2 ∈ ΞU
{r2}

(δ) has

238 proofs of technical results

the form r′1 = (ψ′ | φ′)[d′′′] with d′′ = d′′′ and r′1 ≡pr r′2 (note
that due to d = d′ and u1 = u2 the creeping keeps the identical
probabilities intact)1.

By applying the above observation to all probabilistic conditionals in
R1 and R2 it follows that ΞU

R1
(δ) ≡cond ΞU

R2
(δ) for every δ ∈ [0, 1].

Assume that ΥU(R1) 6≡cond ΥU(R2). Let δ∗1 and δ∗2 be minimal such
that ΞU

R1
(δ∗1) and ΞU

R2
(δ∗2) is consistent, respectively. It follows that

δ∗1 6= δ∗2 and, without loss of generality, δ1 < δ2 and ΞU
R2

(δ∗1) is
inconsistent. But it also holds that ΞU

R1
(δ∗1) ≡cond ΞU

R2
(δ∗1) and by

Proposition 2.5 on page 30 also ΞU
R1

(δ∗1) ≡kb ΞU
R2

(δ∗1). Therefore,
every model of ΞU

R1
(δ∗1) is also a model of ΞU

R2
(δ∗1) and as ΞU

R1
(δ∗1) is

consistent so is ΞU
R2

(δ∗1) contradicting ΥU(R1) 6≡cond ΥU(R2).

(Consistency) Let R be consistent. Then ΞU
R(0) = R is consistent and

ΥU(R) = R.

(Rational Non-Imposition) This follows from Proposition 4.5 on page 105

and the fact that ΥU satisfies (Existence), (Success), and (Consistency).

(Continuity) Let R with 〈R〉 = (r1, . . . , rn) and ri = (ψi | φi)[di] for i =
1, . . . , n. We abbreviate

Λ†
R(d1, . . . , dn, δ) =def ΛR((1− δ)d1 + δucp(ψ1 | φ1), . . . ,

(1− δ)dn + δucp(ψn | φn)) .

As (1− δ)x + δt is continuous for fixed t and variables x and δ, so is
Inc∗ ◦Λ†

R(d1, . . . , dn, δ) with respect to d1, . . . , dn, δ. As Inc∗(R) = 0 if
and only if R is consistent it follows that

δ(d1, . . . , dn) =def min{δ ∈ [0, 1] | Λ†
R(d1, . . . , dn, δ) is consistent}

is continuous as well and as it holds that

ΥU(R) = Λ†
R(d1, . . . , dn, δ(d1, . . . , dn))

so is ςΥU

R continuous.

Theorem 4.3 (page 113). The function ΥP satisfies (Uniqueness), (Structural
Preservation), (Success), (Consistency), and (Non-Dictatorship).

Proof.

(Uniqueness) This is clear due to the functional definition of ΥP.

1 For the case that φ ≡P φ′ and ψ ∧ φ ≡P ψ′ ∧ φ′ and d = 1− d′ it follows u1 = 1− u2 and
accordingly d′′ = 1− d′′′

proofs of technical results 239

(Structural Preservation) This follows directly from the definition of ΥP, cf.
Definition 4.10 on page 112.

(Success) If ΥP(R) 6= undef then {δ ∈ [0, 1] | ΞP
R(δ) is consistent} 6= ∅ and

ΥP(R) is consistent.

(Consistency) Let R be consistent. Then ΞP
R(0) = ΛR(d1, . . . , dn) = R is

consistent and ΥP(R) = R.

(Non-Dictatorship) Let (ψ | φ)[d] be a non-tautological probabilistic
conditional and consider R =def {(ψ | φ)[d], (ψ | φ)[d′]} with some
d′ ∈ [0, 1] and d 6= d′. Then R is obviously inconsistent and
α = ((d′ − d)/2, (d− d′)/2) and α̂ = (1,−1) or α̂ = (−1, 1). It follows that
ΥP(R) = {(ψ | φ)[(d + d′)/2]} and (ψ | φ)[d] is not dictatorial in R.

Theorem 4.4 (page 114). If Conjectures 4.1 and 4.2 are true then ΥP satisfies (Ex-
istence), (Uniqueness), (Structural Preservation), (Success), (Consistency), (Ra-
tional Non-Imposition), (Continuity), (Non-Dictatorship), (AR-Conformity), and
(Inverse AR-Conformity).

Proof. Due to Theorem 4.3 on page 113 the function ΥP satisfies (Unique-
ness), (Structural Preservation), (Success),(Consistency), and (Non-Dictator-
ship). By Conjectures 4.1 on page 112 and 4.2 on page 114 the function ΥP

satisfies (Existence), (AR-conformity), and (Inverse AR-Conformity). Then
ΥP also satisfies (Rational Non-Imposition) by Proposition 4.5 on page 105.
As undef /∈ Im ΥP

R due to (Existence) it follows that ΥP also satisfies (Con-
tinuity) with a similar argumentation as in the proof of Theorem 4.2 on
page 111 and the fact that AR satisfies (Continuity) due to Proposition 4.4
on page 99.

Theorem 4.5 (page 118). ΥS
C satisfies (Existence), (Uniqueness), (Structural

Preservation), (Success), (Consistency), and (Rational Non-Imposition).

Proof.

(Existence) This is clear as undef /∈ Dom ΥS
C and ΞS

R,C is well-defined as
ucp(ψ | φ) is well-defined.

(Uniqueness) This is clear due to the functional definition of ΥS
C.

(Structural Preservation) This follows directly from Definition 4.12 on
page 118.

(Success) This follows from the fact that ΞS
R,C(1) is guaranteed to be con-

sistent, see Proposition 3.17 on page 60.

(Consistency) Let R be consistent. Then ΞS
R,C(0) = R is consistent and

ΥP
C(R) = R.

240 proofs of technical results

(Rational Non-Imposition) This follows from Proposition 4.5 on page 105

and the fact that ΥS
C satisfies (Existence), (Success), and (Consistency).

Theorem 4.6 (page 121). Let C satisfy (Inc∗-symmetry). Then ΥB
C satisfies

(Uniqueness), (Structural Preservation), (Success), (Consistency), (C-Conformity),
(Inverse C-Conformity), and (Non-Dictatorship).

Proof.

(Uniqueness) This is clear due to the functional definition of ΥB
C, cf. Defi-

nition 4.14 on page 120. If a unique solution for minimizing f B
C with

respect to OPTB
C exists then uniqueness of ΥB

C(R) is clear. Otherwise
ΥB

C(R) = undef is also uniquely determined.

(Structural Preservation) This follows directly from the definition of ΥB
C, cf.

Definition 4.14 on page 120.

(Success) If ΥB
C(R) 6= undef then ΥB

C(R) is consistent by definition.

(Consistency) Let R be consistent. Then CR(r) = 0 for every r ∈ R and
ΥB

C(R) = R is the unique single adjustment.

(Non-Dictatorship) Let (ψ | φ)[d] be a non-tautological probabilistic condi-
tional and consider the knowledge base R = {(ψ | φ)[d], (ψ | φ)[d′]}
with some d′ ∈ [0, 1] and d 6= d′. Then R is obviously inconsistent
and Inc∗(R) = |d− d′| and CR((ψ | φ)[d]) = CR((ψ | φ)[d′]) as C satis-
fies (Inc∗-symmetry). It follows that ΥB

C(R) = {(ψ | φ)[(d + d′)/2]} and
(ψ | φ)[d] is not dictatorial in R.

(C-Conformity) This follows directly from the constraint (4.10) on page 120

which is included in CRDevCon(C,R).

(Inverse C-Conformity) This follows directly from the constraint (4.10) on
page 120 which is included in CRDevCon(C,R).

Lemma 5.1 (page 145). Let n > 1 be some positive integer and let α1, . . . , αn, β1,
. . . , βn ∈ (0, 1] with αi ≤ βi for all i = 1, . . . , n. Then∣∣∣∣∣

α1
β1

+ . . . + αn
βn

n
− α1 + . . . + αn

β1 + . . . + βn

∣∣∣∣∣ < n− 1
n

(5.5)

Proof. In order to comprehend the course of the proof we first show the
case n = 2. We have to show that

−1
2
<

α1
β1

+ α2
β2

2
− α1 + α2

β1 + β2
<

1
2

proofs of technical results 241

Consider first

α1
β1

+ α2
β2

2
− α1 + α2

β1 + β2
<

1
2

iff
α1

β1
+

α2

β2
− 2α1 + 2α2

β1 + β2
< 1

iff α1β1β2 + α1β2
2 + α2β2

1 + α2β1β2

−2α1β1β2 − 2α2β1β2 < β2
1β2 + β1β2

2

iff α1β1β2 + α2β1β2 + β2
1β2 + β1β2

2 − α1β2
2 − α2β2

1 > 0

iff α1β1β2 + α2β1β2 + β2
1(β2 − α2︸ ︷︷ ︸

x1

) + β2
2(β1 − α1︸ ︷︷ ︸

x2

) > 0

Due to α1 ≤ β1 and α2 ≤ β2 it follows x1, x2 ≥ 0. Due to the strict positivity
of all αi, βi (i = 1, . . . , n) the above inequality is satisfied. For the other
direction we assume the contrary. Consider

α1
β1

+ α2
β2

2
− α1 + α2

β1 + β2
≤ −1

2

iff α1β2
2 + α2β2

1 + β2
1β2 + β1β2

2 − α1β1β2 − α2β1β2 ≤ 0

Due to α1 ≤ β1 and α2 ≤ β2 it follows

α1β2
2 + α2β2

1 + β2
1β2 + β1β2

2 − β2
1β2 − β1β2

2 ≤ 0

iff α1β2
2 + α2β2

1 ≤ 0

which is a contradiction since α1, α2, β1, β2 > 0.

We continue with the general case n > 1. We have to show that

−n− 1
n

<
1
n

n

∑
j=1

αj

β j
−

∑n
j=1 αj

∑n
i=1 βi

<
n− 1

n
.

Consider first

n− 1
n
− 1

n

n

∑
j=1

αj

β j
+

∑n
j=1 αj

∑n
i=1 βi

> 0 (5.6)

iff (n− 1)−
n

∑
j=1

αj

β j
+

∑n
j=1 nαj

∑n
i=1 βi

> 0

iff (n− 1)
n

∏
k=1

βk

n

∑
i=1

βi −
n

∑
j=1

αj

n

∏
k=1,k 6=j

βk

n

∑
i=1

βi + ∑
j=1

nαj

n

∏
k=1

βk > 0

iff (n− 1)
n

∏
k=1

βk

n

∑
i=1

βi −
n

∑
j=1

[
αj

n

∏
k=1,k 6=j

βk

(
n

∑
i=1,i 6=j

βi + β j

)]
+

242 proofs of technical results

∑
j=1

nαj

n

∏
k=1

βk > 0

iff (n− 1)
n

∏
k=1

βk

n

∑
i=1

βi −
n

∑
j=1

[
αj

n

∏
k=1,i 6=j

βk

n

∑
i=1,i 6=j

βi + αj

n

∏
k=1

βk

]
+

n

∑
j=1

nαj

n

∏
k=1

βk > 0

iff (n− 1)
n

∏
k=1

βk

n

∑
i=1

βi −
n

∑
j=1

αj

n

∏
k=1,i 6=j

βk

n

∑
i=1,i 6=j

βi −
n

∑
j=1

αj

n

∏
k=1

βk+

n

∑
j=1

nαj

n

∏
k=1

βk > 0

iff (n− 1)
n

∏
k=1

βk

n

∑
i=1

βi −
n

∑
j=1

αj

n

∏
k=1,i 6=j

βk

n

∑
i=1,i 6=j

βi+

n

∑
j=1

(n− 1)αj

n

∏
k=1

βk︸ ︷︷ ︸
C

> 0

Observe that C > 0 as αi, βi > 0 for all i = 1, . . . , n, so it suffices to show

(n− 1)
n

∏
k=1

βk

n

∑
i=1

βi −
n

∑
j=1

αj

n

∏
k=1,i 6=j

βk

n

∑
i=1,i 6=j

βi ≥ 0

iff
n

∑
i=1

(n− 1)β2
i

n

∏
k=1,k 6=i

βk −
n

∑
j=1

αj

n

∏
k=1,k 6=j

βk

n

∑
i=1,i 6=j

βi ≥ 0

iff
n

∑
i=1

(n− 1)β2
i

n

∏
k=1,k 6=i

βk −
n

∑
j=1

n

∑
i=1,i 6=j

αjβ
2
i

n

∏
k=1,k 6=j,k 6=i

βk ≥ 0

iff
n

∑
j=1

(n− 1)β2
j

n

∏
k=1,k 6=j

βk −
n

∑
j=1

n

∑
i=1,i 6=j

αjβ
2
i

n

∏
k=1,k 6=j,k 6=i

βk ≥ 0

iff
n

∑
j=1

n

∑
i=1,i 6=j

β2
j

n

∏
k=1,k 6=j

βk −
n

∑
j=1

n

∑
i=1,i 6=j

αjβ
2
i

n

∏
k=1,k 6=j,k 6=i

βk ≥ 0

iff
n

∑
j=1

n

∑
i=1,i 6=j

[
β2

j

n

∏
k=1,k 6=j

βk − αjβ
2
i

n

∏
k=1,k 6=i,k 6=j

βk

]
≥ 0

iff
n

∑
j=1

n

∑
i=1,i 6=j

β2
j

n

∏
k=1,k 6=i,k 6=j

βk
[
β j − αj

]︸ ︷︷ ︸
D

≥ 0

proofs of technical results 243

As β j ≥ αj for every j = 1, . . . , n it follows D ≥ 0 and we have proven (5.6).
For the other direction we assume the contrary. Consider

n− 1
n

+
1
n

n

∑
j=1

αj

β j
−

∑n
j=1 αj

∑n
i=1 βi

≤ 0

iff (n− 1)
n

∏
k=1

βk

n

∑
i=1

βi +
n

∑
j=1

αj

n

∏
k=1,k 6=j

βk

n

∑
i=1

βi −
n

∑
j=1

nαj

n

∏
k=1

βk ≤ 0

iff (n− 1)
n

∏
k=1

βk

n

∑
i=1

βi +
n

∑
j=1

αj

n

∏
k=1,k 6=j

βk

n

∑
i=1,i 6=j

βi +
n

∑
j=1

αj

n

∏
k=1

βk

−
n

∑
j=1

nαj

n

∏
k=1

βk ≤ 0

iff (n− 1)
n

∏
k=1

βk

n

∑
i=1

βi +
n

∑
j=1

αj

n

∏
k=1,k 6=j

βk

n

∑
i=1,i 6=j

βi

− (n− 1)
n

∑
j=1

αj

n

∏
k=1

βk ≤ 0

Since β j ≥ αj for every j = 1, . . . , n it follows

(n− 1)
n

∏
k=1

βk

n

∑
i=1

βi +
n

∑
j=1

αj

n

∏
k=1,k 6=j

βk

n

∑
i=1,i 6=j

βi

− (n− 1)
n

∑
j=1

β j

n

∏
k=1

βk ≤ 0

iff
n

∑
j=1

αj

n

∏
k=1,k 6=j

βk

n

∑
i=1,i 6=j

βi ≤ 0

which is a contradiction since αi, βi > 0 for i = 1, . . . , n.

Proposition 6.2 (page 166). Let I satisfy (Prototypical Indifference). Let R be a
knowledge base and D finite with Const(R) ⊆ D ⊆ U and D 6= ∅.

1. Let φ, ψ be two ground sentences. For c1, c2 ∈ D with c1 ≡R c2 it holds
that I(R, D)(ψ | φ) = I(R, D)(ψ[c1 ↔ c2] | φ[c1 ↔ c2]).

2. Let S ∈ S(R), c1, . . . , cn ∈ S, and σ : S→ S be a permutation on S, i. e. a
bijective function on S. Then it holds that

I(R, D)(φ) = I(R, D)(φ[σ(c1)/c1, . . . , σ(cn)/cn]) .

Proof.

1. Because of (Prototypical Indifference) it holds that

I(R, D)(φ) = I(R, D)(φ[c1 ↔ c2]) and

244 proofs of technical results

I(R, D)(ψ ∧ φ) = I(R, D)((ψ ∧ φ)[c1 ↔ c2])

and hence

I(R, D)(ψ | φ) = I(R, D)(ψ ∧ φ)

I(R, D)(φ)

=
I(R, D)((ψ ∧ φ)[c1 ↔ c2])

I(R, D)(φ[c1 ↔ c2])

= I(R, D)(ψ[c1 ↔ c2] | φ[c1 ↔ c2])

due to (ψ ∧ φ)[xi/yi]i=1,...,n = ψ[xi/yi]i=1,...,n ∧ φ[xi/yi]i=1,...,n.

2. This follows from the fact that every permutation can be represented
as a product of transpositions (Beachy and Blair, 2005), i. e. permu-
tations that exactly transpose two elements. Let σ1, . . . , σm be such
transpositions of σ, i. e., it holds that σ = σm ◦ . . . ◦ σ1. Due to (Proto-
typical Indifference) it holds that

I(R, D)(φ) = I(R, D)(φ[σ1(c1)/c1, . . . , σ1(cn)/cn])

as σ1 transposes only two elements, i. e., it holds that there are distinct
i, j ∈ {1, . . . , n} with σ1(ci) = cj and σ1(cj) = ci and σ1(ck) = ck for
every k with k 6= i and k 6= j. Similarly, for each i = 2, . . . , m it holds
that

I(R, D)(φ[σ1(c1)/c1, . . . , σ1(cn)/cn] . . .

[σi−1(c1)/c1, . . . , σi−1(cn)/cn])

= I(R, D)(φ[σ1(c1)/c1, . . . , σ1(cn)/cn] . . .

[σi(c1)/c1, . . . , σi(cn)/cn]) .

Via transitivity it follows

I(R, D)(φ) = I(R, D)(φ[σ1(c1)/c1, . . . , σ1(cn)/cn] . . .

[σm(c1)/c1, . . . , σm(cn)/cn]) .

which is equivalent to the claim due to σ = σm ◦ . . . ◦ σ1.

Theorem 6.1 (page 170). I∅ satisfies (Reflexivity), (Left Logical Equivalence),
(Right Weakening), (Cumulativity), (Name Irrelevance), (Prototypical Indiffer-
ence), (ME-Compatibility), (Compensation), and (Strict Inference). If Conjec-
ture 6.1 is true then I∅ also satisfies (Convergence).

Proof.

(Reflexivity) If I∅(R, D) 6= undef it follows that I∅(R, D), D |=pr
∅ R by

definition and therefore I∅(R, D), D |=pr
∅ r for every r ∈ R.

proofs of technical results 245

(Left Logical Equivalence) LetR1 andR2 be knowledge bases withR1 ≡∅

R2. This means for all P and D that P, D |=pr
∅ R1 whenever P, D |=pr

∅
R2. Then I∅(R1, D) and I∅(R2, D) are defined on the same set of
probability functions in (6.15) on page 170 and therefore I∅(R1, D) =
I∅(R2, D).

(Right Weakening) Let R and D such that I∅(R, D), D |=pr
∅ (ψ | φ)[d] and

let (ψ | φ)[d] |=pr (ψ′ | φ′)[d′]. As I∅(R, D) satisfies (ψ | φ)[d] with
respect to D it also satisfies(ψ′ | φ′)[d′] with respect to D. Hence, it
follows I∅(R, D), D |=pr

∅ (ψ′ | φ′)[d′].

(Cumulativity) For every probability function P and set D it holds that
from P, D |=pr

∅ R ∪ {(ψ | φ)[d]} it follows that P, D |=pr
∅ R as R ⊆

R∪ {(ψ | φ)[d]}. It also holds that I∅(R, D), D |=pr
∅ R∪ {(ψ | φ)[d]}

as I∅(R, D), D |=pr
∅ (ψ | φ)[d] by assumption. Suppose it holds that

I∅(R∪ {(ψ | φ)[d]}, D) 6= I∅(R, D) then

HD(I∅(R∪ {(ψ | φ)[d]}, D)) > HD(I∅(R, D)) .

It follows that I∅(R∪ {(ψ | φ)[d]}, D) should be the ME-model of R
as well because I∅(R ∪ {(ψ | φ)[d]}, D), D |=pr

∅ R. Hence, I∅(R ∪
{(ψ | φ)[d]}, D) = I∅(R, D) and it follows that I∅(R, D), D |=pr

∅
(ψ′ | φ′)[d′] whenever I∅(R ∪ {(ψ | φ)[d]}, D), D |=pr

∅ (ψ′ | φ′)[d′] for
every (ψ′ | φ′)[d′].

(ME-Compatibility) LetR be a ground knowledge base. Due to Remark 5.1
on page 137 the operator |=pr

∅ is equivalent to |=pr in the propositional
case. Then Equation (6.15) on page 170 also becomes equivalent to the
propositional case. Hence, holds that ME(R′)(φ) = I∅(R, D)(φ) for
every ground sentence φ.

(Name Irrelevance Shore and Johnson showed in (Shore and Johnson, 1980)
that the principle of entropy is indifferent to syntactical variants and
coordinate transformations. As renaming a constant changes the rep-
resented knowledge only on a syntactical way we obtain the function
I∅(R[d/c], (D ∪ {d}) \ {c}) via

I∅(R[d/c], (D ∪ {d}) \ {c})(ω) =def I∅(R, D)(ω[d↔ c])

for all ω ∈ Ω(Σ).

(Prototypical Indifference) This follows by Proposition 6.1 on page 164.

(Compensation) Let R be a knowledge base and (ψ(~X) | φ(~X))[d] ∈ R a
non-ground probabilistic conditional with d ∈ (0, 1). Suppose

I∅(R, D)(ψ(~c) | φ(~c)) < d

for all (ψ(~c) | φ(~c))[d] ∈ gnd
I∅(R,D)
D ((ψ(~c) | φ(~c))). Then (for finite D)

it holds that

246 proofs of technical results

∑
(ψ(~c) | φ(~c))∈gndI∅(R,D)

D ((ψ(~X) | φ(~X)))
P(ψ(~c) | φ(~c))

|gndI∅(R,D)
D ((ψ(~X) | φ(~X)))|

<
d · |gndI∅(R,D)

D ((ψ(~X) | φ(~X)))|
|gndI∅(R,D)

D ((ψ(~X) | φ(~X)))|
= d

contradicting I∅(R, D), D |=pr
∅ R.

(Strict Inference) Let R be a knowledge base and (ψ(~X) | φ(~X))[d] ∈ R a
non-ground probabilistic conditional with d = 1 (the case of d = 0
can be shown analogously). Suppose

I∅(R, D)(ψ(~c) | φ(~c)) < 1

for some (ψ(~c) | φ(~c))[d] ∈ gnd
I∅(R,D)
D (I∅(R, D))(ψ(~c) | φ(~c)). Then

(for finite D) it holds that

∑
(ψ(~c) | φ(~c))∈gndI∅(R,D)

D ((ψ(~X) | φ(~X)))
P(ψ(~c) | φ(~c))

|gndI∅(R,D)
D ((ψ(~X) | φ(~X)))|

<
|gndI∅(R,D)

D ((ψ(~X) | φ(~X)))|
|gndI∅(R,D)

D ((ψ(~X) | φ(~X)))|
= 1

contradicting I∅(R, D), D |=pr
∅ R.

(Convergence) Assume that I∅ satisfies (Well-definedness). Let R be a
knowledge base and D finite with Const(R) ⊆ D ⊆ U with D 6= ∅
and P∗ =def I∅(R, D) 6= undef. Let r = (ψ(~X) | φ(~X))[d] ∈ R be
a conditional with ~X = (X1, . . . ,Xh) and c1, . . . , cn the constants that
appear in R. Let furthermore

{d1, . . . , dm} = D \ {c1, . . . , cn} ,

so it follows |D| = n + m. Let ~d1, . . . ,~dk be all vectors of constants
in {d1, . . . , dm} of length h such that for every ~di = (d

′
1, . . . , d

′
h) it

holds that d
′
e 6= d

′
j for e 6= j (for i = 1, . . . , k and e, j = 1, . . . , h). Let

~c1, . . . ,~cl be all remaining vectors of constants in D. It follows that
(l + k) = (|D|)h = (n + m)h and

k = mh =def m(m− 1) . . . (m− h + 1) (the falling factorial)

and thus l = (n+m)h−mh. Let P∗~c denote P∗(ψ(~c) | φ(~c)) for a vector
~c. In order to have P∗, D |=pr

∅ r it must hold that P∗~c1
+ . . . + P∗~cl

+ P∗~d1
+

. . . + P∗~dk
= d · (k + l). From (Prototypical Indifference) and 1.) and 2.)

proofs of technical results 247

in Proposition 6.2 on page 166 it follows that P∗~d1
= . . . = P∗~dk

. Define
P∗k =def P∗~d1

, so it holds that P∗~d1
+ . . . + P∗~dk

= kP∗k . It follows

P∗k =
d · (k + l)− P∗~c1

− . . .− P∗~cl

k
≤ d · (k + l)

k

= d
(n + m)h

mh︸ ︷︷ ︸
m→∞→ 1

m→∞→ d

Similarly it holds that

P∗k =
d · (k + l)− P∗~c1

− . . .− P∗~cl

k
≥ d · (k + l)− l

k

= d
(n + m)h

mh︸ ︷︷ ︸
m→∞→ 1

− (n + m)h −mh

mh︸ ︷︷ ︸
m→∞→ 0

m→∞→ d .

Due to (Well-definedness) all (implicitly) appearing probability func-
tions are well-defined and it follows P∗k → d for m→ ∞.

Lemma 6.1 (page 174). Let r = (ψ(~X) | φ(~X))[d] be a probabilistic conditional,
D finite with Const(r) ⊆ D ⊆ U and D 6= ∅, and SolD

r the set of probability func-
tions that satisfy r, i. e., it holds that SolD

r = {P | P, D |=pr
� (ψ(~X) | φ(~X))[d]}.

Then Solr is convex.

Proof. Let P1 and P2 be some probability functions with P1, D |=pr
� r and

P2, D |=pr
� r. We have to show that any convex combination of P1 and P2

satisfies r as well. Let Q be a convex combination of P1 and P2, i. e., let
δ ∈ (0, 1) be fixed and define Q(ω) =def δP1(ω) + (1− δ)P2(ω) for any ω ∈
Ω(Σ). Then it holds that Q(ψ′) = δP1(ψ

′) + (1− δ)P2(ψ
′) for any ground

formula ψ′ as well. Let {(ψ1 | φ1), . . . , (ψn | φn)} = gndD((ψ(~X) | φ(~X))).
Then it holds that

∑n
i=1 Pj(ψiφi)

∑n
i=1 Pj(φi)

= d (6.7)

for j = 1, 2 and we have to show that

∑n
i=1 Q(ψiφi)

∑n
i=1 Q(φi)

= d

which is equivalent to

δ ∑n
i=1 P1(ψiφi) + (1− δ)∑n

i=1 P2(ψiφi)

δ ∑n
i=1 P1(φi) + (1− δ)∑n

i=1 P2(φi)
= d (6.8)

248 proofs of technical results

If d = 0 then Pj(ψi ∧ φi) = 0 for all i = 1, . . . , n and j = 1, 2 due to (6.7).
Then also Q(ψi ∧ φi) = 0 for all i = 1 . . . , n and it follows Q, D |=pr

� r. We
continue with d > 0. Then (6.8) is equivalent to (all appearing sums are
meant to range over i = 1, . . . , n)

δ ∑ P1(ψiφi) + (1− δ)∑ P2(ψiφi) = dδ ∑ P1(φi) + d(1− δ)∑ P2(φi)

iff
δ ∑ P1(ψiφi)

dδ ∑ P1(φi)
+

(1− δ)∑ P2(ψiφi)

dδ ∑ P1(φi)
= 1 +

d(1− δ)∑ P2(φi)

dδ ∑ P1(φi)

iff 1 +
(1− δ)∑ P2(ψiφi)

dδ ∑ P1(φi)
= 1 +

(1− δ)∑ P2(φi)

δ ∑ P1(φi)

iff
1
d
(1− δ)∑ P2(ψi ∧ φi) = (1− δ)∑ P2(φi)

iff 1 = 1

and it follows Q, D |=pr
� r.

Theorem 6.2 (page 181). Let G be some grounding operator. Then the inference
operator IG satisfies (Left Logical Equivalence), (Right Weakening), (Cumulativ-
ity), (Well-Definedness), (Name Irrelevance), and (Prototypical Indifference).

Proof.

(Left Logical Equivalence) For grounding semantics, equivalence of knowl-
edge bases is straightforwardly defined as follows. Let G be a ground-
ing operator. Then R1 ≡G R2 if and only if G(R1, D) ≡kb G(R2, D)
in the classical sense. By assuming R1 ≡G R2 it follows P, D |=G R1
whenever P, D |=G R2. It follows that (6.60) on page 181 is defined
on the same set of probability functions for both R1 and R2 and
therefore IG(R1, D) = IG(R2, D).

(Right Weakening) Let R and D such that IG(R, D), D |=G (ψ | φ)[d] and
let (ψ | φ)[d] |=pr (ψ′ | φ′)[d′]. As IG(R, D) satisfies (ψ | φ)[d] with
respect to D it also satisfies (ψ′ | φ′)[d′] with respect to D. Hence, it
follows IG(R, D), D |=G (ψ′ | φ′)[d′].

(Cumulativity) For every P and D it holds that P, D |=G R follows from
P, D |=G R ∪ {(ψ | φ)[d]} as R ⊆ R ∪ {(ψ | φ)[d]}. It also holds
that IG(R, D), D |=G R ∪ {(ψ | φ)[d]} as IG(R, D), D |=G (ψ | φ)[d]
by assumption. Suppose that IG(R ∪ {(ψ | φ)[d]}, D) 6= IG(R, D)
then HD(IG(R ∪ {(ψ | φ)[d]}, D)) > HD(IG(R, D)). It follows that
IG(R∪{(ψ | φ)[d]}, D) should be the ME-model ofR as well because
IG(R ∪ {(ψ | φ)[d]}, D), D |=G R. Hence, IG(R ∪ {(ψ | φ)[d]}, D) =
IG(R, D) and therefore it holds that IG(R, D), D |=G (ψ′ | φ′)[d′]
whenever IG(R ∪ {(ψ | φ)[d]}, D), D |=G (ψ′ | φ′)[d′] for every prob-
abilistic conditional (ψ′ | φ′)[d′].

proofs of technical results 249

(Well-Definedness) If R is G-consistent with respect to D then (6.60) on
page 181 is semantically equivalent to (2.8) on page 32 which is well-
defined.

(Name Irrelevance) This is obvious as the principle of maximum entropy
is unbiased to renaming of constants, cf. Proposition 6.1 on page 170.

(Prototypical Indifference) This follows from Proposition 6.1 on page 164.

Proposition 7.3 (page 198). ≡R is an equivalence relation.

Proof. We have to show that ≡R is reflexive, symmetric, and transitive.

(Reflexivity) For ω ∈ Ω(Σ, D) it holds that ω = ω (using the identity
replacement). It follows that ω ≡R ω.

(Symmetry) Let ω1, ω2 ∈ Ω(Σ, D) with ω1 ≡R ω2. Then there is a set
T = {(c1

1, c1
2), . . . , (cG

1 , cG
2)} ⊆ S1 × S1 ∪ . . . ∪ Sn × Sn with

ω1 = ω2[c
1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2] .

As substituting c1
i with c2

i and vice versa is a symmetric operation for
all i = 1, . . . , G it also holds that ω2 = ω1[c

1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2]. It
follows that ω1 ≡R ω2.

(Transitivity) Let ω1, ω2 ∈ Ω(Σ, D) with ω1 ≡R ω2. Then there is a set
T = {(c1

1, c1
2), . . . , (cG

1 , cG
2)} ⊆ S1 × S1 ∪ . . . ∪ Sn × Sn with

ω1 = ω2[c
1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2] .

Furthermore, let ω3 ∈ Ω(Σ, D) with ω2 ≡R ω3. Then there is a set
T = {(d1

1, d1
2), . . . , (dG′

1 , dG′
2)} ⊆ S1 × S1 ∪ . . . ∪ Sn × Sn with

ω2 = ω3[d
1
1 ↔ d1

2] . . . [dG′
1 ↔ dG′

2] .

Then it holds that

ω1 = ω2[c
1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2]

= ω3[d
1
1 ↔ d1

2] . . . [dG′
1 ↔ dG′

2][c1
1 ↔ c1

2] . . . [cG
1 ↔ cG

2] .

It follows that ω1 ≡R ω3.

Proposition 7.9 (page 206). Let ψ be a conjunction of ground literals, let
Const(ψ) = {c1, . . . , cm}, and let Θ = {t1, . . . , tT}. Then

Λ(ω̂, ψ) = ∑
(t′1,...,t′m)∈Θ(ψ,c1,...,cm)

n

∏
i=1

(|Si \ Const(φ)|
α

t1
i (t
′
1, . . . , t′m), . . . , αtT

i (t′1, . . . , t′m)

)

with αt
i(t
′
1, . . . , t′m) =def ω̂(t)(Si)− |{k | t′k = t ∧ ck ∈ Si}|.

250 proofs of technical results

Proof. Let us first consider the case of Λ(ω̂, ψ) > 0. In order for Λ(ω̂, ψ) > 0
to be true, for every constant c ∈ Const(ψ) there must be a truth configu-
ration t ∈ Θ such that t∧(c) ∧ ψ is satisfiable and ω̂(t)(Si) > 0 for c ∈ Si.
This means that there must be at least one constant from Si assigned to t
such that c can fulfill the role of this constant. More precisely, as there may
be multiple constants in ψ compatible with t and belonging to Si the value
ω̂(t)(Si) must be at least as large as the number of those constants. In order
to determine Λ(ω̂, ψ) we have to consider every compatible truth configu-
ration for every constant in ψ, that is every (t′1, . . . , t′m) ∈ Θ(ψ, c1, . . . , cm).
Let such a (t′1, . . . , t′m) be denoted by truth profile. A truth profile (t′1, . . . , t′m)
picks one truth configuration t′i for every constant ci appearing in ψ such
that (t′i)

∧(ci)∧ψ is satisfiable. It follows that every Herbrand interpretation
ω ∈ κ−1(ω̂) with ω |=F (t′1)

∧(c1)∧ . . .∧ (t′m)∧(cm) also satisfies ω |=F ψ. By
considering all truth profiles compatible with ψ and counting the number
of Herbrand interpretations that fulfill the previous relationship for each
such truth profile we counted the number of all Herbrand interpretations
in κ−1(ω̂) that satisfy ψ. Let G(t′1, . . . , t′m) denote the number of Herbrand
interpretations ω ∈ κ−1(ω̂) with ω |=F (t′1)

∧(c1) ∧ . . . ∧ (t′m)∧(cm). Then
we can write

Λ(ω̂, ψ) = ∑
(t′1,...,t′m)∈Θ(ψ,c1,...,cm)

G(t′1, . . . , t′m) .

As shown in Proposition 7.6 on page 202 the number of Herbrand interpre-
tations represented by a reference world ω̂ is given via

ρω̂ =
n

∏
i=1

(
|Si|

ω̂(t1)(Si), . . . , ω̂(tT)(Si)

)
(7.9)

It may not be the case that every Herbrand interpretation ω represented
by ω̂ actually satisfies ψ. Given some truth profile (t′1, . . . , t′m) for the con-
stants appearing in ψ several characteristics of ω are already predetermined
by (t′1, . . . , t′m). Consider an R-equivalence class Si and cj ∈ Const(R) that
is already assigned to the truth configuration t′j. Then this assignment has
to be taken into account when determining the number of Herbrand in-
terpretations ω represented by ω̂ and also obeying ω |=F (t′j)

∧(cj). In
particular, the term |{k | t′k = t ∧ ck ∈ Si}| represents the number of con-
stants in Const(R) ∩ Si that are already assigned to the truth configuration
t. Consequently, the term

αt
i(t
′
1, . . . , t′m) = ω̂(t)(Si)− |{k | t′k = t ∧ ck ∈ Si}| .

is the number of remaining constants in Si that have not been assigned a
truth configuration yet by the truth profile (t′1, . . . , t′m). So, in order the
determine the number of Herbrand interpretations that are represented by
ω̂ and are compatible with (t′1, . . . , t′m) one needs to distribute the remain-

proofs of technical results 251

ing constants of each R-equivalence class onto the the remaining places
assigned for each truth configuration by ω̂. The term(|Si \ Const(φ)|

αt1
i (t
′
1, . . . , t′m), . . . , αtT

i (t′1, . . . , t′m)

)
(7.10)

is exactly the number of those combinations. Note also, that if the current
truth profile is incompatible with ω̂—i. e. there are already more constants
from one R-equivalence class Si assigned to a truth configuration t than
expected by ω̂(t)(Si)—then αt1

i (t
′
1, . . . , t′m) < 0 and by definition the term

(7.10) is zero. This is also the intended meaning as in this case there is
no Herbrand interpretation represented by ω̂ that is compatible with the
current truth profile. Finally, we have to multiply the term (7.10) for each
R-equivalence class and obtain

G(t′1, . . . , t′m) =
n

∏
i=1

(|Si \ Const(φ)|
α

t1
i (t
′
1, . . . , t′m), . . . , αtT

i (t′1, . . . , t′m)

)
which proves the claim.

CE X A M P L E S – PCL

In the following, we list further examples employing the inconsistency
measures, culpability measures, and consistency restorers from Chapters 3

and 4. The functions have been applied on the following knowledge bases.

R0 =def { r1 = (a)[0.3],

r2 = (a)[0.7] }

R1 =def { r1 = (b|a)[1]
r2 = (a)[1]

r3 = (b)[0] }

R2 =def { r1 = (a)[0.3]

r2 = (a)[0.7]

r3 = (b)[0.8] }

R3 =def { r1 = (a)[0.3]

r2 = (b)[0.4]

r3 = (a ∧ b)[0.6] }

R4 =def { r1 = (b|a)[0.8]

r2 = (b|a)[0.6]

r3 = (a)[0.5]

r4 = (b)[0.2] }

R5 =def { r1 = (b|a)[0.7]

r2 = (c|b)[0.6]

r3 = (a)[0.9]

r4 = (c)[0.1] }

R6 =def { r1 = (b|a)[0.7]

r2 = (c|b)[0.6]

r3 = (a)[0.9]

r4 = (c)[0.1]

r5 = (b)[0.8] }

R7 =def { r1 = (a ∧ b)[0.7]

r2 = (b|a)[0.9]

r3 = (c|b)[0.1]

r4 = (a|c)[0.1]

r5 = (a|c)[0.2] }

R8 =def { r1 = (b|a)[1]
r2 = (a)[1]

r3 = (b)[0]

r4 = (c)[0.3]

r5 = (c)[0.7] }

R9 =def { r1 = (b|a)[0.8]

r2 = (c|b)[0.9]

r3 = (d|c)[0.7]

r4 = (e|d)[0.9]

r5 = (a|e)[0.1]

r6 = (a)[0.9] }

Tables 10 to 28 with even numbers show inconsistency values with respect
to the inconsistency measures Inc, IncMI, IncMI

0 , IncMI
C,0, Inc∗, Inc∗0 , and the

approximations I≤, I≤0 , I≥0 , and I≥ on each of the above knowledge
bases as well as the culpability values of each probabilistic conditional with
respect to the culpability measures A and S. Tables 11 to 29 with odd
numbers show the values of the modified probabilistic conditionals after

253

254 examples – pcl

application of the consistency restorer ΥU , ΥP, ΥS
C, and ΥB

C for the various
culpability measures. In each of the Tables 11 to 29 with odd numbers
the modified probability of a probabilistic conditional ri is shown under
column r′i . Cells containing a “—” indicate that the value is not defined
due to the non-existence of a unique function value of ΥB

C. Those tables
also show the distance to the original knowledge base with respect to
the following distance concepts. Let d1, . . . , dn the original values of the
probabilistic conditionals in R and d′1, . . . , d′n the modified values in Υ(R).
Then the distances are defined via

| · |1 =def |d1 − d′1|+ . . . + |dn − d′n| (the 1-norm distance)

| · |2 =def

√
(d1 − d′1)

2 + . . . + (dn − d′n)2 (the 2-norm distance)

min =def min{|d1 − d′1|, . . . , |dn − d′n|} (minimal deviation)

max =def max{|d1 − d′1|, . . . , |dn − d′n|} (maximal deviation)

avg =def
|d1 − d′1|+ . . . + |dn − d′n|

n
(average deviation)

=def number of modified values

All appearing numbers are rounded off to three decimal places.

examples – pcl 255

Inc Inc(R0) CR0 C(r1) C(r2)

Incd 1 SignCulpR0 +1 −1

IncMI 1 AR0 0.2 0.2

IncMI
0 0.5 SR0

Incd 0.5 0.5

IncMI
C 0.5 SR0

IncMI 0.5 0.5

IncMI
C,0 0.5 SR0

IncMI
0

0.25 0.25

Inc∗ 0.4 SR0
IncMI

C
0.25 0.25

Inc∗0 0.2 SR0
IncMI

C,0
0.25 0.25

I≤ 0.4 SR0
Inc∗ 0.2 0.2

I≤0 0.2 SR0
Inc∗0

0.1 0.1

I≥ 0.4 SR0
I≤ 0.2 0.2

I≥0 0.2 SR0
I≤0

0.1 0.1

SR0
I≥ 0.2 0.2

SR0
I≥0

0.1 0.1

Table 10: Inconsistency and culpability values for R0

Υ r
′
1 r

′
2 | · |1 | · |2 min max avg #

ΥU 0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥP 0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥS
S
R0
Incd

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥS
S
R0
IncMI

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥS
S
R0
IncMI

C

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥS
S
R0
Inc∗

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥS
S
R0
I≤

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥS
S
R0
I≥

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥS
AR0

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥB
S
R0
Incd

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥB
S
R0
IncMI

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥB
S
R0
IncMI

C

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥB
S
R0
Inc∗

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥB
S
R0
I≤

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥB
S
R0
I≥

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

ΥB
AR0

0.5 0.5 0.4 0.283 0.2 0.2 0.2 2

Table 11: Repaired knowledge bases for R0

256 examples – pcl

Inc Inc(R1) CR1 C(r1) C(r2) C(r3)

Incd 1 SignCulpR −1 −1 +1

IncMI 1 AR 0.5 0.5 0.5

IncMI
0 0.333 SR

Incd 0.333 0.333 0.333

IncMI
C 0.333 SR

IncMI 0.333 0.333 0.333

IncMI
C,0 0.222 SR

IncMI
0

0.111 0.111 0.111

Inc∗ 1 SR
IncMI

C
0.111 0.111 0.111

Inc∗0 0.333 SR
IncMI

C,0
0.074 0.074 0.074

I≤ 1 SR
Inc∗ 0.333 0.333 0.333

I≤0 0.333 SR
Inc∗0

0.111 0.111 0.111

I≥ 1.168 SR
I≤ 0.333 0.333 0.333

I≥0 0.389 SR
I≤0

0.111 0.111 0.111

SR
I≥ 0.389 0.389 0.389

SR
I≥0

0.13 0.13 0.13

Table 12: Inconsistency and culpability values for R1

Υ r
′
1 r

′
2 r

′
3 | · |1 | · |2 min max avg #

ΥU 0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥP 0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥS
S
R1
Incd

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥS
S
R1
IncMI

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥS
S
R1
IncMI

C

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥS
S
R1
Inc∗

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥS
S
R1
I≤

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥS
S
R1
I≥

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥS
AR1

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥB
S
R1
Incd

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥB
S
R1
IncMI

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥB
S
R1
IncMI

C

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥB
S
R1
Inc∗

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥB
S
R1
I≤

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥB
S
R1
I≥

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

ΥB
AR1

0.618 0.618 0.382 1.146 0.662 0.382 0.382 0.382 3

Table 13: Repaired knowledge bases for R1

examples – pcl 257

Inc Inc(R2) CR2 C(r1) C(r2) C(r3)

Incd 1 SignCulpR +1 −1 0

IncMI 1 AR 0.2 0.2 0

IncMI
0 0.333 SR

Incd 0.5 0.5 0

IncMI
C 0.5 SR

IncMI 0.5 0.5 0

IncMI
C,0 0.333 SR

IncMI
0

0.2 0.2 0

Inc∗ 0.4 SR
IncMI

C
0.25 0.25 0

Inc∗0 0.133 SR
IncMI

C,0
0.2 0.2 0

I≤ 0.4 SR
Inc∗ 0.2 0.2 0

I≤0 0.133 SR
Inc∗0

0.067 0.067 0

I≥ 0.4 SR
I≤ 0.2 0.2 0

I≥0 0.133 SR
I≤0

0.067 0.067 0

SR
I≥ 0.2 0.2 0

SR
I≥0

0.067 0.067 0

Table 14: Inconsistency and culpability values for R2

Υ r
′
1 r

′
2 r

′
3 | · |1 | · |2 min max avg #

ΥU 0.5 0.5 0.5 0.7 0.327 0.2 0.3 0.233 3

ΥP 0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥS
SR2
Incd

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥS
SR2
IncMI

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥS
SR2
IncMI

C

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥS
SR2
Inc∗

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥS
SR2
I≤

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥS
SR2
I≥

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥS
AR2

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥB
SR2
Incd

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥB
SR2
IncMI

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥB
SR2
IncMI

C

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥB
SR2
Inc∗

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥB
SR2
I≤

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥB
SR2
I≥

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

ΥB
AR2

0.5 0.5 0.8 0.4 0.283 0 0.2 0.133 2

Table 15: Repaired knowledge bases for R2

258 examples – pcl

Inc Inc(R3) CR3 C(r1) C(r2) C(r3)

Incd 1 SignCulpR +1 0 −1

IncMI 2 AR 0.05 0 0.25

IncMI
0 0.667 SR

Incd 0.167 0.167 0.667

IncMI
C 1 SR

IncMI 0.5 0.5 1

IncMI
C,0 0.667 SR

IncMI
0

0.139 0.139 0.389

Inc∗ 0.3 SR
IncMI

C
0.25 0.25 0.5

Inc∗0 0.1 SR
IncMI

C,0
0.139 0.139 0.389

I≤ 0.3 SR
Inc∗ 0.083 0.033 0.183

I≤0 0.133 SR
Inc∗0

0.028 0.011 0.061

I≥ 0.3 SR
I≤ 0.083 0.033 0.183

I≥0 0.133 SR
I≤0

0.028 0.011 0.061

SR
I≥ 0.084 0.034 0.184

SR
I≥0

0.028 0.011 0.061

Table 16: Inconsistency and culpability values for R3

Υ r
′
1 r

′
2 r

′
3 | · |1 | · |2 min max avg #

ΥU 0.41 0.455 0.41 0.355 0.226 0.055 0.19 0.118 3

ΥP 0.35 0.4 0.35 0.3 0.254 0 0.25 0.134 2

ΥS
S
R3
Incd

0.36 0.46 0.36 0.36 0.255 0.06 0.24 0.12 3

ΥS
S
R3
IncMI

0.4 0.5 0.4 0.4 0.245 0.1 0.2 0.133 3

ΥS
S
R3
IncMI

C

0.4 0.5 0.4 0.4 0.245 0.1 0.2 0.133 3

ΥS
S
R3
Inc∗

0.394 0.437 0.394 0.337 0.229 0.037 0.206 0.112 3

ΥS
S
R3
I≤

0.394 0.437 0.394 0.337 0.229 0.037 0.206 0.112 3

ΥS
S
R3
I≥

0.394 0.437 0.394 0.337 0.229 0.037 0.206 0.112 3

ΥS
AR3

0.35 0.4 0.35 0.3 0.254 0 0.249 0.134 2

ΥB
S
R3
Incd

0.3 0.4 0.3 0.3 0.3 0 0.3 0.1 1

ΥB
S
R3
IncMI

0.3 0.4 0.3 0.3 0.3 0 0.3 0.1 1

ΥB
S
R3
IncMI

C

0.3 0.4 0.3 0.3 0.3 0 0.3 0.1 1

ΥB
S
R3
Inc∗

– – – – – – – –

ΥB
S
R3
I≤

– – – – – – – –

ΥB
S
R3
I≥

– – – – – – – –

ΥB
AR3

– – – – – – – –

Table 17: Repaired knowledge bases for R3

examples – pcl 259

Inc Inc(R4) CR4 C(r1) C(r2) C(r3) C(r4)

Incd 1 SignCulpR 0 0 0 +1

IncMI 3 AR 0 0 0 0.5

IncMI
0 0.5 SR

Incd 0.167 0.167 0.167 0.5

IncMI
C 1 SR

IncMI 0.667 0.667 0.667 1.0

IncMI
C,0 0.333 SR

IncMI
0

0.097 0.097 0.097 0.208

Inc∗ 0.5 SR
IncMI

C
0.222 0.222 0.222 0.333

Inc∗0 0.125 SR
IncMI

C,0
0.065 0.065 0.065 0.14

I≤ 0.5 SR
Inc∗ 0.149 0.116 0.05 0.183

I≤0 0.125 SR
Inc∗0

0.04 0.029 0.013 0.046

I≥ 0.8 SR
I≤ 0.149 0.116 0.05 0.183

I≥0 0.2 SR
I≤0

0.04 0.029 0.013 0.046

SR
I≥ 0.238 0.186 0.08 0.293

SR
I≥0

0.06 0.047 0.02 0.073

Table 18: Inconsistency and culpability values for R4

Υ r
′
1 r

′
2 r

′
3 r

′
4 | · |1 | · |2 min max avg #

ΥU 0.5 0.5 0.5 0.5 0.7 0.436 0 0.3 0.175 3

ΥP 0.8 0.6 0.5 0.7 0.5 0.5 0 0.5 0.125 1

ΥS
S
R4
Incd

0.5 0.5 0.5 0.5 0.7 0.436 0 0.3 0.175 3

ΥS
S
R4
IncMI

0.5 0.5 0.5 0.5 0.7 0.436 0 0.3 0.175 3

ΥS
S
R4
IncMI

C

0.5 0.5 0.5 0.5 0.7 0.436 0 0.3 0.175 3

ΥS
S
R4
Inc∗

0.5 0.5 0.5 0.5 0.7 0.436 0 0.3 0.175 3

ΥS
S
R4
I≤

0.5 0.5 0.5 0.5 0.7 0.436 0 0.3 0.175 3

ΥS
S
R4
I≥

0.5 0.5 0.5 0.5 0.7 0.436 0 0.3 0.175 3

ΥS
AR4

0.5 0.5 0.5 0.5 0.7 0.436 0 0.3 0.175 3

ΥB
S
R4
Incd

0.8 0.6 0.5 0.7 0.5 0.5 0 0.5 0.125 1

ΥB
S
R4
IncMI

0.8 0.6 0.5 0.7 0.5 0.5 0 0.5 0.125 1

ΥB
S
R4
IncMI

C

0.8 0.6 0.5 0.7 0.5 0.5 0 0.5 0.125 1

ΥB
S
R4
Inc∗

0.8 0.6 0.5 0.7 0.5 0.5 0 0.5 0.125 1

ΥB
S
R4
I≤

0.8 0.6 0.5 0.7 0.5 0.5 0 0.5 0.125 1

ΥB
S
R4
I≥

0.8 0.6 0.5 0.7 0.5 0.5 0 0.5 0.125 1

ΥB
AR4

0.8 0.6 0.5 0.7 0.5 0.5 0 0.5 0.125 1

Table 19: Repaired knowledge bases for R4

260 examples – pcl

Inc Inc(R5) CR5 C(r1) C(r2) C(r3) C(r4)

Incd 1 SignCulpR 0 0 0 +1

IncMI 1 AR 0 0 0 0.278

IncMI
0 0.167 SR

Incd 0.25 0.25 0.25 0.25

IncMI
C 0.25 SR

IncMI 0.25 0.25 0.25 0.25

IncMI
C,0 0.083 SR

IncMI
0

0.042 0.042 0.042 0.042

Inc∗ 0.278 SR
IncMI

C
0.063 0.063 0.063 0.063

Inc∗0 0.069 SR
IncMI

C,0
0.021 0.021 0.021 0.021

I≤ 0.278 SR
Inc∗ 0.07 0.07 0.07 0.07

I≤0 0.069 SR
Inc∗0

0.018 0.018 0.018 0.018

I≥ 0.355 SR
I≤ 0.07 0.07 0.07 0.07

I≥0 0.089 SR
I≤0

0.018 0.018 0.018 0.018

SR
I≥ 0.089 0.089 0.089 0.089

SR
I≥0

0.022 0.022 0.022 0.022

Table 20: Inconsistency and culpability values for R5

Υ r
′
1 r

′
2 r

′
3 r

′
4 | · |1 | · |2 min max avg #

ΥU 0.621 0.56 0.742 0.258 0.435 0.24 0.04 0.158 0.109 4

ΥP 0.7 0.6 0.9 0.378 0.278 0.077 0 0.278 0.07 1

ΥS
S
R5
Incd

0.576 0.5 0.776 0.224 0.472 0.237 0.1 0.124 0.118 4

ΥS
S
R5
IncMI

0.576 0.5 0.776 0.224 0.472 0.237 0.1 0.124 0.118 4

ΥS
S
R5
IncMI

C

0.576 0.5 0.776 0.224 0.472 0.237 0.1 0.124 0.118 4

ΥS
S
R5
Inc∗

0.576 0.5 0.776 0.224 0.472 0.237 0.1 0.124 0.118 4

ΥS
S
R5
I≤

0.576 0.5 0.776 0.224 0.472 0.237 0.1 0.124 0.118 4

ΥS
S
R5
I≥

0.576 0.5 0.776 0.224 0.472 0.237 0.1 0.124 0.118 4

ΥS
AR5

0.7 0.6 0.9 0.378 0.278 0.077 0 0.278 0.07 1

ΥB
S
R5
Incd

0.581 0.481 0.781 0.218 0.714 0.238 0.119 0.119 0.119 4

ΥB
S
R5
IncMI

0.581 0.481 0.781 0.218 0.714 0.238 0.119 0.119 0.119 4

ΥB
S
R5
IncMI

C

0.581 0.481 0.781 0.218 0.714 0.238 0.119 0.119 0.119 4

ΥB
S
R5
Inc∗

0.581 0.481 0.781 0.218 0.714 0.238 0.119 0.119 0.119 4

ΥB
S
R5
I≤

0.581 0.481 0.781 0.218 0.714 0.238 0.119 0.119 0.119 4

ΥB
S
R5
I≥

0.581 0.481 0.781 0.218 0.714 0.238 0.119 0.119 0.119 4

ΥB
AR5

0.7 0.6 0.9 0.378 0.278 0.077 0 0.278 0.07 1

Table 21: Repaired knowledge bases for R5

examples – pcl 261

Inc Inc(R6) CR6 C(r1) C(r2) C(r3) C(r4) C(r5)

Incd 1 SignCulpR 0 0 0 +1 −1

IncMI 3 AR 0 0 0 0.335 0.072

IncMI
0 0.3 SR

Incd 0.183 0.183 0.183 0.183 0.267

IncMI
C 0.917 SR

IncMI 0.583 0.583 0.583 0.583 0.667

IncMI
C,0 0.183 SR

IncMI
0

0.054 0.054 0.054 0.054 0.082

Inc∗ 0.407 SR
IncMI

C
0.174 0.174 0.174 0.174 0.222

Inc∗0 0.082 SR
IncMI

C,0
0.032 0.032 0.032 0.032 0.057

I≤ 0.407 SR
Inc∗ 0.028 0.132 0.029 0.132 0.086

I≤0 0.082 SR
Inc∗0

0.006 0.026 0.006 0.026 0.017

I≥ 0.463 SR
I≤ 0.029 0.132 0.029 0.132 0.086

I≥0 0.093 SR
I≤0

0.006 0.026 0.006 0.026 0.017

SR
I≥ 0.035 0.153 0.035 0.153 0.088

SR
I≥0

0.007 0.031 0.007 0.031 0.018

Table 22: Inconsistency and culpability values for R6

Υ r
′
1 r

′
2 r

′
3 r

′
4 r

′
5 | · |1 | · |2 min max avg #

ΥU 0.582 0.541 0.663 0.337 0.623 0.828 0.401 0.059 0.237 0.166 5

ΥP 0.7 0.6 0.9 0.435 0.728 0.407 0.343 0 0.335 0.081 2

ΥS
S
R6
Incd

0.526 0.5 0.726 0.274 0.547 0.875 0.406 0.1 0.253 0.175 5

ΥS
S
R6
IncMI

0.567 0.5 0.767 0.3 0.6 0.766 0.354 0.1 0.2 0.153 5

ΥS
S
R6
IncMI

C

0.517 0.5 0.717 0.283 0.566 0.883 0.406 0.1 0.234 0.177 5

ΥS
S
R6
Inc∗

0.651 0.5 0.851 0.326 0.653 0.571 0.296 0.049 0.226 0.114 5

ΥS
S
R6
I≤

0.651 0.5 0.851 0.326 0.653 0.571 0.296 0.049 0.226 0.114 5

ΥS
S
R6
I≥

0.651 0.5 0.851 0.326 0.653 0.571 0.296 0.049 0.226 0.114 5

ΥS
AR6

0.7 0.6 0.9 0.435 0.728 0.407 0.343 0 0.335 0.081 2

ΥB
S
R6
Incd

0.651 0.45 0.851 0.25 0.554 0.644 0.332 0.049 0.246 0.129 5

ΥB
S
R6
IncMI

0.651 0.45 0.851 0.25 0.554 0.644 0.332 0.049 0.246 0.129 5

ΥB
S
R6
IncMI

C

0.651 0.45 0.851 0.25 0.554 0.644 0.332 0.049 0.246 0.129 5

ΥB
S
R6
Inc∗

0.7 0.406 0.9 0.296 0.73 0.46 0.285 0 0.196 0.092 3

ΥB
S
R6
I≤

0.7 0.406 0.9 0.296 0.73 0.46 0.285 0 0.196 0.092 3

ΥB
S
R6
I≥

0.7 0.406 0.9 0.296 0.73 0.46 0.285 0 0.196 0.092 3

ΥB
AR6

0.7 0.6 0.9 0.435 0.728 0.408 0.343 0 0.335 0.081 2

Table 23: Repaired knowledge bases for R6

262 examples – pcl

Inc Inc(R7) CR7 C(r1) C(r2) C(r3) C(r4) C(r5)

Incd 1 SignCulpR −1 0 0 0 +1

IncMI 2 AR 0.5 0 0 0 0.022

IncMI
0 0.2 SR

Incd 0.417 0 0.083 0.083 0.417

IncMI
C 0.667 SR

IncMI 0.667 0 0.333 0.333 0.667

IncMI
C,0 0.133 SR

IncMI
0

0.096 0 0.026 0.026 0.096

Inc∗ 0.522 SR
IncMI

C
0.222 0 0.111 0.111 0.222

Inc∗0 0.104 SR
IncMI

C,0
0.064 0 0.017 0.017 0.064

I≤ 0.522 SR
Inc∗ 0.208 0 0.037 0.066 0.208

I≤0 0.104 SR
Inc∗0

0.042 0 0.007 0.013 0.042

I≥ 1.147 SR
I≤ 0.208 0 0.037 0.066 0.208

I≥0 0.295 SR
I≤0

0.045 0 0.007 0.013 0.042

SR
I≥ 0.504 0.08 0.032 0.352 0.504

SR
I≥0

0.1 0.016 0.006 0.07 0.1

Table 24: Inconsistency and culpability values for R7

Υ r
′
1 r

′
2 r

′
3 r

′
4 r

′
5 | · |1 | · |2 min max avg #

ΥU 0.25 0.5 0.5 0.5 0.5 1.95 0.879 0.3 0.45 0.39 5

ΥP 0.2 0.9 0.1 0.1 0.222 0.522 0.505 0 0.5 0.104 2

ΥS
SR7
Incd

0.25 0.9 0.5 0.5 0.5 1.55 0.783 0 0.45 0.31 4

ΥS
SR7
IncMI

0.25 0.9 0.5 0.5 0.5 1.55 0.783 0 0.45 0.31 4

ΥS
SR7
IncMI

C

0.25 0.9 0.5 0.5 0.5 1.55 0.783 0 0.45 0.31 4

ΥS
SR7
Inc∗

0.25 0.9 0.5 0.5 0.5 1.55 0.783 0 0.45 0.31 4

ΥS
SR7
I≤

0.25 0.9 0.5 0.5 0.5 1.55 0.783 0 0.45 0.31 4

ΥS
SR7
I≥

0.25 0.9 0.5 0.5 0.5 1.55 0.783 0 0.45 0.31 4

ΥS
AR7

0.25 0.9 0.1 0.1 0.5 0.75 0.541 0 0.45 0.15 2

ΥB
SR7
Incd

0.402 0.9 0.1 0.1 0.462 0.56 0.397 0 0.298 0.112 2

ΥB
SR7
IncMI

0.402 0.9 0.1 0.1 0.462 0.56 0.397 0 0.298 0.112 2

ΥB
SR7
IncMI

C

0.402 0.9 0.1 0.1 0.462 0.56 0.397 0 0.298 0.112 2

ΥB
SR7
Inc∗

0.402 0.9 0.1 0.1 0.462 0.56 0.397 0 0.298 0.112 2

ΥB
SR7
I≤

0.402 0.9 0.1 0.1 0.462 0.56 0.397 0 0.298 0.112 2

ΥB
SR7
I≥

0.402 0.9 0.1 0.1 0.462 0.56 0.397 0 0.298 0.112 2

ΥB
AR7

— — — — — — — — — — —

Table 25: Repaired knowledge bases for R7

examples – pcl 263

Inc Inc(R8) CR8 C(r1) C(r2) C(r3) C(r4) C(r5)

Incd 1 SignCulpR −1 −1 +1 +1 −1

IncMI 2 AR 0.5 0.5 0.5 0.2 0.2

IncMI
0 0.2 SR

Incd 0.133 0.133 0.133 0.3 0.3

IncMI
C 0.833 SR

IncMI 0.333 0.333 0.333 0.5 0.5

IncMI
C,0 0.167 SR

IncMI
0

0.012 0.012 0.012 0.082 0.082

Inc∗ 1.4 SR
IncMI

C
0.111 0.111 0.111 0.25 0.25

Inc∗0 0.28 SR
IncMI

C,0
0.022 0.022 0.022 0.05 0.05

I≤ 1.4 SR
Inc∗ 0.333 0.333 0.333 0.2 0.2

I≤0 0.28 SR
Inc∗0

0.067 0.067 0.067 0.04 0.04

I≥ 1.567 SR
I≤ 0.333 0.333 0.333 0.2 0.2

I≥0 0.313 SR
I≤0

0.067 0.067 0.067 0.04 0.04

SR
I≥ 0.373 0.373 0.373 0.045 0.045

SR
I≥0

0.075 0.075 0.075 0.009 0.009

Table 26: Inconsistency and culpability values for R8

Υ r
′
1 r

′
2 r

′
3 r

′
4 r

′
5 | · |1 | · |2 min max avg #

ΥU 0.5 0.5 0.5 0.5 0.5 1.9 0.911 0.2 0.5 0.38 5

ΥP 0.5 0.5 0.5 0.5 0.5 1.9 0.911 0.2 0.5 0.38 5

ΥS
S
R8
Incd

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥS
S
R8
IncMI

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥS
S
R8
IncMI

C

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥS
S
R8
Inc∗

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥS
S
R8
I≤

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥS
S
R8
I≥

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥS
AR8

0.5 0.5 0.5 0.5 0.5 1.9 0.911 0.2 0.5 0.38 5

ΥB
S
R8
Incd

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥB
S
R8
IncMI

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥB
S
R8
IncMI

C

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥB
S
R8
Inc∗

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥB
S
R8
I≤

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥB
S
R8
I≥

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

ΥB
AR8

0.618 0.618 0.382 0.5 0.5 1.546 0.72 0.2 0.382 0.309 5

Table 27: Repaired knowledge bases for R8

264 examples – pcl

Inc Inc(R9) CR9 C(r1) C(r2) C(r3) C(r4) C(r5) C(r6)

Incd 1 SignCulpR 0 0 0 0 0 −1

IncMI 1 AR 0 0 0 0 0 0.355

IncMI
0 0.05 SR

Incd 0.167 0.167 0.167 0.167 0.167 0.167

IncMI
C 0.167 SR

IncMI 0.167 0.167 0.167 0.167 0.167 0.167

IncMI
C,0 0.017 SR

IncMI
0

0.008 0.008 0.008 0.008 0.008 0.008

Inc∗ 0.355 SR
IncMI

C
0.028 0.028 0.028 0.028 0.028 0.028

Inc∗0 0.059 SR
IncMI

C,0
0.003 0.003 0.003 0.003 0.003 0.003

I≤ 0.318 SR
Inc∗ 0.059 0.059 0.059 0.059 0.059 0.059

I≤0 0.053 SR
Inc∗0

0.01 0.01 0.01 0.01 0.01 0.01

I≥ 0.695 SR
I≤ 0.053 0.053 0.053 0.053 0.053 0.053

I≥0 0.116 SR
I≤0

0.009 0.009 0.009 0.009 0.009 0.009

SR
I≥ 0.116 0.116 0.116 0.116 0.116 0.116

SR
I≥0

0.019 0.019 0.019 0.019 0.019 0.019

Table 28: Inconsistency and culpability values for R9

Υ r
′
1 r

′
2 r

′
3 r

′
4 r

′
5 r

′
6 | · |1 | · |2 min max avg #

ΥU 0.684 0.784 0.584 0.784 0.216 0.784 0.678 0.277 0.113 0.113 0.113 6

ΥP 0.8 0.9 0.7 0.9 0.1 0.545 0.355 0.126 0 0.355 0.059 1

ΥS
S
R9
Incd

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥS
S
R9
IncMI

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥS
S
R9
IncMI

C

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥS
S
R9
Inc∗

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥS
S
R9
I≤

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥS
S
R9
I≥

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥS
AR9

0.8 0.9 0.7 0.9 0.1 0.545 0.355 0.126 0 0.355 0.059 1

ΥB
S
R9
Incd

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥB
S
R9
IncMI

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥB
S
R9
IncMI

C

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥB
S
R9
Inc∗

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥB
S
R9
I≤

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥB
S
R9
I≥

0.711 0.811 0.611 0.811 0.189 0.811 0.531 0.217 0.089 0.089 0.089 6

ΥB
AR9

0.8 0.9 0.7 0.9 0.1 0.545 0.355 0.126 0 0.355 0.059 1

Table 29: Repaired knowledge bases for R9

L I S T O F F I G U R E S

Figure 1 Outline of the thesis . 7

Figure 2 The graph (At, E) from Example 2.5 24

Figure 3 The graph G = (At, E) from Example 2.6 26

Figure 4 The derivation for the query Q in Example 2.15 38

Figure 5 The function vθ
γ,β1,β2

(x) 116

Figure 6 The function v1
0.5,0.5,0.8(x) 117

265

L I S T O F TA B L E S

Table 1 The probability function P1 for Rpenguins 29

Table 2 Properties of inconsistency measures 52

Table 3 Comparison of inconsistency measures 87

Table 4 Properties of consistency restorers 108

Table 5 Comparison of consistency restorers 127

Table 6 The probability function P for the knowledge base R
in Example 5.4 (all Herbrand interpretations omitted
have probability 0) . 138

Table 7 Properties of inductive inference operators 167

Table 8 Comparison of |Ω(Σ, D)| and |Ω̂| with respect to a
simple relational signature Σ = (U, Pred, ∅) and a
knowledge base R with |Const(R)| = 1 213

Table 9 Comparison of |Ω(Σ, D)| and |Ω(Σ, D)/≡R | with re-
spect to a simple relational signature that contains a
single binary predicate and a knowledge baseR with
Const(R) = ∅ . 215

Table 10 Inconsistency and culpability values for R0 255

Table 11 Repaired knowledge bases for R0 255

Table 12 Inconsistency and culpability values for R1 256

Table 13 Repaired knowledge bases for R1 256

Table 14 Inconsistency and culpability values for R2 257

Table 15 Repaired knowledge bases for R2 257

Table 16 Inconsistency and culpability values for R3 258

Table 17 Repaired knowledge bases for R3 258

Table 18 Inconsistency and culpability values for R4 259

Table 19 Repaired knowledge bases for R4 259

Table 20 Inconsistency and culpability values for R5 260

Table 21 Repaired knowledge bases for R5 260

Table 22 Inconsistency and culpability values for R6 261

Table 23 Repaired knowledge bases for R6 261

Table 24 Inconsistency and culpability values for R7 262

Table 25 Repaired knowledge bases for R7 262

Table 26 Inconsistency and culpability values for R8 263

Table 27 Repaired knowledge bases for R8 263

Table 28 Inconsistency and culpability values for R9 264

Table 29 Repaired knowledge bases for R9 264

267

B I B L I O G R A P H Y

André Ahuja and Wilhelm Rödder. Project Risk Management by a Prob-
abilistic Expert System. In Proceedings of the International Conference on
Operations Research 2002, pages 329–334, 2002. (Cited on page 2.)

Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the Logic
of Theory Change: Partial Meet Contraction and Revision Functions.
Journal of Symbolic Logic, 50(2):510–530, 1985. (Cited on pages 10 and 89.)

Kim Allan Andersen and Daniele Pretolani. Easy Cases of Probabilistic
Satisfiability. Annals of Mathematics and Artificial Intelligence, 33(1):69–91,
2001. (Cited on pages 43 and 45.)

Grigoris Antoniou. A Tutorial on Default Logics. ACM Computing Surveys,
31(4):337–359, 1999. (Cited on pages 18, 43, and 89.)

Kenneth J. Arrow. A Difficulty in the Concept of Social Welfare. Journal of
Political Economy, 58(4):328–346, 1950. (Cited on pages 103, 104, and 126.)

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook - Theory,
Implementation and Applications. Cambridge University Press, 2003. (Cited
on pages 2 and 12.)

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics as On-
tology Languages for the Semantic Web. In Mechanizing Mathematical Rea-
soning, volume 2605 of Lecture Notes in Computer Science, pages 228–248.
Springer-Verlag, 2005. (Cited on page 2.)

Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern, and Daphne Koller.
From Statistical Knowledge Bases to Degrees of Belief. Artificial Intelli-
gence, 87(1–2):75–143, 1996. (Cited on pages 151, 154, 156, 157, 159, 161,
163, 167, 180, 184, 185, 186, 187, 188, 199, 286, and 290.)

Fahiem Bacchus. Representing and Reasoning with Probabilistic Knowledge. The
MIT Press, 1990. (Cited on pages 151 and 180.)

John A. Beachy and William D. Blair. Abstract Algebra. Waveland Press, Inc.,
third edition, 2005. (Cited on pages 204 and 244.)

Christoph Beierle and Gabriele Kern-Isberner. Methoden wissensbasierter
Systeme: Grundlagen, Algorithmen, Anwendungen. Vieweg+Teubner, fourth
edition, 2008. (Cited on pages 1, 9, 21, 23, 25, 26, 27, and 31.)

269

270 Bibliography

Christoph Beierle, Marc Finthammer, Gabriele Kern-Isberner, and Matthias
Thimm. Automated reasoning for relational probabilistic knowledge rep-
resentation. In Jüergen Giesl and Rainer Hähnle, editors, Proceedings of the
Fifth International Joint Conference on Automated Reasoning (IJCAR’10), vol-
ume 6173 of Lecture Notes in Artificial Intelligence, pages 218–224. Springer-
Verlag, 2010. (Cited on page v.)

Christoph Beierle, Bernhard Freund, Gabriele Kern-Isberner, and Matthias
Thimm. Can Bobby Demand Delivery? Towards a Knowledge-based
System for Private Law. In Proceedings of the 24th Workshop on Constraint
Logic Programming (WLP’10), Cairo, Egypt, 2010. (Cited on page vii.)

Christoph Beierle, Bernhard Freund, Gabriele Kern-Isberner, and Matthias
Thimm. Using Defeasible Logic Programming for Argumentation-Based
Decision Support in Private Law. In Proceedings of the Third International
Conference on Computational Models of Argument (COMMA’10), 2010. (Cited
on page vii.)

Nuel D. Belnap. How Computer should Think. In Gilbert Ryle, editor,
Contemporary Aspects of Philosophy, pages 30–56. Oriel Press, 1976. (Cited
on pages 18 and 43.)

Nuel D. Belnap. A Useful Four-Valued Logic. In J. Michael Dunn and
George Epstein, editors, Modern Uses of Multiple-Valued Logic, pages 7–37.
Reidel Publishing Company, 1977. (Cited on pages 18 and 43.)

Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in Artificial
Intelligence. Artificial Intelligence, 171(10–15):619–641, 2007. (Cited on
pages 2, 18, 43, and 89.)

Salem Benferhat, Didier Dubois, and Henri Prade. Possibilistic and Stan-
dard Probabilistic Semantics of Conditional Knowledge Bases. Journal of
Logic and Computation, 9(6):873–895, 1999. (Cited on pages 3 and 26.)

Jakob Bernoulli. Usum & Applicationem Praecedentis Doctrinae in
Civilibus, Moralibus & Oeconomicis. In Ars Conjectandi, chapter 4. Thur-
neysen Brothers, 1713. (Cited on page 166.)

Jean-Yves Béziau, Walter Carnielli, and Dov Gabbay, editors. Handbook of
Paraconsistency. Studies in Logic. College Publications, 2007. (Cited on
pages 18 and 43.)

Joachim Biskup, Gabriele Kern-Isberner, and Matthias Thimm. Towards
Enforcement of Confidentiality in Agent Interactions. In Maurice Pag-
nucco and Michael Thielscher, editors, Proceedings of the Twelfth Inter-
national Workshop on Non-Monotonic Reasoning (NMR’08), pages 104–112.
University of New South Wales, Technical Report No. UNSW-CSE-TR-
0819, 2008. (Cited on page viii.)

Bibliography 271

Isabelle Bloch and Anthony Hunter. Fusion: General Concepts and Charac-
teristics. International Journal of Intelligent Systems, 16(10):1107–1134, 2001.
(Cited on pages 4, 89, and 103.)

Innocentius M. Bocheński. A History of Formal Logic. University of Notre
Dame Press, 1961. Translated and edited by Ivo Thomas. (Cited on
page 10.)

George Boole. An Investigation of the Laws of Thought on Which are Founded
the Mathematical Theories of Logic and Probabilities. Cambridge University
Press, 2009. Reprinted with corrections. (Cited on page 10.)

Nicolas Bourbaki. Topological Vector Spaces. Elements of Mathematics.
Springer-Verlag, 1987. (Cited on page 62.)

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004. (Cited on pages 68, 72, 169, 174, 177, 191, and 218.)

Ronald J. Brachman and Hector J. Levesque. Knowledge Representation and
Reasoning. The Morgan Kaufmann Series in Artificial Intelligence. Mor-
gan Kaufmann Publishers, 2004. (Cited on pages 1, 10, and 12.)

Alonzo Church. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 58:345–363, 1936. (Cited on page 12.)

A. Cocura, K. Kersting, C. Plageman, W. Burgard, and L. De Raedt. Learn-
ing Relational Navigation Policies. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS-06), 2006. (Cited
on page 33.)

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John
Wiley and Sons, second edition, 2006. (Cited on page 47.)

Michael A. Covington, Donald Nute, and Andre Vellino. Prolog Program-
ming in Depth. Prentice Hall, 1996. (Cited on pages 14 and 189.)

Lionel Daniel. Paraconsistent Probabilistic Reasoning. PhD thesis, L’École
Nationale Supérieure des Mines de Paris, 2009. (Cited on pages 3, 4, 5,
43, 46, 73, 76, 77, 78, 83, 84, 85, 86, 88, 90, 91, 122, 123, 124, 220, and 221.)

John Davies, Dieter Fensel, and Frank Van Harmelen, editors. Towards the
Semantic Web: Ontology-driven Knowledge Management. John Wiley and
Sons, 2003. (Cited on page 1.)

Martin Davis, George Logemann, and Donald Loveland. A Machine Pro-
gram for Theorem Proving. Communications of the ACM, 5(7):394–397,
1962. (Cited on page 12.)

Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen H. Muggle-
ton, editors. Probabilistic Inductive Logic Programming: Theory and Applica-
tions, volume 4911 of Lecture Notes in Computer Science. Springer-Verlag,
2008. (Cited on pages 3 and 33.)

272 Bibliography

Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted First-Order Prob-
abilistic Inference. In In Proceedings of the 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI’05), pages 1319–1325, 2005. (Cited on
pages 194, 215, 216, and 217.)

James P. Delgrande. On First-Order Conditional Logics. Artificial Intelligence,
105(1–2):105–137, 1998. (Cited on pages 129 and 160.)

Pedro Domingos and Matthew Richardson. Markov Logic: A Unifying
Framework for Statistical Relational Learning. In Lise Getoor and Ben
Taskar, editors, Introduction to Statistical Relational Learning, see (Getoor and
Taskar, 2007), chapter 12. The MIT Press, 2007. (Cited on pages 33 and 38.)

Didier Dubois, Jérôme Lang, and Henri Prade. Inconsistency in Possibilistic
Knowledge Bases: To live with it or not live with it. In Lotfi A. Zadeh and
Janusz Kacprzyk, editors, Fuzzy Logic for the Management of Uncertainty,
pages 335–351. Jon Wiley and Sons, New York, 1992. (Cited on page 43.)

Patricia Everaere, Sébastien Konieczny, and Pierre Marquis. Conflict-Based
Merging Operators. In Gerhard Brewka and Jérôme Lang, editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Eleventh
International Conference (KR 2008), pages 348–357. AAAI Press, 2008.
(Cited on page 89.)

Daan Fierens, Hendrik Blockeel, Jan Ramon, and Maurice Bruynooghe.
Logical bayesian networks. In Sašo Džeroski and Hendrik Blockeel, ed-
itors, Proceedings of the 3nd international workshop on multi-relational data
mining, pages 19–30, 2004. (Cited on pages 132 and 133.)

Marc Finthammer and Matthias Thimm. An Integrated Development Envi-
ronment for Probabilistic Relational Reasoning. Logic Journal of the IGPL,
2011. To appear. (Cited on pages v, 41, 131, and 191.)

Marc Finthammer, Gabriele Kern-Isberner, and Manuela Ritterskamp. Re-
solving Inconsistencies in Probabilistic Knowledge Bases. In KI 2007: Ad-
vances in Artificial Intelligence – 30th Annual German Conference on Artifical
Intelligence, volume 4667 of Lecture Notes in Computer Science, pages 114–
128. Springer-Verlag, 2007. (Cited on pages 3, 4, 43, 90, 103, 122, 125,
and 221.)

Marc Finthammer, Sebastian Loh, and Matthias Thimm. Towards a Toolbox
for Relational Probabilistic Knowledge Representation, Reasoning, and
Learning. In Workshop on Relational Approaches to Knowledge Representation
and Learning, Proceedings, pages 34–48, 2009. (Cited on page v.)

Marc Finthammer. Behandlung von Inkonsistenzen in probabilistischen Wissens-
basen. VDM Verlag Dr. Müller, 2008. (Cited on pages 43 and 125.)

Bibliography 273

Jens Fisseler. Toward Markov Logic with Conditional Probabilities. In
David C. Wilson and H. Chad Lane, editors, Proceedings of the Twenty-
First International FLAIRS Conference, pages 643–648. AAAI Press, 2008.
(Cited on pages 39, 41, and 189.)

Jens Fisseler. Learning and Modeling with Probabilistic Conditional Logic, vol-
ume 328 of Dissertations in Artificial Intelligence. IOS Press, 2010. (Cited on
pages 3, 4, 5, 27, 130, 146, 147, 151, 157, 161, 180, 181, 190, 215, and 221.)

Frederic Brenton Fitch. Symbolic Logic: An Introduction. The Ronald Press
Company, 1952. (Cited on page 9.)

Melvin Fitting. First-Order Logic and Automated Theorem Proving. Texts
in Computer Science. Springer-Verlag, second edition, 1996. (Cited on
page 12.)

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning Prob-
abilistic Relational Models. In Thomas Dean, editor, Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI 99),
pages 1300–1309. Morgan Kaufmann Publishers, 1999. (Cited on page 32.)

Dov M. Gabbay. Classical vs. Non-Classical Logic. In Dov M. Gabbay,
Christoper J. Hogger, and John A. Robinson, editors, Handbook of Logic in
Artificial Intelligence and Logic Programming, volume 2, chapter 2.6. Oxford
University Press, 1994. (Cited on page 9.)

A. Garcia and Guillermo R. Simari. Defeasible Logic Programming: An
Argumentative Approach. Theory and Practice of Logic Programming, 4(1–
2):95–138, 2004. (Cited on page 89.)

Diego R. García, Sebastián Gottifredi, Patrick Krümpelmann, Matthias
Thimm, Gabriele Kern-Isberner, Marcelo A. Falappa, and Alejandro J.
García. On Influence and Contractions in Defeasible Logic Programming.
In Proceedings of the Eleventh International Conference on Logic Programming
and Nonmonotonic Reasoning, 2011. (Cited on page viii.)

Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Series of Books in the Mathemati-
cal Sciences. W. H. Freeman, 1990. (Cited on page 12.)

Michael Gelfond and Nicola Leone. Logic Programming and Knowledge
Representation – The A-Prolog Perspective. Artificial Intelligence, 138(1–
2):3–38, 2002. (Cited on pages 15, 18, 33, and 89.)

Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Pro-
grams and Disjunctive Databases. New Generation Computing, 9:365–385,
1991. (Cited on pages 15, 18, 33, and 89.)

Giangiacomo Gerla. Fuzzy Logic: Mathematical Tools for Approximate Reason-
ing. Trends in Logic. Springer-Verlag, 2001. (Cited on pages 19 and 83.)

274 Bibliography

Vladimir Geroimenko. Dictionary of XML Technologies and the Semantic Web.
Springer Professional Computing Series. Springer-Verlag, 2004. (Cited on
page 2.)

Lise Getoor and Ben Taskar, editors. Introduction to Statistical Relational
Learning. The MIT Press, 2007. (Cited on pages 3, 33, 272, 274, and 277.)

Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar.
Probabilistic Relational Models. In Lise Getoor and Ben Taskar, editors,
Introduction to Statistical Relational Learning, see (Getoor and Taskar, 2007),
chapter 5. The MIT Press, 2007. (Cited on page 132.)

Moises Goldszmidt, Paul Morris, and Judea Pearl. A Maximum Entropy
Approach to Nonmonotonic Reasoning. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 15(3):220–232, 1993. (Cited on page 32.)

John Grant and Anthony Hunter. Measuring Inconsistency in Knowledge-
bases. Journal of Intelligent Information Systems, 27:159–184, 2006. (Cited
on pages 43, 46, and 78.)

John Grant and Anthony Hunter. Analysing Inconsistent First-Order
Knowledgebases. Artificial Intelligence, 172(8–9):1064–1093, 2008. (Cited
on page 78.)

Eric Grégoire and Sébastien Konieczny. Logic-based Approaches to Infor-
mation Fusion. Information Fusion, 7:4–18, 2006. (Cited on page 103.)

Adam J. Grove, Joseph Y. Halpern, and Daphne Koller. Random Worlds
and Maximum Entropy. Journal of Artificial Intelligence Research, 2:33–88,
1994. (Cited on pages 151, 156, 157, 180, 184, 185, 186, 187, 188, 199, 214,
286, and 290.)

Adam J. Grove, Joseph Y. Halpern, and Daphne Koller. Asymptotic Condi-
tional Probabilities: The Non-Unary Case. The Journal of Symbolic Logic,
61(1):250–276, 1996. (Cited on pages 33 and 146.)

Adam J. Grove, Joseph Y. Halpern, and Daphne Koller. Asymptotic Condi-
tional Probabilities: The Unary Case. SIAM Journal on Computing, 25(1):1–
51, 1996. (Cited on page 146.)

Jan Gullberg. Mathematics: From the Birth of Numbers. W. W. Norton &
Company, 1997. (Cited on page 19.)

Joseph Y. Halpern. An Analysis of First-Order Logics of Probability. Artifi-
cial Intelligence, 46:311–350, 1990. (Cited on pages 146, 151, 152, 154, 156,
157, 180, 184, 190, and 286.)

Pierre Hansen and Brigitte Jaumard. Probabilistic Satisfiability. Technical
report, Les Cahiers du GERAD, École Polytechique de Montréal, 1996.
(Cited on pages 43 and 45.)

Bibliography 275

Sven Ove Hansson. A Textbook of Belief Dynamics: Theory Change and Database
Updating. Applied Logic Series. Springer-Verlag, 1999. (Cited on pages 4,
10, 46, and 89.)

David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik
(Principles of Mathematical Logic). Springer-Verlag, 1928. (Cited on
page 12.)

Daniel Hölzgen, Thomas Vengels, Patrick Krümpelmann, Matthias Thimm,
and Gabriele Kern-Isberner. Argonauts – A Working System for Moti-
vated Cooperative Agents. Annals of Mathematics and Artificial Intelligence,
2011. To appear. (Cited on page viii.)

Alfred Horn. On Sentences which are True of Direct Unions of Algebras.
Journal of Symbolic Logic, 16:14–21, 1951. (Cited on page 14.)

Michael C. Horsch and David Poole. A Dynamic Approach to Probabilistic
Inference using Bayesian Networks. In Piero P. Bonissone, Max Henrion,
Laveen N. Kanal, and John F. Lemmer, editors, Proceedings of the Sixth
Conference on Uncertainty in Artifical Intelligence, pages 155–161. Elsevier,
1990. (Cited on page 215.)

Anthony Hunter and Sébastien Konieczny. Approaches to Measuring In-
consistent Information. In Leopoldo E. Bertossi, Anthony Hunter, and
Torsten Schaub, editors, Inconsistency Tolerance, volume 3300 of Lecture
Notes in Computer Science, pages 189–234. Springer-Verlag, 2004. (Cited
on page 78.)

Anthony Hunter and Sébastien Konieczny. Shapley Inconsistency Values.
In Proceedings of the Tenth International Conference on Knowledge Representa-
tion (KR’06), pages 249–259. AAAI Press, 2006. (Cited on pages 47, 78, 90,
93, 94, and 122.)

Anthony Hunter and Sébastien Konieczny. Measuring Inconsistency
through Minimal Inconsistent Sets. In Gerhard Brewka and Jérôme Lang,
editors, Proceedings of the Eleventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’2008), pages 358–366, Sydney,
Australia, 2008. AAAI Press. (Cited on pages 47, 49, 56, 57, 78, 90, 91, 92,
94, 96, 97, and 122.)

Anthony Hunter and Sébastien Konieczny. On the Measure of Conflicts:
Shapley Inconsistency Values. Artificial Intelligence, 174(14):1007–1026,
2010. (Cited on pages 43, 46, 53, 54, 78, 90, 91, 94, and 122.)

Anthony Hunter. Measuring Inconsistency in Knowledge via Quasi-
classical Models. In Proceedings of the 18th American National Conference
on Artificial Intelligence (AAAI’2002), pages 68–73. The MIT Press, 2002.
(Cited on page 78.)

276 Bibliography

Anthony Hunter. Evaluating the Significance of Inconsistencies. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI’03),
pages 468–473. Morgan Kaufmann Publishers, 2003. (Cited on page 78.)

Peter Jackson. Introduction to Expert Systems. Addison Wesley, third edition,
1998. (Cited on page 1.)

Manfred Jaeger. Default Reasoning about Probabilities. PhD thesis, Universität
des Saarlandes, 1995. (Cited on pages 146, 154, 155, 156, 157, 159, 180,
and 286.)

Manfred Jaeger. Relational Bayesian Networks: a Survey. Electronic Transac-
tions in Artificial Intelligence, 6, 2002. (Cited on page 132.)

Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge Univer-
sity Press, 2003. (Cited on pages 19 and 196.)

Phillip Judson. Knowledge-based Expert Systems in Chemistry. RSC Theoretical
and Computational Chemistry Series. Springer-Verlag, 2009. (Cited on
page 1.)

Jerry Kelly. Social Choice Theory: An Introduction. Springer-Verlag, 1988.
(Cited on pages 103 and 104.)

Gabriele Kern-Isberner and Thomas Lukasiewicz. Combining Probabilistic
Logic Programming with the Power of Maximum Entropy. Artificial In-
telligence, Special Issue on Nonmonotonic Reasoning, 157(1–2):139–202, 2004.
(Cited on pages 3, 4, 5, 27, 151, 157, 180, 181, and 190.)

Gabriele Kern-Isberner and Wilhelm Rödder. Belief Revision and Infor-
mation Fusion in a Probabilistic Environment. In Proceedings of the 16th
International FLAIRS Conference, (FLAIRS’03), pages 506–510. AAAI Press,
2003. (Cited on page 124.)

Gabriele Kern-Isberner and Matthias Thimm. Novel semantical approaches
to relational probabilistic conditionals. In Fangzhen Lin, Ulrike Sattler,
and Mirosław Truszczyński, editors, Proceedings of the Twelfth Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning
(KR’10). AAAI Press, 2010. (Cited on pages v, 5, and 137.)

Gabriele Kern-Isberner, Matthias Thimm, and Marc Finthammer. Qualita-
tive Knowledge Discovery. In Klaus-Dieter Schewe and Bernhard Thal-
heim, editors, Proceedings of the Thirrd International Workshop on Semantics
in Data and Knowledge Bases (SDKB), volume 4925 of Lecture Notes in Com-
puter Science, pages 88–113. Springer-Verlag, 2008. (Cited on page viii.)

Gabriele Kern-Isberner, Matthias Thimm, Marc Finthammer, and Jens Fis-
seler. Mining default rules from statistical data. In H. Chad Lane and
Hans W. Guesgen, editors, Proceedings of the 22th International FLAIRS
Conference (FLAIRS’09). AAAI Press, 2009. (Cited on page viii.)

Bibliography 277

Gabriele Kern-Isberner. Conditionals in Nonmonotonic Reasoning and Belief
Revision. Number 2087 in Lecture Notes in Computer Science. Springer-
Verlag, 2001. (Cited on pages 2, 3, 26, 27, 28, 32, 190, and 191.)

Kristian Kersting and Luc De Raedt. Bayesian Logic Programs. In Ce-
line Rouveirol and Michele Sebag, editors, Inductive Logic Programming:
Proceedings of the Tenth International Conference (ILP 2000). CEUR-WS.org,
2000. (Cited on page 34.)

Kristian Kersting and Uwe Dick. Balios – The Engine for Bayesian Logic
Programs. In Proceedings of the Eighth European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD-2004), pages 549–551,
2004. (Cited on page 133.)

Kristian Kersting and Luc De Raedt. Bayesian Logic Programming: Theory
and Tool. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical
Relational Learning, see (Getoor and Taskar, 2007), chapter 10. The MIT Press,
2007. (Cited on pages 33, 36, 38, and 142.)

Jacek Kisyński and David Poole. Lifted Aggregation in Directed First-order
Probabilistic Models. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI’09), pages 1922–1929, 2009. (Cited on
page 217.)

Kevin M. Knight. Measuring Inconsistency. Journal of Philosophical Logic,
31:77–98, 2001. (Cited on pages 43, 46, 59, 78, and 79.)

Kevin M. Knight. A Theory of Inconsistency. PhD thesis, University Of
Manchester, July 2002. (Cited on pages 59, 78, 79, and 80.)

Stanley Kok, Parag Singla, Matthew Richardson, Pedro Domingos, Marc
Sumner, Hoifung Poon, Daniel Lowd, and Jue Wang. The Alchemy System
for Statistical Relational AI: User Manual. Department of Computer Science
and Engineering, University of Washington, 2008. (Cited on page 41.)

Andrey Nikolaevich Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrech-
nung. Springer-Verlag, 1933. (Cited on page 19.)

Sébastian Konieczny and Ramón Pino-Pérez. On the Logic of Merging. In
Anthony G. Cohn, Lenhard K. Schubert, and Stuart C. Shapiro, editors,
Proceedings of the Sixth International Conference on Principles of Knowledge
Representationa and Reasoning (KR’98). Morgan Kaufmann Publisher, 1998.
(Cited on pages 46 and 103.)

Sébastien Konieczny and Ramón Pino-Pérez. Propositional Belief Base
Merging or how to Merge Beliefs/Goals Coming from Several Sources
and some Links with Social Choice Theory. European Journal of Operational
Research, 160(3):785–802, 2005. (Cited on page 103.)

278 Bibliography

Sébastien Konieczny, Jérôme Lang, and Pierre Marquis. Quantifying Infor-
mation and Contradiction in Propositional Logic Through Test Actions.
In Proceedings of the 18th International Joint Conference on Artificial Intel-
ligence (IJCAI’03), pages 106–111. Morgan Kaufmann Publishers, 2003.
(Cited on page 78.)

Sébastien Konieczny, Jérôme Lang, and Pierre Marquis. Reasoning under
Inconsistency: The Forgotten Connective. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’05), pages 484–489.
Morgan Kaufmann Publishers, 2005. (Cited on page 43.)

Patrick Krümpelmann and Matthias Thimm. A Logic Programming Frame-
work for Reasoning about Know-How. In Proceedings of the 14th Interna-
tional Workshop on Non-Monotonic Reasoning (NMR’10), 2010. (Cited on
page viii.)

Patrick Krümpelmann, Matthias Thimm, Manuela Ritterskamp, and
Gabriele Kern-Isberner. Belief Operations for Motivated BDI Agents.
In Lin Padgham, David C. Parkes, Joerg P. Müller, and Simon Parsons,
editors, Proceedings of the Seventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2008), pages 421–428, 2008. (Cited
on page viii.)

Henry Ely Kyburg, Ronald P. Loui, and Greg N. Carlson, editors. Knowl-
edge Representation and Defeasible Reasoning. Studies in Cognitive Systems.
Springer-Verlag, 1990. (Cited on page 2.)

Jérôme Lang and Pierre Marquis. Reasoning under Inconsistency: A
Forgetting-based Approach. Artificial Intelligence, 174(12–13):799–823,
2010. (Cited on page 89.)

Steffen Lauritzen and David J. Spiegelhalter. Local Computations with
Probabilities in Graphical Structures and their Applications to Expert
Systems. Journal of the Royal Statistical Society, Series B, 50(2):415–448, 1988.
(Cited on pages 22 and 23.)

Huma Lodhi and Stephen H. Muggleton. Modelling metabolic pathways
using stochastic logic programs-based ensemble methods. In Proceedings
of the Second International Conference on Computational Methods in System
Biology. Springer, 2004. (Cited on page 33.)

Sebastian Loh, Matthias Thimm, and Gabriele Kern-Isberner. On the Prob-
lem of Grounding a Relational Probabilistic Conditional Knowledge Base.
In Proceedings of the 14th International Workshop on Non-Monotonic Reason-
ing (NMR’10), 2010. (Cited on pages v, 3, 4, 5, 27, 130, 146, 147, 148, 150,
151, 157, 180, 181, 183, 190, and 221.)

Sebastian Loh. Grundierungstechniken für Relationale Probabilistische In-
ferenz, 2009. Diploma thesis, Technische Universität Dortmund, Ger-
many. (Cited on pages 146 and 181.)

Bibliography 279

Jana Ludolph. Qualitative Methoden zur Sicherung der Konsistenz bei
probabilistischen Wissensbasen, 2009. Diploma thesis, Technische Uni-
versität Dortmund, Germany. (Cited on page 103.)

Thomas Lukasiewicz. Probabilistic Deduction with Conditional Constraints
over Basic Events. Journal of Artificial Intelligence Research, 10(199–241),
1999. (Cited on page 30.)

David Makinson. General Theory of Cumulative Inference. In Michael Re-
infrank, Johan de Kleer, Matthew Ginsberg, and Erik Sandewall, editors,
Non-Monotonic Reasoning: Proceedings of the Second International Workshop,
volume 346 of Lecture Notes in Artificial Intelligence, pages 1–18. Springer-
Verlag, 1989. (Cited on pages 32, 159, and 162.)

Elliott Mendelson. Introduction to Mathematical Logic. Chapman & Hal-
l/CRC, fourth edition, 1997. (Cited on page 9.)

Carl-Heinz Meyer. Korrektes Schließen bei unvollständiger Information. PhD
thesis, FernUniversität in Hagen, Germany, 1997. (Cited on pages 218

and 221.)

Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and
Leslie Pack Kaelbling. Lifted Probabilistic Inference with Counting For-
mulas. In Procedings of the 23rd AAAI Conference on Artificial Intelligence,
pages 1062–1608, 2008. (Cited on pages 194, 215, and 217.)

David Miller. A Paradox of Information. British Journal for the Philosophy of
Science, 17, 1966. (Cited on page 154.)

James Munkres. Topology. Prentice Hall, second edition, 1999. (Cited on
page 62.)

Fabian Neuhaus, Stig Andur Pedersen, Uwe Scheffler, Heinrich Wansing,
and Vincent Hendricks, editors. First-Order Logic Revisited – Proceedings of
the conference “75 Years of First-Order Logic” at Humboldt University, Berlin
(Germany), September 18-21, 2003. Logos-Verlag, 2004. (Cited on page 12.)

Donald Nute and Charles Cross. Conditional Logic. In Dov Gabbay and
Franz Guenther, editors, Handbook of Philosophical Logic, volume 4, pages
1–98. Kluwer Academic Publishers, 2002. (Cited on page 26.)

Donald Nute. Defeasible Logic. In Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 3 of Nonmonotonic Reasoning and Uncer-
tain Reasoning, pages 353–395. Oxford University Press, 1994. (Cited on
pages 18 and 43.)

Jeff B. Paris and Alena Vencovská. In Defence of the Maximum Entropy
Inference Process. International Journal of Approximate Reasoning, 17(1):77–
103, 1997. (Cited on pages 190 and 191.)

280 Bibliography

Jeff B. Paris. The Uncertain Reasoner’s Companion: A Mathematical Perspective.
Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 1994. (Cited on pages 2, 4, 19, 20, 28, 31, 32, 46, 73, 76, 160,
173, 190, and 234.)

Jeff B. Paris. Common Sense and Maximum Entropy. Synthese, 117(1):75–93,
2000. (Cited on page 164.)

Giovanni Parmigiani. Modeling in Medical Decision Making: A Bayesian Ap-
proach. Statistics in Practice. John Wiley and Sons, 2002. (Cited on page 2.)

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, 1998. (Cited on pages 2, 19, 20,
22, 23, 24, 26, 32, 34, 36, 37, 123, and 172.)

Charles S. Peirce. Collected Papers of Charles Sanders Peirce: Pragmatism and
Pragmaticism. Number 5–6 in Paul Weiss and Charles Hartshorne, editors,
Scientific Metaphysics. Harvard University Press, 1972. (Cited on page 9.)

David Picado-Muiño. Measuring and Repairing Inconsistency in Probabilis-
tic Knowledge Bases. International Journal of Approximate Reasoning, 2011.
(Cited on pages 62 and 67.)

David Poole. First-Order Probabilistic Inference. In Georg Gottlob and Toby
Walsh, editors, Proceedings of the 18th International Joint Conference on Arti-
ficial Intelligence (IJCAI-03), pages 985–991. Morgan Kaufmann Publishers,
2003. (Cited on pages 194, 215, 216, and 217.)

James Popple. A Pragmatic Legal Expert System. Applied Legal Philosophy
Series. Dartmouth Publishing Group, 1996. (Cited on page 1.)

Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial
Intelligence. Springer-Verlag, 2009. (Cited on pages 2, 18, 43, and 89.)

Raymond Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13(1–
2):81–132, 1980. (Cited on pages 18, 43, and 89.)

Nicholas Rescher and Ruth Manor. On Inference from Inconsistent
Premises. Theory and Decision, 1:179–219, 1970. (Cited on page 43.)

Matthew Richardson and Pedro Domingos. Markov Logic Networks. Ma-
chine Learning, 62(1–2):107–136, 2006. (Cited on pages 33, 38, 39, 40,
and 194.)

Wilhelm Rödder and Carl-Heinz Meyer. Coherent Knowledge Processing
at Maximum Entropy by SPIRIT. In Proceedings of the Twelfth Conference on
Uncertainty in Artificial Intelligence (UAI’96), pages 470–476, 1996. (Cited
on pages 2, 184, and 191.)

Bibliography 281

Wilhelm Rödder and Longgui Xu. Entropy-driven Inference and Inconsis-
tency. In David Heckerman and Joe Whittaker, editors, Proceedings of The
Seventh International Workshop on Artificial Intelligence and Statistics, pages
272–277. Morgan Kaufmann Publishers, 1999. (Cited on page 124.)

Wilhelm Rödder and Longgui Xu. Elimination of inconsistent knowledge in
the probabilistic expertsystem-shell spirit (in german). In B. Fleischmann,
R. Lasch, K. Derigs, W. Domschke, and K. Riedler, editors, Operations Re-
search Proceedings: Selected Papers of the Symposium on Operations Research
2000, pages 260–265. Springer-Verlag, 2001. (Cited on pages 3, 4, 43, 46,
77, 78, 80, 81, 103, 122, 124, 125, and 221.)

Wilhelm Rödder, Ivan Ricardo Gartner, and Sandra Rudolph. Entropy-
driven Portfolio Selection - A Downside and Upside Risk Framework.
Technical report, Diskussionsbeitrag der Fakultät für Wirtschaftswis-
senschaft, FernUniversität in Hagen, 2009. (Cited on page 2.)

Wilhelm Rödder. Conditional Logic and the Principle of Entropy. Artificial
Intelligence, 117(1):83–106, 2000. (Cited on pages 3 and 26.)

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2009. (Cited on pages 1, 16, and 206.)

Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976. (Cited on page 19.)

Lloyd Stowell Shapley. A Value for n-Person Games. In Harold William
Kuhn and Albert William Tucker, editors, Contributions to the Theory
of Games II, volume 28 of Annals of Mathematics Studies, pages 307–317.
Princeton University Press, 1953. (Cited on pages 90, 93, 94, and 96.)

John E. Shore and Rodney W. Johnson. Axiomatic Derivation of the Princi-
ple of Maximum Entropy and the Principle of Minimum Cross-Entropy.
IEEE Transactions on Information Theory, 26:26–37, 1980. (Cited on pages 32,
190, 191, and 245.)

Edward .H. Shortliffe and Bruce G. Buchanan. A Model of Inexact Reason-
ing in Medicine. Mathematical Biosciences, 23(3–4):351–379, 1975. (Cited
on page 1.)

William Siler and James J. Buckley. Fuzzy Expert Systems and Fuzzy Reasoning.
John Wiley and Sons, 2005. (Cited on page 2.)

Brian Skyrms. Higher Order Degrees of Belief. In David Hugh Mellor,
editor, Prospects of Pragmatism: Essays in Honor of F.P. Ramsey. Cambridge
University Press, 1980. (Cited on page 154.)

Ofer Strichmann and Stefan Szeider, editors. Theory and Applications of
Satisfiability Testing - SAT 2010, 13th International Conference, Edinburgh,
UK, July 11–14, 2010, volume 6175 of Lecture Notes in Computer Science.
Springer-Verlag, 2010. (Cited on page 12.)

282 Bibliography

Matthias Thimm and Alejandro J. García. Classification and Strategical
Issues of Argumentation Games on Structured Argumentation Frame-
works. In Wiebe van der Hoek, Yves Lespérance Gal A. Kaminka,
Michael Luck, and Sandip Sen, editors, Proceedings of the Ninth Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems 2010
(AAMAS’10), 2010. (Cited on page vii.)

Matthias Thimm and Gabriele Kern-Isberner. A Distributed Argumentation
Framework using Defeasible Logic Programming. In Philippe Besnard,
Sylvie Doutre, and Anthony Hunter, editors, Proceedings of the Second
International Conference on Computational Models of Argument (COMMA’08),
Frontiers in Artificial Intelligence and Applications, pages 381–392. IOS
Press, 2008. (Cited on page vii.)

Matthias Thimm and Gabriele Kern-Isberner. A Distributed Argumen-
tation Framework using Defeasible Logic Programming (Extended Ver-
sion). Technical report, Technische Universität Dortmund, 2008. (Cited
on page vii.)

Matthias Thimm and Gabriele Kern-Isberner. On the Relationship of Defea-
sible Argumentation and Answer Set Programming. In Philippe Besnard,
Sylvie Doutre, and Anthony Hunter, editors, Proceedings of the Second In-
ternational Conference on Computational Models of Argument (COMMA’08),
Frontiers in Artificial Intelligence and Applications, pages 393–404. IOS
Press, 2008. (Cited on page vii.)

Matthias Thimm and Gabriele Kern-Isberner. On the Relationship of De-
feasible Argumentation and Answer Set Programming (Extended Ver-
sion). Technical report, Technische Universität Dortmund, 2008. (Cited
on page vii.)

Matthias Thimm and Gabriele Kern-Isberner. On Probabilistic Inference
in Relational Conditional Logics, 2011. Submitted. (Cited on pages v
and 174.)

Matthias Thimm and Patrick Krümpelmann. Know-How for Motivated
BDI Agents (Extended Abstract). In Keith S. Decker, Jaime Simão Sich-
man, Carles Sierra, and Cristiano Castelfranchi, editors, Proceedings of the
Eighth International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’09), pages 1143–1144, 2009. (Cited on page viii.)

Matthias Thimm and Patrick Krümpelmann. Know-How for Motivated
BDI Agents (Extended Version). Technical report, Technische Universität
Dortmund, Department of Computer Science, 2009. (Cited on page viii.)

Matthias Thimm, Alejandro J. Garcia, Gabriele Kern-Isberner, and
Guillermo R. Simari. Using Collaborations for Distributed Argumen-
tation with Defeasible Logic Programming. In Maurice Pagnucco and
Michael Thielscher, editors, Proceedings of the 12th International Workshop

Bibliography 283

on Non-Monotonic Reasoning (NMR’08), pages 179–188. University of New
South Wales, Technical Report No. UNSW-CSE-TR-0819, 2008. (Cited on
page vii.)

Matthias Thimm, Marc Finthammer, Sebastian Loh, Gabriele Kern-Isberner,
and Christoph Beierle. A System for Relational Probabilistic Reasoning
on Maximum Entropy. In Hans W. Guesgen and R. Charles Murray,
editors, Proceedings of the 23rd International FLAIRS Conference (FLAIRS’10).
AAAI Press, 2010. (Cited on pages v and 146.)

Matthias Thimm, Marc Finthammer, Gabriele Kern-Isberner, and Christoph
Beierle. Comparing Approaches to Relational Probabilistic Reasoning:
Theory and Implementation, 2011. Submitted. (Cited on pages v, 189,
and 191.)

Matthias Thimm, Gabriele Kern-Isberner, and Jens Fisseler. Relational Prob-
abilistic Conditional Reasoning at Maximum Entropy. In Proceedings of the
The Eleventh European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU’11), 2011. (Cited on pages v
and 174.)

Matthias Thimm. Verteilte logikbasierte Argumentation: Konzeption, Implemen-
tierung und Anwendung im Rechtswesen (Diploma Thesis). VDM Verlag Dr.
Müller, 2008. (Cited on page vii.)

Matthias Thimm. Measuring inconsistency in probabilistic knowledge
bases. In Jeff Bilmes and Andrew Ng, editors, Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence (UAI’09), 2009.
(Cited on pages v, 5, 65, 77, and 78.)

Matthias Thimm. Representing Statistical Information and Degrees of Belief
in First-Order Probabilistic Conditional Logic. In Workshop on Relational
Approaches to Knowledge Representation and Learning, Proceedings, pages 49–
63, 2009. (Cited on pages v, 5, 137, and 169.)

Matthias Thimm. Realizing Argumentation in Multi-Agent Systems using
Defeasible Logic Programming. In Peter McBurney, Iyad Rahwan, Si-
mon Parsons, and Nicolas Maudet, editors, Argumentation in Multi-Agent
Systems, Post-Proceedings of the Sixth International Workshop (ArgMAS), Bu-
dapest, Hungary, May 2009 (revised, selected and invited papers), volume 6057

of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2010. (Cited on
page vii.)

Alan Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, Se-
ries 2, 42:230–265, 1937. (Cited on page 12.)

Miklos A. Vasarhelyi, Enrique Bonson, and Rani Hoitash, editors. Artificial
Intelligence in Accounting & Auditing: International Perspectives. Rutgers

284 Bibliography

Series in Accounting Information Systems. Markus Wiener Publishers,
2005. (Cited on page 1.)

Nevin L. Zhang and David Poole. Exploiting Causal Independence in
Bayesian Network Inference. Journal of Artificial Intelligence Research,
5:301–328, 1996. (Cited on page 215.)

N O TAT I O N S

N0 Natural numbers with zero

R Real numbers

R+
0 Non-negative real numbers

Q Rational numbers

Q+
0 Non-negative rational numbers

P(X) Power set of X, i. e. the set of subsets of X

Pord(X) Set of all vectors of elements of X

Dom f Domain of a function f , i. e., if f : X → Y then Dom f = X

Im f Image of a function f , i. e. Im f = { f (x) | x ∈ Dom f }
(n

k) Binomial coefficient indexed by n and k

(n
k1,...,kr

) Multinomial coefficient indexed by n and k1, . . . , kr

~x Vector x = (x1, . . . , xn)

| S | Cardinality of a set S

ld x Binary logarithm of x

ln x Natural logarithm of x

exp(x) Exponential function with base e

D(~y,~z) Generalized divergence of ~y to ~z, cf. page 81

sgn(x) Sign of x

cl(G) Set of cliques of graph G
nd(v) Set of non-descendants of a node v in a directed graph G
pa(v) Set of parents of a node v in a directed graph G
B Set of Boolean truth values true and false

> Tautology, cf. Definition 2.2 on page 10 and Definition 2.8
on page 13

⊥ Contradiction, cf. Definition 2.2 on page 10 and Defini-
tion 2.8 on page 13

At Propositional signature (a set of atoms), cf. Definition 2.1
on page 10

At(S) Set of atoms appearing in a set S of formulas or
conditionals

At(Σ) Herbrand base of Σ, cf. Definition 2.13 on page 17

285

286 Notations

Σ First-order signature, cf. Definition 2.5 on page 13

Lit(At) Set of propositional literals with respect to At, cf. page 10

Lit(Σ, V) Set of first-order literals with respect to Σ and V, cf.
page 14

Terms(Σ, V) Set of first-order terms with respect to Σ and V, cf. Defini-
tion 2.6 on page 13

L(At) Propositional language with respect to At, cf. Defini-
tion 2.2 on page 10

L(Σ, V) First-order language with respect to Σ and V, cf. Defini-
tion 2.8 on page 13

L/∀/∃(Σ, V) Quantifier-free fragment of L(Σ, V), cf. page 14

L Logical language, i. e. either L(At) or L(Σ, V), cf. page 18

(L | L) Conditional language on L, cf. Definition 2.23 on page 26

(L | L)pr Probabilistic conditional language on L, cf. Definition 2.24

on page 26

(L | L)pr,pr Probabilistic bounded conditional language on L, cf.
page 30

L1 Probabilistic language of (Halpern, 1990), cf. Section 5.5.2
on page 151ff.

L2 Probabilistic language of (Halpern, 1990), cf. Section 5.5.2
on page 151ff.

L3 Probabilistic language of (Halpern, 1990), cf. Section 5.5.2
on page 151ff.

L≈ Probabilistic language of (Grove et al., 1994; Bacchus et al.,
1996), cf. Section 6.4.2 on page 184ff.

Lβ Probabilistic language of (Jaeger, 1995), cf. Section 5.5.2 on
page 151ff.

Int(At) Set of propositional interpretations I : At → {true, false},
cf. Definition 2.3 on page 11

Int(Σ) Set of first-order interpretations I = (UI , f U
I , PredI , FuncI)

with respect to Σ, cf. Definition 2.9 on page 15

PP(At) Set of all probability functions on Ω(At), cf. page 20

PF(Σ) Set of all probability functions on Ω(Σ), cf. page 135

P̂D Set of condensed probability functions wrt. D, cf. Defini-
tion 7.9 on page 204

Ω(At) Set of propositional possible worlds, cf. page 11

Ω(Σ) Set of Herbrand interpretations with respect to Σ, cf. Defi-
nition 5.2 on page 136

Notations 287

Ω(Σ, D) Set of relevant Herbrand interpretations of Ω(Σ) wrt. D ,
cf. Definition 2.14 on page 17

Ω̂ Set of reference worlds, cf. Definition 7.6 on page 199

|=P Satisfaction relation for propositional logic, cf. page 11

|=F Satisfaction relation for first-order logic, cf. page 15

|=pr Satisfaction relation for probabilistic conditional logic, cf.
page 28 and page 135

|=pr
int Inference relation for bounded probabilistic conditionals,

cf. page 30

|=pr
∅ Satisfaction relation for averaging semantics, cf. Sec-

tion 5.3.1 on page 136ff.

|=pr
� Satisfaction relation for aggregating semantics, cf. Sec-

tion 5.3.2 on page 140ff.

|=G Satisfaction relation for grounding semantics, cf. Sec-
tion 5.5.1 on page 146ff. and Section 6.4.1 on page 181ff.

|=pr
1 Satisfaction relation for L1, cf. Section 5.5.2 on page 151ff.

|=pr
2 Satisfaction relation for L2, cf. Section 5.5.2 on page 151ff.

|=pr
3 Satisfaction relation for L3, cf. Section 5.5.2 on page 151ff.

|=ε
≈ Satisfaction relation for L≈, cf. Section 6.4.2 on page 184ff.

ModP(Φ) Set of propositional models (⊆ Int(At)) of a set Φ of propo-
sitional formulas, cf. Definition 2.4 on page 11

ModF(Φ) Set of first-order models (⊆ Int(Σ)) of a set Φ of first-order
formulas, cf. Definition 2.4 on page 11

ModPr(X) Set of probability functions (⊆ PP(At)) of a probabilistic
conditional or a knowledge base X, cf. page 28

≡P Propositional equivalence, cf. page 12

≡F First-order equivalence, cf. page 16

≡pr Probabilistic equivalence, cf. page 29

≡kb Probabilistic kb-equivalence, cf. page 29

≡cond Probabilistic cond-equivalence, cf. page 29

≡∅ Equivalence wrt. averaging semantics, cf. page 138

≡� Equivalence wrt. aggregating semantics, cf. page 143

≡R R-equivalence, cf. Definition 6.1 on page 163 and Defini-
tion 7.3 on page 197

S(R) Set of R-equivalences classes, cf. Definition 6.2 on
page 163

S|D(R) Set of focused R-equivalences classes wrt. D, cf. page 197

288 Notations

Γ(Σ, V) Set of replacements with respect to Σ and V, cf. Defini-
tion 2.12 on page 16

Γgnd(Σ, V) Set of ground replacements with respect to Σ and V, cf.
page 16

Const(X) Set of constants appearing in a first-order formula, a set
of first-order formulas, a relational probabilistic condi-
tional, or a set of relational probabilistic conditionals X,
cf. pages 17 and 133

gndD(X) Set of ground instances of a first-order formula, a set of
first-order formulas, a relational probabilistic conditional,
or a set of relational probabilistic conditionals X with re-
spect to D, cf. pages 17 and 134

gndP
D((ψ | φ)) Set of ground instances (ψ′ | φ′) of a relational proba-

bilistic conditional (ψ | φ) with respect to D that satisfy
(P(φ′) > 0, cf. page 137

H(P) Entropy of a probability function P, cf. Definition 2.26 on
page 31

HD(P) Entropy of a probability function P wrt. D, cf. page 168

and page 207

P0 Uniform probability function, cf. page 19

ucp(ψ | φ) Probability of (ψ | φ) in the uniform probability function,
cf. Definition 4.7 on page 108

P Focused probability function of P, cf. Definition 7.2 on
page 196

ME(R) ME model of a knowledge base R of propositional proba-
bilistic conditionals, cf. page 32

⊥⊥P Probabilistic resp. conditional independence, cf. Defini-
tion 2.16 on page 21 and Definition 2.18 on page 22

⊥⊥G Graph separation, cf. Definition 2.20 on page 24

CPDp Set of conditional probability distributions for a predicate
p, cf. Definition 2.29 on page 34

ΛR Characteristic function of R, cf. Definition 3.3 on page 51

θInc,R Characteristic inconsistency function of Inc and R, cf. Def-
inition 3.4 on page 51

θ†
C,R Characteristic culpability function of C and R, cf. Defini-

tion 4.2 on page 92

Incd Drastic inconsistency measure, cf. Definition 3.5 on
page 53

IncMI MI inconsistency measure, cf. Definition 3.6 on page 54

Notations 289

IncMI
0 Normalized MI inconsistency measure, cf. Definition 3.7

on page 55

IncMI
C MIC inconsistency measure, cf. Definition 3.8 on page 57

IncMI
C,0 Normalized MIC inconsistency measure, cf. Definition 3.9

on page 58

Inc∗ MinDev inconsistency measure, cf. Definition 3.10 on
page 60

Inc∗0 Normalized MinDev inconsistency measure, cf. Defini-
tion 3.11 on page 66

I≥ Upper approximation of Inc∗, cf. page 72

I≤ Lower approximation of Inc∗, cf. page 71

Inc∗b Bounded MinDev inconsistency measure, cf. page 73

Inc∗LP MinDev inconsistency measure on linear constraints, cf.
page 77

Inch
µ Inconsistency measure based on candidacy degrees, cf.

page 84

Incgd Inconsistency measure based on generalized divergence,
cf. page 81

MI(R) Set of minimal inconsistent subsets of R, cf. page 48

MD(R) Set of probability values for knowledge bases with mini-
mal (1-norm) distance to R, cf. page 63

MDi(R) Set of minimal distances for the probabilistic conditional
ri, cf. page 98

PMD(R) Set of probability functions for knowledge bases with min-
imal (1-norm) distance to R, cf. page 63

Cons(R) Constrained satisfaction problem to determine consis-
tency of R, cf. page 45

DevCons(R) Set of constraints used for the optimization problem to
compute Inc∗(R), cf. page 60

DevConsLin(R) Set of constraints used for the optimization problems to
compute I≥(R) and I≤(R), cf. page 72ff.

DevConsLinb(R) Set of constraints used for the optimization problem to
compute Inc∗b(R), cf. page 73

DevConsLinlp(R) Set of constraints used for the optimization problem to
compute Inc∗LP(R), cf. page 77

CRDevCon(C,R) Set of constraints used for computing ΥB
C(R), cf. Defini-

tion 4.14 on page 120

SRInc Shapley culpability measure, cf. Definition 4.5 on page 95

290 Notations

AR Mean distance culpability measure, cf. Definition 4.6 on
page 98

SignCulpR(r) Sign of culpability of r in R, cf. page 98

ΥU Unbiased consistency restorer, cf. Definition 4.9 on
page 109

ΥP Penalizing consistency restorer, cf. Definition 4.11 on
page 113

ΥS
C Smoothed penalizing consistency restorer, cf. Defini-

tion 4.13 on page 118

ΥB
C Balanced consistency restorer, cf. Definition 4.14 on

page 120

Ξ Creeping function, cf. page 107

ΞU Unbiased creeping function, cf. Definition 4.8 on page 109

ΞP Penalizing creeping function, cf. Definition 4.10 on
page 112

ΞS Smoothed penalized creeping function, cf. Definition 4.12

on page 118

I∅ Averaging inference operator, cf. Section 6.2.1 on
page 169ff.

I� Aggregating inference operator, cf. Section 6.2.2 on
page 173ff.

IG Grounding inference operator, cf. Section 6.4.1 on
page 181ff.

Prε
n Degree of belief for domain size n in the framework of

(Grove et al., 1994; Bacchus et al., 1996), cf. Section 6.4.2 on
page 184ff.

Pr∞ Degree of belief for infinite domain size in the framework
of (Grove et al., 1994; Bacchus et al., 1996), cf. Section 6.4.2
on page 184ff.

$(ω) Expansion set of ω, cf. Definition 7.1 on page 196

Θ Set of truth configurations, cf. Definition 7.4 on page 199

I Set of instance assignments, cf. Definition 7.5 on page 199

κ Equivalence mapping, cf. Definition 7.7 on page 200

ρω̂ Span number of ω̂, cf. page 202

gc Cardinality generator, cf. Definition 7.10 on page 209

I N D E X

CR-conformity, 106

inverse, 107

Inc-distribution, 91, 123

Inc-symmetry, 91

η-consistency, 78

R-equivalence, 163, 197

class, 163

ME-compatibility, 168

MinInc separability, 49

aggregating inference, 173

lifted, 208

aggregating semantics, 140

atom
first-order, 13

propositional, 10

averaging inference, 169

lifted, 208

averaging semantics, 136

Bayesian clause, 34

Bayesian logic program, 33, 131,
188

Bayesian network, 22

candidacy function, 83, 122

cardinality generator, 209

characteristic culpability function,
92

characteristic function, 51, 60, 73

characteristic inconsistency func-
tion, 51

coalition game, 93

compensation, 167

complete conjunction, 11

conditional, 26

probabilistic, 26

bounded, 30, 73

open, 134

conditional independence, 22

conditional logic
probabilistic, 26

relational probabilistic, 133

conditional probability, 21, 22

conditional probability distribu-
tion, 34

consistency, 47, 104

consistency restorer, 102

balanced, 120

creeping
penalized, 113

smoothed penalized, 118

unbiased, 109

constant, 12

continuity, 51, 93, 107

convergence, 166

creeping function, 107

penalized, 111

smoothed penalized, 115

unbiased, 109

culpability measure, 91

mean distance, 98

probabilistic Shapley, 95

culpability value, 91

culpability vector, 111

normalized, 111

cumulativity, 162

decomposability, 92

direct inference, 154, 167

entropy, 31, 168, 169, 173, 181, 186,
207

equivalence
aggregating semantics, 143

average semantics, 138

cond-, 29, 104

first-order, 16

kb-, 29

probabilistic, 29

propositional, 12

equivalence mapping, 200

existence, 103

291

292 Index

expansion set, 196

expert system, 1

first-order logic, 12

formula
first-order, 14

ground, 14

propositional, 10

free conditional, 48

function, 12

functor, 12

generalized divergence, 81, 124

global Markov property, 25

graph separation, 24

grounding constraints, 146

grounding operator, 147, 181

naive, 147

Herbrand base, 17

Horn clause, 14

hyperplane, 46

normalization, 46

inconsistency measure, 46

MinDev, 60, 98

bounded conditionals, 73

linear knowledge base, 77

MI, 54

MIC, 57, 97

drastic, 53

normalized MinDev, 66

normalized MI, 55

normalized MIC, 58

inconsistency value, 47

independence, 48

weak, 48

independence map, 25

independence of irrelevant alter-
natives, 106

instance assignment, 199

interpretation
first-order, 15

Herbrand, 17

propositional, 11

irrelevance of syntax, 47, 104

knowledge base, 27

Kolmogorov axioms of probabil-
ity, 19

language
first-order, 13

propositional, 10

simple relational, 133

left logical equivalence, 162

lifted inference, 193

linear probabilistic constraint, 75

linear probabilistic knowledge
base, 75, 83

literal
first-order, 14

propositional, 10

local Markov property, 23

manhattan distance, 62

Markov logic network, 38, 189

Markov net, 24

maximum entropy model, 32, 124

minimal inconsistent subset, 48

minimality, 92

model
first-order, 16

probabilistic, 28

propositional, 11

model-based inductive reasoning,
31, 160

monotonicity, 47, 162

name irrelevance, 164

noisy-or, 36

non-dictatorship, 105

non-imposition, 105

rational, 105

normalization, 51

object, 12

Pareto-efficiency, 105

penalty, 50

possible world, 11, 20

predicate, 12

principle of maximum entropy, 31,
124, 168, 169, 173, 181

principle of symmetry, 164

Index 293

probabilistic fact, 27

probabilistic independence, 21

probability function, 19

condensed, 204

focused, 196

uniform, 19

probability theory, 19

propositional logic, 9

prototypical indifference, 163

prototypical uniformity, 204

quantification, 12

random-worlds method, 184

reference world, 199

reflexivity, 162

relevance set, 136

replacement, 16

grounding, 16

right weakening, 162

satisfaction
first-order, 15

probabilistic, 28, 67

propositional, 11

self-consistency, 28, 48

semantics
first-order logic, 15

probabilistic conditional
logic, 27

propositional logic, 11

sentence
first-order, 14

propositional, 10

Shapley value, 94

sign of culpability, 98

signature
first-order, 13

propositional, 10

simple relational, 133

span number, 202

statistical relational learning, 32,
131, 159, 188

strict inference, 167

structural preservation, 104

success, 104

super-additivity, 47

syntax
first-order logic, 12

probabilistic conditional
logic, 26

propositional logic, 10

relational probabilistic condi-
tional logic, 133

tautological probabilistic condi-
tional, 28

term, 13

truth configuration, 199

uniform conditional probability,
108

uniqueness, 103

universe, 15

variable, 13

bound, 14

free, 14

variable assignment, 15

well-definedness, 163

	Abstract
	Publications
	Acknowledgments
	Contents
	Introduction
	Context and Motivation
	Research Questions and Contributions
	Measuring Inconsistency in Probabilistic Conditional Logic
	Solving Inconsistencies
	Novel Semantical Approaches to Relational Probabilistic Conditional Logic
	Inference in Relational Probabilistic Conditional Logic
	Lifted Inference in Relational Probabilistic Conditional Logic

	Outline

	Logical Background and Probabilistic Reasoning
	Classical Logic
	Propositional Logic
	First-Order Logic
	Beyond Classical Logics

	Probability Theory and Probabilistic Networks
	Foundations of Probability Theory
	Bayesian Networks
	Markov Nets

	Probabilistic Conditional Logic and Maximum Entropy
	Relational Probabilistic Reasoning
	Bayesian Logic Programs
	Markov Logic Networks

	Summary

	Measuring Inconsistency
	Inconsistencies in Probabilistic Conditional Logic
	Desirable Properties for an Inconsistency Measure
	Traditional Approaches for Measuring Inconsistency
	Measuring Inconsistency by Distance Minimization
	The General Approach
	Approximating Distance Minimization
	Extensions

	Related Work
	-Consistency
	An Inconsistency Measure based on Generalized Divergence
	Candidacy Degrees of Best Candidates

	Summary and Discussion

	Solving Conflicts using Inconsistency Measures
	Culpability Measures
	Shapley Culpability Measure
	Mean Distance Culpability Measure

	Principled Consistency Restoring
	Solving Conflicts by Penalizing Culpabilities
	Unbiased Creeping
	Penalized Creeping
	Smoothed Penalized Creeping

	Solving Conflicts by Balanced Distance Minimization
	Related Work
	Culpabilities and Candidacy degrees
	Qualitative Modification and Generalized Divergence
	Heureka

	Summary and Discussion

	Relational Probabilistic Conditional Logic
	Relational Probabilistic Models and NMR
	Syntax of RPCL
	Semantics of RPCL
	Averaging Semantics
	Aggregating Semantics

	Properties and Analysis
	Related Work
	Grounding Semantics for RPCL
	First-order Probabilistic Logic

	Summary and Discussion

	Reasoning at Maximum Entropy in RPCL
	Probabilistic Reasoning and Desirable Properties
	Probabilistic Inference by Maximizing Entropy
	Averaging Inference
	Aggregating Inference

	Analysis and Comparison
	Related Work
	Grounding Semantics and Maximum Entropy
	First-order Probabilistic Logic and Random Worlds
	Statistical Relational Learning

	Summary and Discussion

	Lifted Inference in RPCL
	Lifted Inference
	Condensed Probability Functions
	Lifted Inference and Maximum Entropy

	Analysis
	Generalizing Lifted Inference
	Related Work
	Summary and Discussion

	Summary and Final Remarks
	Summary
	Further and Future Work
	Conclusion

	Proofs of Technical Results
	Examples – PCL
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	Bibliography
	Notations
	Notations

	Index

