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Abstract. Usually, default rules in the form of conditional state-
ments are built on propositional logic, representing classes of in-
dividuals by propositional variables, as in “Birds fly, but penguins
don’t”. Only few approaches have addressed the problem of giv-
ing formal semantics to first-order conditionals that allow (non-
monotonic) inferences both for classes and for individuals. In this
paper, we present a semantics for first-order conditionals that is based
on ordinal conditional (or ranking) functions which are well-known
in the area of propositional default reasoning and makes use of repre-
sentative individuals to establish conditional relationships. We gen-
eralize the c-representation approach of [8] for inductive reasoning
with first-order conditionals, and evaluate our approach via bench-
mark examples and a catalogue of general properties.

Introduction
Default reasoning aims at implementing uncertain reasoning in a
qualitative way. Frameworks and postulates have been set up to elab-
orate what a “reasonable” default logic should conclude, and differ-
ent seminal approaches have been put forward, see, e. g., [15, 9]. In
many approaches, conditionals are used as representations of rules
that hold in general but may have exceptions, see e. g. [2]. A con-
ditional c has the form (B |A) and represents the (defeasible) rule
“If A then (usually, probably) B”. Usually, default logics are propo-
sitional, only few advances have been made to build on first-order
logics, or fragments thereof. In [2], Delgrande presents a first-order
conditional logic that allows for the representation of information
both on classes and on individuals in the same framework. An ex-
ample that illustrates nicely the problem under consideration is the
following one (taken from [2]).

Example 1. We consider elephants x, E(x), and their keepers y,
K(y), and let L(x, y) denote that x likes y. The following (open)
first-order conditionals represent knowledge about the relationships
between elephants and keepers in a fictitious zoo.

r1 : (L(x, y) |E(x) ∧K(y))

r2 : (¬L(x, Fred) |E(x) ∧K(Fred))

r3 : (L(Clyde, Fred) |E(Clyde) ∧K(Fred))
From the point of view of common sense, this knowledge base makes
perfect sense: r1 expresses that usually, elephants like their keeper.
However, keeper Fred and elephant Clyde are exceptional—usually,
elephants do not like Fred, but Clyde likes (even) Fred. Maybe Clyde
is a particularly good-natured elephant, maybe he is as moody as
Fred and likes only him. So, Clyde is definitely exceptional with re-
spect to r2, but maybe even with respect to r1.

The elephant-keeper-example makes the ambiguity inherent to
such first-order statements obvious, indeed, their formal interpre-
tation is intricate. Conditional r1 seems to express knowledge on
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classes (maybe on populations), while r3 clearly expresses subjective
belief: Considering all situations (possible worlds) involving Clyde
and Fred which are imaginable, we expect worlds in which Clyde
likes Fred to be more plausible. So, we might think of applying dif-
ferent techniques to r1 and r3, but r2 obviously mixes the two types
of knowledge, how should r2 be handled? Moreover, r1 and r2 are
open conditional statements, we might be tempted to use universal
quantification here, but then conflicts between the conditionals will
arise concerning Clyde and Fred. In [2], problems of this kind are
solved via a modal approach, making use of actual subuniverses of
a common universe and by interpreting conditionals in a preferential
way.

In the present paper, we propose an approach to reason with first-
order conditional knowledge bases that is thoroughly based on rank-
ing functions which are also quite popular to provide semantics to
propositional default logics [6]. The knowledge bases may contain
classical and conditional formulas, grounded or not, with a coher-
ent interpretation via ranking functions. As a main contribution of
this paper, we develop a novel semantics that generalizes the propo-
sitional interpretation of conditionals and makes open conditionals
take the role of (first-order) default rules expressing uncertain state-
ments about the usual behaviour of individuals in a population. Fur-
thermore, we make use of representatives as most convincing in-
stances to establish such open conditional relationships. In order to
define an inductive model-based reasoning mechanism, we general-
ize the concept of so-called c-representations using the algebraic for-
malism of conditional structures for the first-order framework [7, 8].
Inference can then be based on considering all c-representations of
a knowledge base, or on selecting a particular c-representation as a
“best” model of the knowledge base. We identify several key prop-
erties of our approach and compare it to related work. We also apply
our approach to benchmark examples adapted from propositional de-
fault reasoning and show that it behaves well.

The rest of this paper is organized as follows. We continue with in-
troducing the syntax of our first-order conditional logic and propose a
novel ranking semantics for first-order conditionals afterwards. Then
we generalize the concept of c-representations to our new semantics
and illustrate its use on several examples. Afterwards we investigate
the properties of the approach and relate it to other works. Finally, we
conclude with a brief summary and discussion of future work. Proofs
of technical results have been omitted due to space restrictions.

Syntax of first-order conditionals

Let Σ be a first-order signature consisting of a finite set of predi-
cates PΣ and a finite set of constant symbols UΣ but without func-
tion symbols of arity > 0. An atom is a predicate of arity n together
with a list of n constants and/or variables. A literal is an atom or
a negated atom. Formulas are built on atoms using conjunction (∧),



disjunction (∨), negation (¬), and quantification (∀, ∃). We abbrevi-
ate conjunctions by juxtaposition and negations usually by overlin-
ing, e. g. AB means A ∧ B and A means ¬A. A ground formula
contains no variables. In a closed formula, all variables (if they oc-
cur) are bound by quantifiers, otherwise, the formula is open, and
the variables that occur outside of the range of quantifiers are called
free. If a formula A contains free variables we also use the notation
A(~x) where ~x = (x1, . . . , xn) contains all free variables in A. If
~c is a vector of the same length as ~x then A(~c) is meant to denote
the instantiation of A with ~c. A formula ∀~xA(~x) (∃~xA(~x)) is uni-
versal (existential) if A involves no further quantification. Let LΣ be
the first-order language that allows no nested quantification, i.e., all
quantified formulas are either universal or existential formulas.
LΣ is extended by a conditional operator “ | ” to a conditional

language (LΣ | LΣ) containing first-order conditionals (B |A) with
A,B ∈ LΣ, and (universally or existentially) quantified conditionals
∀~x(B |A), ∃~x(B |A)3. When writing (B(~x) |A(~x)), we assume ~x
to contain all free variables occurring in either A or B. Conditionals
cannot be nested. When the signature is clear from context, we will
also omit the subscript Σ. To exemplify the syntax, consider the rules
r1, r2, r3 from Example 1 in the introduction with r1, r2 being open
first-order conditionals.

A first-order conditional knowledge baseR is a (finite) set of (con-
ditional) formulas from LΣ ∪ (LΣ | LΣ) with the restriction that no
existential (outer) quantification of conditionals may occur. A first-
order knowledge base KB = 〈F ,R〉 consists of a first-order condi-
tional knowledge base R, together with a set F of closed formulas
from LΣ, called facts.

OCF-based Semantics
For interpretation of first-order aspects we use the Herbrand seman-
tics. The Herbrand base HΣ of a first-order signature Σ is the set
of all ground atoms of Σ. A possible world ω is any subset of HΣ.
A possible world can be concisely represented as a complete con-
junction or minterm, i. e. a conjunction of literals where every atom
of HΣ appears either in positive or in negated form. The set of all
possible worlds of Σ is denoted by ΩΣ. Let |= denote the classical
satisfaction relation between possible worlds and formulas from LΣ.

For an open conditional (B(~x) |A(~x)) ∈ (LΣ | LΣ) let
H(B(~x) |A(~x)) denote the set of all constant vectors ~a used for proper
groundings of (B(~x) |A(~x)) from the Herbrand universe HΣ, i. e.
H(B(~x) |A(~x)) = U

|~x|
Σ where |~x| is the length of ~x.

Just as in the propositional case, the set ΩΣ of possible worlds can
be ranked by an ordinal conditional function (OCF, also called rank-
ing function) that assigns degrees of (im)plausibility resp. disbelief
to possible worlds and statements [16].

Definition 1. An ordinal conditional function (OCF) κ on ΩΣ is a
function κ : ΩΣ → N ∪ {∞} with κ−1(0) 6= ∅.

We can now make use of the possible world semantics to assign
degrees of disbelief also to formulas and (non-quantified) condition-
als. In the following, let A,B ∈ LΣ denote closed formulas, and let
A(~x), B(~x) ∈ LΣ denote open formulas.

Definition 2. Let κ be an OCF. The κ-ranks of closed formulas are
defined (as in the propositional case [16]) via

κ(A) = min
ω|=A

κ(ω) and κ(B |A) = κ(AB)− κ(A).

3 These quantifications will often be distinguished as outer quantifications in
the paper.

Furthermore, we define the κ-ranks for open formulas and open, non-
quantified conditionals by evaluating most plausible instances:

κ(A(~x)) = min
~a∈HA(~x)

κ(A(~a))

κ(B(~x) |A(~x)) = min
~a∈H(B(~x) |A(~x))

κ(A(~a)B(~a))− κ(A(~a)).

The ranks of first-order formulas are coherently based on the usage
of OCFs for propositional formulas. Just as in the propositional case,
these degrees of beliefs are used to specify when a formula from
(LΣ | LΣ) is accepted, i. e. deemed highly plausible, by a ranking
function κ (where acceptance is denoted by |=). We will first consider
the acceptance of closed (conditional) formulas.

Definition 3. Let κ be an OCF. The acceptance relation between κ
and formulas from LΣ and (LΣ | LΣ) is defined as follows:
• for closed formulas:

– κ |= A iff for all ω ∈ Ω with κ(ω) = 0, it holds that ω |= A.

– κ |= (B |A) iff κ(AB) < κ(AB).

• for universal/existential conditionals:

– κ |= ∀~x(B(~x) |A(~x)) iff κ |= (B(~a) |A(~a)) for all ~a ∈
H(B(~x) |A(~x)).

– κ |= ∃~x(B(~x) |A(~x)) iff there is ~a ∈ H(B(~x) |A(~x)) such that
κ |= (B(~a) |A(~a)).

Acceptance of a sentence by a ranking function is the same as in
the propositional case for ground sentences, and interprets the clas-
sical quantifiers in a straightforward way. Note that no classical rela-
tions hold between universal and existential formulas, as acceptance
by ranking functions is three-valued.

The treatment of acceptance of open formulas is more intricate, as
such formulas will be used to express default statements, like in “A
is plausible”, or in “usually, ifA holds, thenB also holds”. The basic
idea here is that such (conditional) open statements hold if there are
individuals that provide most convincing instances of the respective
conditional. These so-called representatives should, of course, allow
for the acceptance of the instantiated conditional (as in Definition 3)
while most plausibly verifying the conditional (i. e. satisfying A and
B). Moreover, representatives are expected to be least exceptional
with respect to falsifying the conditional. The following definition
makes use of the κ-ranks of Definition 2 to formalize this precisely.

Definition 4. Let r = (B(~x) |A(~x)) ∈ (LΣ | LΣ) be a non-
quantified conditional involving open formulas fromLΣ. We say that
~a ∈ H(B(~x) |A(~x)) is a weak representative of r iff it satisfies the fol-
lowing conditions:

κ(A(~a)B(~a)) = κ(A(~x)B(~x)) (1)

κ(A(~a)B(~a)) < κ(A(~a)B(~a)) (2)

The set of weak representatives of r is denoted by WRep(r). We say
that~a ∈ H(B(~x) |A(~x)) is a (strong) representative of r iff it is a weak
representative of r and

κ(A(~a)B(~a)) = min
~b∈WRep(r)

κ(A(~b)B(~b)). (3)

The set of all representatives of r is denoted by Rep(r).

(Weak) Representatives of a conditional are characterized by being
most general and least exceptional. This is expressed by (1) that pos-
tulates that representatives are most normal with respect toA’s being
also B’s, and also by (3) that demands that representative individu-
als should be least specific with respect to violating the link between



A and B; otherwise, this violation might be caused by extraordinary
attributes. This can be easily exemplified in the popular penguin sce-
nario. Consider a scenario where we have birds, penguins, and super-
penguins. Birds usually fly, whereas penguins are expected not to fly
while super-penguins are famous for flying. What is a representative
(flying) bird here? It is definitely not a penguin since penguins usu-
ally do not fly (violating (2)). While we might more strongly believe
that super-penguins fly than to care about the non-specified bird next
to us (super-penguins are famous!), super-penguins are too specific
to serve as good representatives. Representatives should be general,
covering as many species of flying birds as possible. But, due to this
generality, we would also be more willing to accept an exception here
than for more specific subclasses. Superpenguins might be able to fly
because they are equipped with motorized wings, and their failure of
flying might be caused by a motor problem, an explanation that cer-
tainly does not apply to the failure of flying of a normal bird. This
motivates (3). Note that (weak) representatives are only conditional
representatives, i. e., representatives for the respective conditional re-
lationship, as we do not postulate that representatives (certainly or
plausibly) satisfy the premise of the conditional. It might well be
the case that individuals may serve as representatives for different
conditionals. Now we can base our definition of acceptance of open
conditionals on the notion of representatives as follows.

Definition 5. Let κ be an OCF and r = (B(~x) |A(~x)) an open
(non-quantified) conditional. Then κ |= r iff Rep(r) 6= ∅, and one
of the two following (exclusive) conditions is satisfied:

(A) it holds that

κ(A(~x)B(~x)) < κ(A(~x)B(~x)); (4)

(B) κ(A(~x)B(~x)) = κ(A(~x)B(~x)), and for all ~a1 ∈
Rep((B(~x) |A(~x))) and for all ~a2 ∈ Rep((B(~x) |A(~x))),
it holds that

κ(A(~a1)B(~a1)) < κ(A(~a2)B(~a2)). (5)

The acceptance of an open conditional is based on the existence
of a suitable ~a satisfying (2), i. e., on the acceptance of the proposi-
tional conditional (B(~a) |A(~a)) (note that Rep((B(~x) |A(~x))) 6= ∅
iff WRep((B(~x) |A(~x))) 6= ∅). However, conditions (1) and (2)
alone are too weak to justify the acceptance of (B(~x) |A(~x)) since
it might well be the case that there are ~a and ~b fulfilling (1) and
(2) for (B(~x) |A(~x)) and (B(~x) |A(~x)), respectively. This means
that κ might accept both (B(~x) |A(~x)) and (B(~x) |A(~x)), which
would be counterintuitive. Hence, we need to make acceptance un-
ambiguous by giving preference to one of the two conditionals. This
can be done either by postulating (4) or (5). Condition (4) looks
like a natural prerequisite for the acceptance of (B(~x) |A(~x)). How-
ever, in the birds scenario with penguins and super-penguins, equal-
ities like κ(A(~x)B(~x)) = κ(A(~x)B(~x)) quite naturally arise since
penguins are as normal non-flying birds as doves are normal flying
birds (see Example 3 below). In this case, (5) again uses the idea of
least exceptionality for specifying proper representatives; it makes
(B(~x) |A(~x)) acceptable, as opposed to (B(~x) |A(~x)), if the rep-
resentatives of the first conditional less exceptionally violate the re-
spective conditional than the representatives of the latter conditional.
Note that Definition 5 extends the definition of acceptance in the
propositional case, i. e., κ |= (B(~a) |A(~a)) iff κ(A(~a)B(~a)) <
κ(A(~a)B(~a)).

Definitions 4 and 5 can be used to define acceptance of open non-
conditional formulas A(~x) by considering them as conditionals with
tautological antecedents, i.e., as (A(~x) | >). However, it is crucial to

remark here that (A(~x) | >) mandatorily demands for a default read-
ing like “being A is plausible”, as opposed to “A certainly holds”.
This distinction is made in our approach by distinguishing between
certain knowledge F (all elements here are closed formulas of LΣ)
and default (conditional) beliefs inR which may involve both closed
and open formulas (well-formed according to our syntax definitions).
Formally, this is handled by giving different semantics to the two
parts of our knowledge bases.

Definition 6. Let KB = 〈F ,R〉 be a first-order knowledge base,
and let κ be an OCF.
1. κ acceptsR, denoted by κ |= R, iff κ |= ϕ for all ϕ ∈ R.
2. κ acceptsKB, denoted by κ |= KB, iff κ(ω) =∞ for all ω 6|= F ,

and κ |= R.

If κ |= KB then we also say that κ is a model of KB. If there is no κ
with κ |= KB then KB is inconsistent.

In this way, we can accurately distinguish between the state-
ments “A certainly holds for all individuals” (∀xA(~x) ∈ F), “it is
plausible that A holds for all individuals” (∀xA(~x) ∈ R, treated
as (∀xA(~x) | >)), and “A is plausible” (A(~x) ∈ R, treated as
(A(~x) | >)). In general, having a classical (i. e., unconditional) for-
mulaA inF expresses “A is certain” whileA inRmeans “A is plau-
sible”. Before illustrating the first-order semantics defined above, we
first carry over the idea of (propositional) c-representations [8] to the
first-order case. This will endow us with the possibility of construct-
ing proper OCF-models of knowledge bases in an easy way.

First-order conditional reasoning
In the propositional case, conditional structures [7, 8] prove to be a
powerful means to rule (inductive) conditional reasoning and belief
revision. In this section, we will generalize the concept of conditional
structures to the first-order case by defining the conditional structure
of a possible world with respect to a ground conditional, a first-order
conditional, and a set of first-order conditionals. We recall briefly
the basic elements of the theory of conditional structures, general-
ize this theory to the first-order case, and end up with the definition
of c-representations for sets of first-order conditionals. The class of
all c-representations of a knowledge base provides a semantics that
nicely reflects the interactions between conditionals, and a single c-
representation may serve as a model for inductive non-monotonic
reasoning. Due to restricted space conditions, we will only mention
the main features of this generalization and omit all technical details
that are analogous to the propositional case.

Let R = {(B1(~x1) |A1(~x1)), . . . , (Bn(~xn) |An(~xn))} be a fi-
nite set of first-order conditionals. These conditionals can either in-
volve open or closed formulas; we may omit the (outer) quantifica-
tion of conditionals, as no existential conditional may occur, and all
universal conditionals can be replaced by the set of all instantiations,
according to Definition 3. Moreover, all formulas in R can be as-
sumed to have a conditional form, according to the remarks around
Definition 6 at the end of the preceding section. To each conditional
ri = (Bi(~xi) |Ai(~xi)), we associate a pair of symbols a+

i ,a
−
i ,

symbolizing a positive (negative) effect in case of verification (fal-
sification). In order to make these conditional effects computable,
we make use of a group structure, introducing the free abelian group
FR = 〈a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n 〉 with generators a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n ,

i.e. FR consists of all elements of the form (a+
1 )r1(a−1 )s1 . . .

(a+
n )rn(a−n )sn with integers ri, si ∈ Z (the ring of integers). Mak-

ing use of the functions vi (for verifying) and fi (for falsifying) de-
fined by vi(ω) = #{~ai ∈ H(Bi(~xi) |Ai(~xi)) | ω |= Ai(~ai)Bi(~ai)}



and fi(ω) = #{~ai ∈ H(Bi(~xi) |Ai(~xi)) | ω |= Ai(~ai)Bi(~ai)}, we
define the conditional structure of ω with respect toR by

σR(ω) =

n∏
i=1

(a+
i )vi(ω)(a−i )fi(ω).

Having defined conditional structures of possible worlds with re-
spect to first-order conditionals, we can proceed in just the same way
as in the propositional case. Briefly, we make use of homomorphisms
to map the conditional structures to ranks in such a way that sets of
worlds that show the same (verifying, falsifying, neutral) all-over be-
haviour with respect to the conditionals, are assigned the same all-
over rank. Ranking functions that comply with conditional structures
in this way are called conditionally indifferent with respect toR. For
the technical details on conditional indifference, we refer to [7, 8].
A simple, but important consequence of conditional indifference is
that worlds which are equivalent with respect to the conditionals in
R are mapped onto the same values by ranking functions κ which
are conditionally indifferent:

Proposition 1. If the ranking function κ is conditionally indifferent
with respect to R, then σR(ω1) = σR(ω2) implies κ(ω1) = κ(ω2)
for all worlds ω1, ω2 ∈ Ω.

The result of this theory of conditional structures is a constructive
schema for ranking functions that are both models of the first-order
knowledge base and conditionally indifferent with respect to it, so-
called c-representations, of which we will only use the simple version
here focusing on falsification.

Definition 7 (Simple c-representation). A ranking function κ is a
simple c-representation iff it satisfies κ |= R, and is of the form

κ(ω) = κ0 +
∑

16i6n

fi(ω)κ−i . (6)

κ0 is a normalizing factor here so that c-representations comply
with the demand κ−1(0) 6= ∅. Two features are characteristic for
the approach based on conditional structures. First, and most deci-
sively for the first-order case, the same parameter κ−i is associated
with all instances of an open conditional since κ−i is the numeri-
cal realization of the algebraic parameter a−i representing the open
conditional. Moreover, κ−i does not depend on the specific world ω
under consideration but, of course, depends on the other condition-
als inR. The interactions between the conditionals inR, each being
represented by the respective κ−i , is handled in a very flexible way
by requiring κ |= R which gives rise to a set of inequalities between
the κ−i . This intensional handling of interactions of conditionals is
the second characteristic feature of our approach. It is different from
counting violated conditionals, as in [11], and even different from
the similar approach in [5]. Here, we apply this idea consequently
to the first-order case. Note that open and quantified conditionals are
treated differently: While ∀~x(B(~x) |A(~x)) is established by consid-
ering each instantiation (B(~a) |A(~a)) separately, i.e., each instance
is represented by a separate a−i , for establishing (B(~x) |A(~x)), all
instances (B(~a) |A(~a)) are associated with the same a−i . Therefore,
the numerical parameters κ−i are determined in different ways.

Like system Z [6], or ranking functions in general, c-
representations offer the possibility to define model-based default
reasoning by selecting a specific model of a knowledge base. How-
ever, as all c-representations observe the conditional structures of
worlds, they combine semi-qualitative information on ranks with
structural information. So, the actual numbers that are assigned to the
κi’s in simple c-representations (cf. (6)) just play a minor role, it is

more the relationships between these numbers which result from the
constraints in Definition 5 that guide crucial inferences. This allows
us to study inferences based on all c-representations. In the following
examples, we will elaborate on these qualitative relationships, con-
sidering both inferences for all c-representations and model-based
inferences by minimal simple c-representations, for which the con-
stants κ−i are chosen in a minimal way to guarantee acceptance.

Example 2 (The elephant zoo). First, we will have a closer look
at Example 1 mentioned in the introduction. We abbreviate Clyde
by c and Fred by f and consider again the set of conditionals
R = {r1, r2, r3} given as in Example 1. Moreover, we assume the
set of constants UΣ to consist of two elephants c, e and two keep-
ers f, k, i. e. UΣ = {c, e, f, k}. The set F of factual knowledge
is given as F = {E(c), E(e),K(f),K(k), ∀x∀y : L(x, y) ⇒
E(x)∧K(y)}. In particular, all possible worlds that violate the con-
junction E(c)E(e)K(f)K(k) will receive an infinite rank (see Def-
inition 6) and can be omitted. We apply the semantics defined in Def-
inition 5 to compute simple c-representations κ that satisfy r1–r3 in
the following way. Basically, we assume κ to be of the form (6) and
determine κ−1 , κ

−
2 , κ

−
3 (one for each rule) appropriately so as to com-

ply with all constraints in Definition 5. Moreover, we have to choose
the normalizing factor κ0 so that minω κ(ω) = 0. In the following,
we will present the resulting inequalities for the κ−i to illustrate the
sophisticated handling of conditional information on individuals in
general and to show in particular that even exceptions to exceptions
are dealt with appropriately in our framework. First, all rules need to
have representatives. This is particularly simple for r3, as only (c, f)
can be a representative of r3: κ |= r3 iff κ(L(c, f)) < κ(L(c, f)).
This amounts to postulating κ−2 < κ−1 + κ−3 . r2 can only have
two representatives, namely (c, f), or (e, f). However, (c, f) is al-
ready a representative of r3 which would contradict r2. So, (e, f)
can be the only representative. Indeed, regardless of which κ−i are
chosen, we find that κ(L(e, f)) = min{κ−1 + κ−2 , 2κ

−
1 + κ−3 } =

mina κ(L(a, f), making (e, f) a proper candidate for a represen-
tative due to (1). Next, (2) demands that κ(L(e, f)) < κ(L(e, f))
must hold, which yields κ−1 < κ−2 . Again, the precise numbers (also
for κ−3 !) are of no concern. Since we have only one weak represen-
tative, Rep(r2) = WRep(r2) = {(e, f)}. Due to the inequalities
determined so far, we have that κ(L(x, f)) = κ(L(x, f)). Hence,
according to Definition 5, we have to compare the representatives
of r2 and its negated counterpart, (L(x, f) |E(x) ∧ K(f)) (note
that this is not the same as r1, as its range is different). We find that
Rep((L(x, f) |E(x)∧K(f))) = {(c, f)}. Comparing the rankings
for these representatives according to (5) yields 2κ−2 < 2κ−1 + κ−3 .

Finally, for r1, we find that κ(L(e, k)) = κ(L(x, y)), and in or-
der to make (e, k) a weak representative, the constraint κ−1 > 0 is
necessary. Due to structural similarities, we also have WRep(r1) =
{(e, k), (c, k), (c, f)}, but (c, f) cannot be a proper representative of
r1, as this would inhibit (e, f) being a representative for r2. This de-
mands for κ3 > κ2. So, we have Rep(r1) = {(e, k), (c, k)}. Again,
we find that κ(L(x, y)) = κ(L(x, y)), and we have to compare
representatives. Since Rep((L(x, y) |E(x) ∧ K(y)) = {(e, f)},
(5) can only be satisfied if 2κ−1 < κ−2 . All these inequalities now
specify c-representations which are models of the elephant-keeper-
knowledge base. We may choose the κ−i in a minimal way (i.e.,
κ−1 = 1, κ−2 = 3, κ−3 = 5) to obtain a concrete ranking function. If
our zoo contains more elephants and keepers, similar computations
would yield c-representations that treat all elephants resp. keepers
not mentioned in the knowlegde base in the same way as e resp. k,
thanks to the structural evaluation of conditionals.



Example 3 (Penguins and super-penguins). In this example,
we have penguins (P), birds (B) and also (flying) super-
penguins (S) as well as the classes of winged things (W)
and flying things (F), and our universe consists of the fol-
lowing objects: t = Tweety, p = Polly, s = Supertweety,
and other things o1, . . . , om, maybe birds or not. The
knowledge base KBtweety = 〈F ,R〉 consists of the facts
F = {P (t), S(s), B(p), ∀xS(x)⇒ P (x), ∀xP (x)⇒ B(x)}, and
the conditional knowledge base R = {r1, r2, r3, r4} containing
four open first-order conditionals:

r1 : (F (x) |B(x)), r2 : (W (x) |B(x))

r3 : (F (x) |P (x)), r4 : (F (x) |S(x)).

Let κ−i , i = 1, . . . , 4 be the penalties for the four conditionals
r1, . . . , r4, according to Definition 7. Computing the constraints
specified for a simple c-representation κ to be a model of KBtweety

(cf. Definition 6) yield 0 < κ−1 < 2κ−1 < κ−3 < κ−4 < κ−1 + κ−4
and 2κ−3 < 2κ−1 +κ−4 . For instance, choosing κ−1 = 1 = κ−2 , κ

−
3 =

3, κ−4 = 5, would give rise to a (minimal) c-representation of
KBtweety . All c-representations handle the conditionals accurately,
allowing exceptions (penguins) and exceptions to exceptions (super-
penguins), taking Polly, Tweety, Supertweety as a representative bird,
penguin, and super-penguin, respectively. If any of the other individ-
uals o1, . . . , om were found to be a bird, penguin, or super-penguin,
it would be treated according to its most specific subclass.

Furthermore, the question whether all birds are expected to have
wings is of particular interest. Exceptional birds, like penguins and
super-penguins, may also be treated as exceptions with respect to
other properties of birds (this has become known as the drown-
ing problem). In our approach, we find that for all individuals a,
be it either a bird, a penguin, a super-penguin, or something else,
the difference between κ(B(a)W (a)) and κ(B(a)W (a)) is the
same—namely, determined by κ−2 —, so if a is known to be a bird
then it is expected to have wings. Moreover, we might also con-
clude (W (x) |P (x)) and (W (x) |S(x)) for each c-representation,
as Tweety and Supertweety would serve as proper representatives for
these conditionals, respectively.

Formal properties

A (simple) c-representation κ of a first-order knowledge base KB =
〈F ,R〉 is a way to implement a model-based inductive reasoning
mechanism, cf. [13]. However, it is clearly not the only way to im-
plement such a reasoning mechanism and one may raise the question
whether it is a “good” reasoning mechanism. In the following, we in-
vestigate properties for both the general first-order semantics and in-
ference with c-representations. Some of these properties are inspired
by similar properties for first-order probabilistic reasoning [17].

The first property links the first-order to the propositional setting.

Proposition 2 (Existence of Representatives). If (B(~x) |A(~x)) ∈
KB and κ |= KB then there is ~a with κ |= (B(~a) |A(~a)).

The above proposition states that for each conditional in KB =
〈F ,R〉 and model κ of KB there is at least one instantiation that
is satisfied by κ in the propositional sense. The satisfaction of this
property may be considered controversial due to the following rea-
sons. Consider the conditional r = (yellow(x) | lemon(x)) which
says that lemons are usually yellow [14]. In order for an OCF κ to
satisfy r there has to be at least one actual individual a such that
κ |= (yellow(a) | lemon(a)) holds. But imagine all lemons are in-
fected with some rare disease that turns them blue. Still, in [2] it

is argued that the conditional r should be valid, as lemons are usu-
ally yellow despite the fact that all currently present lemons are blue.
However, allowing this situation to occur makes it difficult for an
approach to distinguish validity of the complementary conditionals
(B(~x) |A(~x)) and (B(~x) |A(~x)), see also the discussion on this
topic for motivating our OCF-based semantics above. If we are in
a world where all lemons are blue how can we accept the conditional
“lemons are usually yellow” but not “lemons are usually blue”, or
even “lemons are usually green”? This problem is avoided by our
semantics thanks to the existence of representatives and to the fol-
lowing property that has already been discussed above.

Proposition 3 (Coherence of Inference). For every OCF κ, there
is no (B(~x) |A(~x)) such that κ |= (B(~x) |A(~x)) and κ |=
(B(~x) |A(~x)).

Note that the approach of [2] satisfies neither existence of repre-
sentatives nor coherence of inference. Our semantics is based on a
specific relation between antecedent and consequent of a conditional.
Such logics were characterized in [12] as being entailment preserv-
ing which means that implications imply conditional relationships.
This holds in our approach if representatives of the antecedent exist.

Proposition 4 (Entailment Preserving). For every OCF κ, if κ |=
∀~x : A(~x)⇒ B(~x) and κ(A(~x)) is finite then κ |= (B(~x) |A(~x)).

While the above properties describe our general first-order seman-
tics we now turn to properties of c-representations. In general, the
beliefs one obtains for specific individuals is of special interest, in
particular, if those individuals are special in some respect. However,
an important demand to be made is that for indistinguishable indi-
viduals the same information should be inferred. That is, if for two
individuals c1, c2 the same information is expressed in KB then the
rank of a formulaA should be the same as the rank of the formulaA′

in which c1 and c2 have been swapped. To formalize this intuition let
φ[c1 ↔ c2] denote the same as φ (either being a formula, a knowl-
edge base, or a possible world) but every occurrence of c1 is replaced
by c2 and vice versa.

Proposition 5 (Indifference of Individuals). Let κc be a (simple)
c-representation for the knowledge base KB = 〈F ,R〉. If F =
F [c1 ↔ c2] and R does not mention c1 and c2 then κc(A) =
κc(A[c1 ↔ c2]) for every ground formula A.

Note that we have to assume that R does not mention either c1
or c2 in order to establish that ω and ω[c1 ↔ c2] have the same
conditional structure. In Example 3, two objects oi and oj are indis-
tinguishable with respect to KBtweety , consequently, inferences are
the same for oi and oj .

Related work
Although there is plenty of work on propositional conditional
logics—to name just a few seminal papers, see e. g. [6, 10]— there
is only little work on first-order conditional logics.

The core idea of [2] is that conditionals are interpreted not on the
whole range of individuals but, in each possible world, on a subset
of “actual individuals”. Using the operator⇒x—which only ranges
over actual individuals—default statements can be made that do not
consider exceptional individuals. For example, the set {Bird(x)⇒x

Fly(x), Bird(Opus),¬Fly(Opus)} is consistent because Opus
can be regarded as exceptional. We already mentioned that the ap-
proach of [2] allows both (B(~x) |A(~x)) and (B(~x) |A(~x)) to be



derivable at the same time and therefore fails to satisfy coherence of
inference. The reason for this is that {(B(~x) |A(~x)), (B(~x) |A(~x))}
is satisfiable by an interpretation that, in each possible world, takes
the empty set to be the set of actual individuals. Besides this, in [2]
only the semantics for a first-order conditional logic is proposed and
no inference other than semantical entailment is investigated. The
semantical entailment relation from [2] suffers from the drowning
problem which has been discussed above. This means that in the ex-
ample on penguins and super-penguins, (W (x) |P (x)) would not be
derivable. In [2] individuals have to be separated into actual and ex-
ceptional individuals and conditionals are interpreted using only the
former. However, [2] describes only a general framework for inves-
tigating such situations but gives no hints on how to actually deter-
mine exceptional individuals. By using representatives we developed
a mechanism that addresses this problem and is able to determine
which individuals are exceptional with respect to different aspects.

Our approach to first-order conditional reasoning with ranking
functions is inspired by [17] which deals with first-order conditional
reasoning with probability functions. There, probabilistic condition-
als of the form (B(~x) |A(~x))[p] (ifA(~x) thenB(~x) with probability
p) are used for knowledge representation, and two novel semantics
are proposed. Our motivation for the ranking semantics defined in
Def. 5 is the same as for the probabilistic case but differs signifi-
cantly in its implementation due to the characteristics of qualitative
reasoning. The semantics of [17] are defined by considering all in-
stantiations of a conditional and do not differentiate between differ-
ent types of individuals explicitly. Here, we introduced the particu-
larly important role of representatives into the semantics in order to
formalize the intuitive meaning of a conditional, namely, that a con-
ditional is accepted if it has most convincing examples.

The work reported here is also related to works on defeasible rea-
soning in description logics. For example, the paper [1] defines the
rational closure [11] for the description logicALC. The rational clo-
sure is a specific non-monotonic reasoning mechanism for proposi-
tional logics that has many desirable properties. While already using
the very restrictive first-order language ALC, the work [1] makes a
lot of other assumptions on the structure of the knowledge bases. For
one, they do not allow for cyclic dependencies of rules and assume
that for every existential formula such as (∃x : R(x, a)) the indi-
vidual x is explicitly named, i. e., if (∃x : R(x, a)) is in the knowl-
edge base then there has to be an individual b such that R(b, a) is in
the knowledge base as well. Our approach is more general than the
approach of [1] as we do not impose such restrictions. The greatest
difference, however, to works like [1, 4, 3] is that a linear order of the
individuals encoding “normality” is assumed as input in order to be
able to reason. Our approach does not need such an order as the rep-
resentativeness of individuals is elaborated solely by the information
encoded in the knowledge base.

Summary and Future Work

In this paper we considered conditional reasoning in a first-order
context. We made use of ordinal conditional functions to present
a novel semantics for conditional knowledge bases that focuses on
the role of representatives. In order to find suitable ranking mod-
els for such knowledge bases, we generalized the theory of condi-
tional structures to the first-order case and also extended the notion of
c-representations accordingly. We illustrated the properties of first-
order c-representation by benchmark examples and identified several
formal key properties. These investigations show that the structural
theory which our approach is based upon allows an accurate han-

dling of conditional knowledge, both for individuals and for classes.
In particular, the combination of making reference to representatives
and using conditional structures makes it possible that representa-
tives induce a “normal” behaviour for whole classes of individuals.
This is due to assigning a structural impact factor to each conditional
and using it coherently for all instantiations. So, if the representa-
tive needs this factor to be adjusted, suitable inferences for all com-
parable individuals will result. The theory of conditional structures
[7] first designed for propositional conditional logics proves to be
particularly useful in this first-order context. As part of our ongo-
ing work, we investigate the properties of the semantics of first-order
c-representations in more detail. Moreover, as conditional structures
also provide a basis for powerful belief revision operators satisfying
the principle of conditional preservation [8], the semantics presented
in this paper may also be used to devise revision operators for first-
order belief bases.

The approach proposed here has been prototypically implemented
within the Tweety library for artificial intelligence4.
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