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Abstract

Inconsistency measures have been proposed to assess the severity of inconsist-
encies in knowledge bases of classical logic in a quantitative way. In general,
computing the value of inconsistency is a computationally hard task as it is based
on the satisfiability problem which is itself NP-complete. In this work, we address
the problem of measuring inconsistency in knowledge bases that are accessed in a
stream of propositional formulæ. That is, the formulæ of a knowledge base cannot
be accessed directly but only once through processing of the stream. This work is
a first step towards practicable inconsistency measurement for applications such
as Linked Open Data, where huge amounts of information is distributed across the
web and a direct assessment of the quality or inconsistency of this information is
infeasible due to its size. Here we discuss the problem of stream-based inconsist-
ency measurement on classical logic, in order to make use of existing measures
for classical logic. However, it turns out that inconsistency measures defined on
the notion of minimal inconsistent subsets are usually not apt to be used in the
streaming scenario. In order to address this issue, we adapt measures defined on
paraconsistent logics and also present a novel inconsistency measure based on the
notion of a hitting set. We conduct an extensive empirical analysis on the beha-
vior of these different inconsistency measures in the streaming scenario, in terms
of runtime, accuracy, and scalability. We conclude that for two of these measures,
the stream-based variant of the new inconsistency measure and the stream-based
variant of the contension inconsistency measure, large-scale inconsistency meas-
urement in streaming scenarios is feasible.
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1. Introduction

Inconsistency measurement is a subfield of Knowledge Representation and
Reasoning (KR) that is concerned with the quantitative assessment of the severity
of inconsistencies in knowledge bases. Consider the following two knowledge
bases K1 and K2 formalized in propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Both knowledge bases are classically inconsistent as for K1 we have {a,¬a ∧
¬b} |=⊥ and for K2 we have, e. g., {a,¬a} |=⊥. These inconsistencies render
the knowledge bases useless for reasoning if one wants to use classical reasoning
techniques. In order to make the knowledge bases useful again, one can either
use non-monotonic/paraconsistent reasoning techniques (Makinson, 2005; Priest,
1979) or one revises the knowledge bases appropriately to make them consistent
(Hansson, 2001). Looking at the knowledge bases K1 and K2 one can observe
that the severity of their inconsistency is different. In K1, only two out of four
formulæ (a and ¬a ∧ ¬b) are participating in making K1 inconsistent while for
K2 all formulæ contribute to its inconsistency. Furthermore, for K1 only two pro-
positions (a and b) are conflicting and using e. g. paraconsistent reasoning one
could still infer meaningful statements about c and d. For K2 no such statement
can be made. This leads to the assessment thatK2 should be regarded more incon-
sistent than K1. Inconsistency measures can be used to quantitatively assess the
inconsistency of knowledge bases and to provide a guide for how to repair them.
Moreover, they can be used as an analytical tool to assess the quality of knowledge
representation. For example, one simple inconsistency measure, see e. g. (Grant
and Hunter, 2011), is to take the number of minimal inconsistent subsets (MIs) as
an indicator for the inconsistency: the more MIs a knowledge base contains, the
more inconsistent it is. ForK1 we have then 1 as its inconsistency value and forK2

we have 2. A lot of different approaches of inconsistency measures and postulates
for inconsistency measures have been proposed, mostly for classical propositional
logic (Knight, 2001; Hunter, 2002; Hunter and Konieczny, 2004, 2008, 2010; Ma
et al., 2009; Mu et al., 2011b,a; Xiao and Ma, 2012; Grant and Hunter, 2011,
2013; Besnard, 2014; McAreavey et al., 2014; Jabbour et al., 2014b), but also for
classical first-order logic (Grant and Hunter, 2006, 2008), description logics (Ma
et al., 2007; Deng et al., 2007; Qi and Hunter, 2007; Zhou et al., 2009), default
logics (Doder et al., 2010), and probabilistic and other weighted logics (Daniel,
2009; Muiño, 2011; Ma et al., 2012; Thimm, 2013, 2014a; Potyka, 2014; Mu
et al., 2014).
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Inconsistencies arise easily when many experts share their knowledge in order
to construct a joint knowledge base, particularly for large knowledge bases as they
appear in, e. g., Semantic Web applications (Sacramento et al., 2012). So far, the
field of inconsistency measurement is focused on the problem on what a reason-
able inconsistency measure is and what properties it should satisfy. In this paper,
we consider the computational problems of inconsistency measurement, particu-
larly with respect scenarios where the knowledge base can only be processed in
a step-by-step fashion, i. e., in streams. More precisely, we consider a scenario
where, instead of a knowledge base K we are faced with a stream S that for any
point in time i ∈ N gives us a propositional formula φ = S(i). The measures we
are interested in update for every time step i the currently computed inconsistency
value and therefore approximate the actual inconsistency value of

⋃i
j=1{S(j)}

with the limiting case i→∞.
To address the issue of stream-based inconsistency measurement, we present a

novel inconsistency measure Ihs that is inspired by the η-inconsistency measure of
Knight (2002) and is particularly apt to be applied to the streaming scenario. This
measure bases on the notion of a hitting set which (in our context) is a minimal
set of classical interpretations such that every formula of a knowledge base is
satisfied by at least one element of the set. We then formalize the problem of
stream-based inconsistency measurement, describe desirable properties of stream-
based inconsistency measures by relating the problem to the classical setting of
inconsistency measurement, and propose specific instantiations for stream-based
inconsistency measures. We investigate the properties and the behavior of our new
measures both analytically and empirically. For the latter, we conduct an extensive
empirical evaluation on artificial data. Our findings show that the stream-based
variant of our novel measure, as well as a measure based on paraconsistent logics
are suitable in terms of runtime, accuracy, and scalability for the stream-based
scenario. In summary, the contributions of this paper are as follows:

1. We present a novel inconsistency measure Ihs based on hitting sets and
show how this measure relates to other measures (Section 3).

2. We formalize a theory of inconsistency measurement in streams and relate
it to the classical setting of inconsistency measurement (Section 4).

3. We provide a window-based approach for applying classical inconsistency
measures to the streaming case and develop specific approaches for some
concrete classical measures (Section 5).

4. We conduct an extensive empirical study on the behavior of those inconsist-
ency measures in terms of runtime, accuracy, and scalability. In particular,
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we show that the stream variants of Ihs and of the contension measure Ic are
effective and accurate for measuring inconsistency in the streaming scenario
(Section 6).

Additionally, we give necessary preliminaries for propositional logic in Section 2,
provide some review of related work in Section 7 and conclude the paper in Sec-
tion 8. Proofs of technical results can be found in the appendix. This paper ex-
tends and revises the previously published paper (Thimm, 2014b) by correcting
and extending technical results, providing proofs, and adding further discussion.

2. Preliminaries

Let At be a propositional signature, i. e., a (finite) set of propositions (also
called atoms), and letL(At) the corresponding propositional language constructed
using the usual connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulæ K ⊆ L(At). Let
K(At) be the set of all knowledge bases.

We write K instead of K(At) when there is no ambiguity regarding the sig-
nature. If X is a formula or a set of formulaæ we write At(X) to denote the set
of propositions appearing in X . Semantics to a propositional language L(At) is
given by interpretations and an interpretation ω on At is a function ω : At →
{true, false}. Let Int(At) denote the set of all interpretations for At. An interpret-
ation ω satisfies (or is a model of) an atom a ∈ At, denoted by ω |= a, if and only
if ω(a) = true. For ω ∈ Int(At) and φ, φ′ ∈ L(At) we define

• ω |= ¬φ if and only if ω 6|= φ

• ω |= φ ∧ φ′ if and only if ω |= φ and ω |= φ′

• ω |= φ ∨ φ′ if and only if ω |= φ or ω |= φ′

As an abbreviation we sometimes identify an interpretation ω with its complete
conjunction, i. e., if a1, . . . , an ∈ At are those propositions that are assigned true
by ω and an+1, . . . , am ∈ At are those propositions that are assigned false by ω
we identify ω by a1 . . . anan+1 . . . am (or any permutation of this). For example,
the interpretation ω1 on {a, b, c} with ω(a) = ω(c) = true and ω(b) = false is
abbreviated by abc.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
Define furthermore the set of models Mod(X) = {ω ∈ Int(At) | ω |= X} for

4



every formula or set of formulæ X . Two formulæ or sets of formulæ X and Y are
equivalent, denoted by X ≡ Y , if and only if Mod(X) = Mod(Y ). Furthermore,
two knowledge bases K, K′ are semi-extensionally equivalent (K ≡σ K′) if there
is a bijection σ : K → K′ such that for all α ∈ K we have α ≡ σ(α) (Thimm,
2013). If Mod(X) = ∅ we also write X |=⊥ and say that X is inconsistent.
Note that checking X 6|=⊥ is an NP-complete problem as it is equivalent to the
satisfiability problem SAT (Cook, 1971).

Let R+
0 be the set of non-negative real numbers. Inconsistency measures are

functions I : K → R+
0 ∪ {∞} that aim at assessing the severity of the inconsist-

ency in a knowledge base K, cf. (Grant and Hunter, 2011). The basic idea is that
the larger the inconsistency in K the larger the value I(K). However, inconsist-
ency is a concept that is not easily quantified and there have been a couple of pro-
posals for inconsistency measures so far, in particular for classical propositional
logic, see e. g. (Knight, 2001; Hunter, 2002; Hunter and Konieczny, 2004, 2008,
2010; Ma et al., 2009; Mu et al., 2011b,a; Xiao and Ma, 2012; Grant and Hunter,
2011, 2013; Besnard, 2014; McAreavey et al., 2014; Jabbour et al., 2014b). Below
we recall some popular measures but we first introduce some necessary notations.
Let K ∈ K be some knowledge base.

Definition 2. A set M ⊆ K is called minimal inconsistent subset (MI) of K if
M |=⊥ and there is no M ′ ⊂M with M ′ |=⊥. Let MI(K) be the set of all MIs of
K.

Definition 3. A formula α ∈ K is called free formula of K if there is no M ∈
MI(K) with α ∈M . Let Free(K) denote the set of all free formulæ of K.

We adopt the following definition of a (basic) inconsistency measure from
(Grant and Hunter, 2011).

Definition 4. A basic inconsistency measure is a function I : K → R+
0 ∪ {∞}

that satisfies the following three conditions:

1. I(K) = 0 if and only if K is consistent,
2. if K ⊆ K′ then I(K) ≤ I(K′), and
3. for all α ∈ Free(K) we have I(K) = I(K \ {α}).

The first property (also called consistency) of a basic inconsistency measure
ensures that all consistent knowledge bases receive a minimal inconsistency value
and every inconsistent knowledge base receives a positive inconsistency value.
The second property (also called monotony) states that the value of inconsistency
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α β υ(α ∧ β) υ(α ∨ β) α υ(¬α)
T T T T T F
T B B T B B
T F F T F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

Table 1: Truth tables for propositional three-valued logic (Priest, 1979).

cannot decrease when adding new information. The third property (also called free
formula independence) states that removing harmless formulæ from a knowledge
base—i. e., formulæ that do not contribute to the inconsistency—does not change
the value of inconsistency. If I is a basic inconsistency measure and K ∈ K is a
knowledge base we say that I(K) is the inconsistency value of K wrt. I. In the
following we will drop the “basic” and refer to measures satisfying the above three
conditions simply as inconsistency measures. For the remainder of this paper we
consider the following selection of inconsistency measures: the MI measure IMI,
the MIc measure IMIc , the contension measure Ic, and the η-measure Iη, which
will be defined below, cf. (Grant and Hunter, 2011; Knight, 2002).

In order to define the contension measure Ic we need to consider three-valued
interpretations for propositional logic (Priest, 1979). A three-valued interpretation
υ on At is a function υ : At→ {T, F,B} where the values T and F correspond to
the classical truth values true and false, respectively. The additional truth value B
stands for both and is meant to represent a conflicting truth value for a proposition.
The function υ is extended to arbitrary formulæ as shown in Table 1. Then, an
interpretation υ satisfies a formula α, denoted by υ |=3 α if either υ(α) = T or
υ(α) = B.

For defining the η-inconsistency measure (Knight, 2002) we need to consider
probability functions P of the form P : Int(At) → [0, 1] with

∑
ω∈Int(At) P (ω) =

1. LetP(At) be the set of all those probability functions and for a given probability
function P ∈ P(At) define the probability of an arbitrary formula α via P (α) =∑

ω|=α P (ω).
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Definition 5. Let IMI, IMIc , Ic, and Iη be defined via

IMI(K) = |MI(K)|

IMIc(K) =
∑

M∈MI(K)

1

|M |

Ic(K) = min{|υ−1(B)| | υ |=3 K}
Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

The measure IMI takes the number of minimal inconsistent subsets of a know-
ledge base as an indicator for the amount of inconsistency: the more minimal
inconsistent subsets the more severe the inconsistency. The measure IMIc refines
this idea by also taking the size of the minimal inconsistent subsets into account.
Here the idea is that larger minimal inconsistent subsets are less severe than smal-
ler minimal inconsistent subsets (the less formulæ are needed to produce an in-
consistency the more “obvious” the inconsistency). The measure Ic considers the
set of three-valued models of a knowledge base (which is always non-empty) and
uses the minimal number of propositions with conflicting truth value as an indic-
ator for inconsistency. Finally, the measure Iη (which always assigns an inconsist-
ency value between 0 and 1) looks for the maximal probability one can assign to
every formula of a knowledge base1. All these measures are basic inconsistency
measures as defined in Definition 4.

Example 1. For the knowledge bases K1 = {a, b ∨ c,¬a ∧ ¬b, d} and K2 =
{a,¬a, b, ¬b} from the introduction we obtain the following inconsistency values.

The knowledge base K1 contains one minimal inconsistent subset {a,¬a ∧
¬b}, i. e. MI(K1) = {{a,¬a ∧ ¬b}}, while K2 contains two minimal inconsistent
subsets {a,¬a} and {b,¬b}, i. e. MI(K2) = {{a,¬a}, {b,¬b}. This results in
IMI(K1) = 1 and IMI(K2) = 2.

As the size of the only minimal inconsistent subset ofK1 is 2 we have IMIc(K1) =
1/2. For K2 we have two minimal inconsistent subsets each of size 2, resulting in
IMIc(K2) = 1/2 + 1/2 = 1.

For the propositional signature At1 = {a, b, c, d} consider the three-valued
interpretation υ1 defined via

υ1(a) = B υ1(b) = F υ1(c) = T υ1(d) = T

1Note that we modified the definition of Iη slightly compared to the original definition in order
to fit our framework.
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and observe υ1 |=3 K1. Note that |υ−1(B)| = 1 and that there cannot be another
υ which assigns to fewer propositions the value B. So we have Ic(K1) = 1. For
the propositional signature At2 = {a, b} consider the three-valued interpretation
υ2 defined via

υ2(a) = B υ2(b) = B

and observe υ2 |=3 K2. Note that |υ−1(B)| = 2 and that there cannot be another
υ which assigns to fewer propositions the value B. So we have Ic(K2) = 2.

For At1 consider the probability function P1 : Int(At1) → [0, 1] defined via
P1(abcd) = 1/2, P1(abcd) = 1/2 and P1(ω) = 0 for all remaining ω ∈ Int(At1).
Then we have

P1(a) = P1(abcd) = 0.5

P1(b ∨ c) = P1(abcd) + P1(abcd) = 0.5 + 0.5 = 1

P1(¬a ∧ ¬b) = P1(abcd) = 0.5

P1(d) = P1(abcd) + P1(abcd) = 0.5 + 0.5 = 1

and therefore for all α ∈ K1 it is P1(α) ≥ 1/2. Observe that there cannot be
another P which assigns larger probability to all formulas, so we have Iη(K1) =
1 − 1/2 = 1/2. For At2 consider the probability function P2 : Int(At2) → [0, 1]
defined via P2(ab) = 1/2, P2(ab) = 1/2 and P2(ω) = 0 for all remaining ω ∈
Int(At2). Then we have P2(a) = P2(b) and also Iη(K2) = 1− 1/2 = 1/2.

In summary, these are the inconsistency values obtained for the discussed in-
consistent measures:

IMI(K1) = 1 IMIc(K1) = 1/2 Ic(K1) = 1 Iη(K1) = 1/2

IMI(K2) = 2 IMIc(K2) = 1 Ic(K2) = 2 Iη(K2) = 1/2

Example 2. In the previous example, all considered inconsistency measures agreed
thatK1 is not more inconsistent thanK2. While e. g. Iη is indifferent aboutK1 and
K2 the measure IMIc evaluates K1 to be less inconsistent than K2. It can also be
the case that inconsistency measures behave completely incomparable. Consider
the knowledge bases K3 and K4 defined via

K3 = {a, b, c, d,¬(a ∨ b ∨ c ∨ d), e, f, g, h,¬(e ∨ f ∨ g ∨ h)}
K4 = {a,¬a}
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Observe that MI(K3) = {m1,m2} with m1 = {a, b, c, d,¬(a ∨ b ∨ c ∨ d)} and
m2 = {e, f, g, h,¬(e ∨ f ∨ g ∨ h)}, and MI(K4) = {m3} with m3 = {a,¬a}.
Then we have

IMI(K3) = |MI(K3)| = 2

IMI(K4) = |MI(K4)| = 1

but

IMIc(K3) =
1

|m1|
+

1

|m2|
=

2

5

IMIc(K4) =
1

|m3|
=

1

2

So IMI and IMIc completely disagree on the order of K3 and K4.

For a more detailed introduction to inconsistency measures see e. g. (Grant
and Hunter, 2006) and for some recent developments see e. g. (Besnard, 2014;
Jabbour et al., 2014a; Mu et al., 2014; McAreavey et al., 2014; Jabbour et al.,
2014b).

3. An Inconsistency Measure based on Hitting Sets

The basic idea of our novel inconsistency measure Ihs is inspired by the meas-
ure Iη which seeks a probability function that maximizes the probability of all for-
mulæ of a knowledge base. Basically, the measure Iη looks for a minimal number
of models of parts of the knowledge base and maximizes their probability in order
to maximize the probability of the formulæ. By just considering this basic idea
we arrive at the notion of a hitting set for inconsistent knowledge bases.

Definition 6. A subset H ⊆ Int(At) is called a hitting set of K if for every α ∈ K
there is ω ∈ H with ω |= α.

Some observations on hitting sets are as follows.

Proposition 1. Let K be a knowledge base. The following two statements are
equivalent:

1. there is no φ ∈ K with φ |=⊥
2. there exists a hitting set H of K
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Proposition 2. Let K be a knowledge base.

1. If H is a hitting set of K then every H ′ with H ⊆ H ′ is a hitting set of K.
2. H = ∅ is a hitting set of K if and only if K = ∅.
3. K is consistent if and only if there is a hitting set H of K with |H| = 1.
4. If H is a hitting set of K then H is a hitting set of every K′ with K′ ⊆ K.

We then define the measure Ihs as the minimal cardinality of a hitting set of
the knowledge base minus one.

Definition 7. The function Ihs : K→ R+
0 ∪ {∞} is defined via

Ihs(K) = min{|H| | H is a hitting set of K} − 1

with min ∅ =∞ for every K ∈ K \ {∅} and Ihs(∅) = 0.

Note that, following Proposition 1, we have Ihs(K) = ∞ if and only if K
contains a contradictory formula (e. g. a ∧ ¬a). Observe also that we need a case
differentiation for K = ∅ as ∅ has also the hitting set ∅, see Proposition 2.

Example 3. We continue Example 1 and consider K1 = {a, b ∨ c,¬a ∧ ¬b, d}
and K2 = {a,¬a, b, ¬b}. Let H1 ⊆ Int(At) be defined via H1 = {abcd, abcd}.
Observe that for both K1 and K2 we have that H1 is a hitting set, i. e., every
formula of the knowledge base is satisfied by at least one interpretation of H1.
Furthermore, H1 is also a minimal hitting set (with respect to set cardinality) as,
e. g., forK2 the two formulas a and ¬a require at least two different interpretations
to be satisfied. Therefore we have Ihs(K1) = Ihs(K2) = 1.

Example 4. Consider the knowledge base K5 defined via

K5 = {a ∨ d, a ∧ b ∧ c, b,¬b ∨ ¬a, a ∧ b ∧ ¬c, a ∧ ¬b ∧ c}

Then H2 = {abcd, abcd, abcd} ⊆ Int(At) is a minimal hitting set for K5 and
therefore Ihs(K5) = 2.

As the following result shows, Ihs is indeed a suitable inconsistency measure.

Proposition 3. The function Ihs is a (basic) inconsistency measure.

The result below shows that Ihs also behaves well with some more properties
mentioned in the literature (Hunter and Konieczny, 2010; Thimm, 2013).
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Proposition 4. The measure Ihs satisfies the following properties:

• If α ∈ K is such that At(α)∩At(K\{α}) = ∅ then Ihs(K) = Ihs(K\{α})
(safe formula independence).

• If K ≡σ K′ then Ihs(K) = Ihs(K′) (irrelevance of syntax).

• If α |= β and α 6|=⊥ then Ihs(K ∪ {α}) ≥ Ihs(K ∪ {β}) (dominance).

However, Ihs is incompatible with some other properties such as super-additivity
and MinInc-separability (Hunter and Konieczny, 2010).

Example 5. A measure I satisfies super-additivity if for K ∩ K′ = ∅ we have
I(K∪K′) ≥ I(K) +I(K′). A measure I satisfies MinInc-separability if MI(K∪
K′) = MI(K) ∪MI(K′) and MI(K) ∩MI(K′) = ∅ implies I(K ∪ K′) = I(K) +
I(K′). Consider

K4 = {a,¬a}
K6 = {b,¬b}

Then we have Ihs(K4) = Ihs(K6) = 1. However, we also have Ihs(K4 ∪K6) = 1
as {ab, ab} is a hitting set of K4∪K6. It follows that Ihs violates super-additivity.
Furthermore, observe that MI(K4) = {K4} and MI(K6) = {K6} and therefore
MI(K4 ∪ K6) = MI(K4) ∪MI(K6) and MI(K4) ∩MI(K6) = ∅. It follows that Ihs
also violates MinInc-separability.

The measure Ihs can also be nicely characterized by a consistent partitioning
of a knowledge base.

Definition 8. A set Φ = {Φ1, . . . ,Φn} with Φ1 ∪ . . . ∪ Φn = K and Φi ∩ Φj = ∅
for i, j = 1, . . . , n, i 6= j, is called a partitioning of K. A partitioning Φ =
{Φ1, . . . ,Φn} is consistent if Φi 6|=⊥ for i = 1, . . . , n.

Proposition 5. For every knowledge base K

Ihs(K) = min{|Φ| | Φ is a consistent partitioning of K} − 1

with min ∅ =∞ for every K ∈ K \ {∅} and Ihs(∅) = 0.

As Ihs is inspired by Iη we go on by comparing these two measures.
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Proposition 6. Let K be a knowledge base. If∞ > Ihs(K) > 0 then

Iη(K) ≤ 1− 1

Ihs(K) + 1

Note that for Ihs(K) = 0 we always have Iη(K) = 0 as well, as both are basic
inconsistency measures. Furthermore, Ihs(K) =∞ is equivalent to the existence
of a φ ∈ K with φ |=⊥, cf. Proposition 1, which is equivalent to Iη(K) = 1
(Knight, 2002). Although Proposition 6 describes a loose relationship between Iη
and Ihs both measures are in general different as we will see below.

We say that an inconsistency measure I1 is subsumed by an inconsistency
measure I2, denoted by I1 v I2, if the order on knowledge bases imposed by I1
is a subset of the order imposed by I2. More formally, I1 v I2 if and only if
I1(K) < I1(K′) implies I2(K) < I2(K′) for all K,K′ ∈ K. Two inconsistency
measures I1 and I2 are equivalent, denoted by I1 ' I2, if and only if I1 v I2
and I2 v I1.

It turns out that Ihs is neither equivalent nor is subsumed by any of the previ-
ously discussed inconsistency measures2.

Proposition 7. There is no subsumption relation between Ihs and any I ∈ {IMI, IMIc , Ic, Iη}.
Corollary 1. Ihs 6' IMI, Ihs 6' IMIc , Ihs 6' Ic, and Ihs 6' Iη.
Example 6. Consider the knowledge bases K7 and K8 given as

K7 = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c}
K8 = {a ∧ b,¬a ∧ b, a ∧ ¬b}

Then we have e. g. Ihs(K7) = 2 < 3 = Ihs(K8) but Ic(K7) = 3 > 2 = Ic(K8).

4. Inconsistency Measurement in Streams

In the following, we introduce and formalize the problem of inconsistency
measurement in streams of propositional formulaæ. The goal of this formaliza-
tion is to obtain stream-based inconsistency measures that approximate given in-
consistency measures when the latter would have been applied to the knowledge
base as a whole. We first formalize this setting and, afterwards, provide concrete
approaches for some inconsistency measures.

We use a very simple formalization of a stream that is sufficient for our needs.

2Note that this result corrects Corollary 1 from (Thimm, 2014b) where Ihs v Iη was claimed.
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Definition 9. A propositional stream S is a function S : N → L(At). Let S be
the set of all propositional streams.

A propositional stream models a sequence of propositional formulæ. On a
wider scope, a propositional stream can also be interpreted as a very general ab-
straction of the output of a linked open data crawler (such as LDSpider (Isele
et al., 2010)) that crawls knowledge formalized as RDF (Resource Description
Framework) from the web, possibly enriched with OWL semantics to have a
well-defined notion of consistency. For notational convenience, we write a pro-
positional stream S with S(0) = φ0, S(1) = φ1, S(2) = φ2,. . . also as a tuple
S = 〈φ0, φ1, φ2, . . .〉

Using the abstraction of a propositional stream, we can also model large know-
ledge bases by propositional streams that indefinitely repeat the formulæ of the
knowledge base. For that, we assume for a knowledge base K = {φ1, . . . , φn}
the existence of a canonical enumeration Kc = 〈φ1, . . . , φn〉 of the elements of
K. This enumeration can be arbitrary and has no specific meaning other than to
enumerate the elements in an unambiguous way.

Definition 10. Let K be a knowledge base and Kc = 〈φ1, . . . , φn〉 its canonical
enumeration. The K-stream SK is defined as SK(i) = φ(imodn)+1 for all i ∈ N.

Using K-streams we can formalize the desired behavior of stream-based in-
consistency measures as follows. Given a K-stream SK and an inconsistency
measure I we aim at defining a measure JI that processes the elements of SK
one by one and approximates (or converges to) I(K).

Definition 11. A stream-based inconsistency measure J is a function J : S ×
N→ R+

0 ∪ {∞}.

Definition 12. Let I be an inconsistency measure and J a stream-based incon-
sistency measure. Then J approximates (or is an approximation of ) I if for all
K ∈ K we have limi→∞ J (SK, i) = I(K).

A stream-based inconsistency measure J is supposed to maintain some state
information (which is hidden in the formal definition) that is updated when pro-
cessing the i-th element of a propositional stream. For i ∈ N we say that J (S, i)
is the inconsistency value of S wrt. J at time point i. We also require that J is
not able to process formulas from the future, i. e., the value J (S, i) is independent
of every value S(j) for j > i. More formally:
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Definition 13. A stream-based inconsistency measure J is future-ignorant if and
only if for all S,S ′ ∈ S, if S(i) = S ′(i) for all i = 0, . . . , n then J (S, n) =
J (S ′, n).

In the following, we only consider future-ignorant stream-based inconsistency
measures.

5. Stream-based Inconsistency Measures

In this section we develop concrete approaches for adopting classical incon-
sistency measures, including the Ihs measure developed above, to the streaming
scenario. First, we present an approach based on considering a window on the
stream at any time point i ∈ N. Second, we provide approximation algorithms
for both Ihs and Ic that use concepts of the programming paradigms of simulated
annealing and evolutionary algorithms.

5.1. A Window-based Approach for Stream-based Inconsistency Measures
The simplest form of implementing a stream-based variant of any algorithm

or function is to use a window-based approach, i. e., to consider at any time point
a specific excerpt from the stream and apply the original algorithm or function on
this excerpt, cf. (Beck et al., 2015). This approach gives us for each time point
i ∈ N the inconsistency value of the considered excerpt. In order to not dismiss
the inconsistency value determined at time point i in time point i+1, we aggregate
the newly determined inconsistency value at time point i + 1 with the one from
the previous step using an aggregation function.

Definition 14. An aggregation function g is a function g : (R+
0 ∪ {∞})× (R+

0 ∪
{∞})→ R+

0 ∪ {∞} with

1. g(x, y) ∈ [min{x, y},max{x, y}] for all x, y ∈ R+
0 ,

2. g(x,∞) ≥ x for all x ∈ R+
0 ,

3. g(∞, y) ≥ y for all y ∈ R+
0 , and

4. g(∞,∞) =∞.

Possible aggregation functions are, e. g., the maximum function max or a
smoothing function gα(x, y) = αx + (1 − α)y for some α ∈ [0, 1] (for every
x, y ∈ R+

0 ∪ {∞}).3

3With max(x,∞) = max(∞, x) = max(∞,∞) = ∞, gα(x,∞) = gα(∞, x) =
gα(∞,∞) =∞ for x ∈ R+

0 .
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For any propositional stream S let S i,j (for i ≤ j) be the knowledge base
obtained by taking the formulæ from S between positions i and j, i. e., S i,j =
{S(i), . . . ,S(j)}.

Definition 15. Let I be an inconsistency measure, w ∈ N ∪ {∞}, and g an
aggregation function. We define the window-based inconsistency measure J w,g

I :
S× N→ R+

0 ∪ {∞} via

J w,g
I (S, i) =

{
I({S(0)}) if i = 0
g(I(Smax{0,i−w+1},i),J w,g

I (S, i− 1)) otherwise

for every S and i ∈ N.4

The intuition behind the window-based inconsistency measure J w,g
I is as fol-

lows. At a specific time point i the current inconsistency value J w,g
I (S, i) is de-

termined by, first, determining the inconsistency value of the knowledge base ob-
tained from joining the previously encountered w ∈ N formulas, and then aggreg-
ating this value with the previously determined value J w,g

I (S, i − 1). If w = ∞,
the value J w,g

I (S, i) is determined by aggregating the inconsistency value of the
union of all but the last encountered formula with the inconsistency value of the
union of all encountered formulas. Observe that J w,g

I is indeed a future-ignorant
stream-based inconsistency measure.

Example 7. Consider the propositional stream S1 given via

S1 = 〈a ∧ b,¬a,¬b, a ∨ b,¬b ∧ ¬a, . . .〉

All further elements of S1 are unimportant for this example. Consider further the
inconsistency measure IMI, the aggregation function g0.7 (smoothing function for
α = 0.7), and the window size 3. We consider the first four timepoints in the
evaluation of J 3,g0.7

IMI
.

• At timepoint i = 0 we obtain

J 3,g0.7
IMI

(S1, 0) = IMI({S1(0)}) = IMI({a ∧ b}) = 0

4For w =∞ we define max{0,−∞} = 0

15



• For i = 1 note that Smax{0,i−w+1},i = Smax{0,−1},1 = S0,1 = {a∧b,¬a} and
we have

J 3,g0.7
IMI

(S1, 1) = g0.7(IMI(Smax{0,1−w},1
1 ),J 3,g0.7

IMI
(S1, 0))

= g0.7(IMI({a ∧ b,¬a}), 0)

= 0.7 · 1 + (1− 0.7) · 0 = 0.7

• For i = 2 we have

J 3,g0.7
IMI

(S1, 2) = g0.7(IMI(Smax{0,2−w},2
1 ),J 3,g0.7

IMI
(S1, 1))

= g0.7(IMI({a ∧ b,¬a,¬b}), 0.7)

= 0.7 · 2 + (1− 0.7) · 0.7 = 1.61

• For i = 3 we have

J 3,g0.7
IMI

(S1, 3) = g0.7(IMI(Smax{0,3−w+1},3
1 ),J 3,g0.7

IMI
(S1, 2))

= g0.7(IMI({¬a,¬b, a ∨ b}), 1.61)

= 0.7 · 1 + (1− 0.7) · 1.61 = 1.183

Some observations on the properties of J w,g
I are as follows.

Proposition 8. Let I be an inconsistency measure, w ∈ N ∪ {∞}, and g an
aggregation function.

1. If w is finite then J w,g
I is not an approximation of I.

2. If w =∞ and g(x, y) ≥ (x+ y)/2 then J w,g
I is an approximation of I.

3. J w,g
I (SK, i) ≤ I(K) for every K ∈ K and i ∈ N.

As can be seen from Example 7 and item 1. of Proposition 8, the main issue
with the window-based approach to measuring inconsistency in streams is that
only local information (wrt. the current window) can be used to determine the
inconsistency value. If, for example, there is a minimal inconsistent subset not
covered by any window—as {S1(0),S1(4)} = {a ∧ b,¬b ∧ ¬a} in Example 7—
the inconsistency value obtained by the window-based approach will always be
an underestimation of the actual inconsistency value, cf. item 2 of Proposition 8.
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5.2. Stream-based Approximation Algorithms for Ihs and Ic
The approximation algorithms for Ihs and Ic that are presented in this subsec-

tion are using concepts of the programming paradigms of simulated annealing and
evolutionary algorithms, which are both approaches to solve non-convex optimiz-
ation problems (Lawrence, 1987). Let f : X → R be some function that has to be
maximized. The basic idea of evolutionary algorithms is to maintain a population
of domain elements Xp ⊆ X . In each iteration step a subset of Xp with maximal
values wrt. f is selected and the rest discarded. From the selected set, new do-
main elements are generated by crossover (combing two or more of the selected
domain elements) and mutation (random alteration of a selected domain element).
This process is repeated until some convergence criterium is satisfied. In the best
case the population converges to the global maximum of f . Simulated annealing
works roughly as follows. In the beginning, a single domain element x ∈ X is
selected at random. In each iteration a random choice is made whether to locally
improve x (select an x′ ∈ X in the vicinity that has larger value wrt. f than x) or
to “jump” to a different part in X . The probability of jumping decreases with the
number of iterations (this feature is also called cooling) and the algorithm stops in
some local maximum, which is, in the best case, also the global maximum.

The basic idea for the stream-based approximation of Ihs is as follows. At
any processing step we maintain a candidate set C ∈ 2Int(At) (initialized with the
empty set) that approximates a hitting set of the underlying knowledge base. At
the beginning of a processing step we make a random choice (with decreasing
probability the more formulæ we already encountered) whether to remove some
element of C. This action ensures that C does not contain superfluous elements
and mirrors the cooling step in simulated annealing. Afterwards we check whether
there is still an interpretation in C that satisfies the currently encountered formula.
If this is not the case we add some random model of the formula to C (as in the
mutation step of evolutionary algorithms). Finally, we update the previously com-
puted inconsistency value with |C| − 1, taking also some aggregation function g
(as for the window-based approach) into account. In order to increase the prob-
ability of successfully finding a minimal hitting set we do not maintain a single
candidate set C but a (multi-)set Cand = {C1, . . . , Cm} (as in evolutionary al-
gorithms) for some previously specified parameter m ∈ N and use the minimum
size of these candidate hitting sets.

We call a function f : N → [0, 1] null-bound if there is k > 0 such that f is
strictly decreasing on {0, . . . , k} and f(i) = 0 for all i > k.

17



Algorithm 1 hs-streamm,g,f (S, i)
1: currentV alue = 0
2: Cand = {∅, . . . , ∅}
3: N = 0
4: for all j = 0, . . . , i do
5: currentV alue = update

m,g,f
hs (S(j))

6: return currentV alue

Algorithm 2 update
m,g,f
hs (form)

1: N = N + 1
2: if form ≡⊥ then
3: currentV alue =∞
4: if currentV alue =∞ then
5: return currentV alue
6: newV alue =∞
7: for all C ∈ Cand do
8: rand ∈ [0, 1]
9: if rand < f(N) then

10: Remove some random ω from C
11: if ¬∃ω ∈ C : ω |= form then
12: Add random ω ∈ Mod(form) to C
13: newV alue = min(newV alue, (|C| − 1))

14: currentV alue = g(newV alue, currentV alue)
15: return currentV alue

Definition 16. Let m ∈ N, g an aggregation function, and f : N → [0, 1] null-
bound. We define the approximation algorithm Jm,g,f

hs via5

Jm,g,f
hs (S, i) = hs-streamm,g,f (S, i)

for every S and i ∈ N. The algorithm hs-streamm,g,f (S, i) is given in Al-
gorithm 1 and its subroutine updatem,g,fhs is depicted in Algorithm 2.

5Note that Jm,g,fhs is not strictly a stream-based inconsistency measure (as a mathematical
function) according to Definition 11 as it is a randomized algorithm.
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At the first call of the algorithm hs-streamm,g,f the value of currentV alue
(which contains the currently estimated inconsistency value) is initialized to 0, the
(multi-)set Cand ⊆ 2Int(At) (which contains a population of candidate hitting sets)
is initialized withm empty sets, andN is initialized with 0. The function f can be
any null-bound function and ensures that every candidate C reaches some stable
result eventually. The parameter m increases the probability that at least one of
the candidate hitting sets attains the global optimum of a minimal hitting set. The
algorithm hs-streamm,g,f then repeatedly calls the subroutine update

m,g,f
hs that

updates the inconsistency value with each formula in the stream, up to the i-th
formula.

In order to address the special case of contradictory formulas, lines 2–5 of
update

m,g,f
hs ensure that currentV alue and thus the inconsistency value is set to

∞.

Example 8. We continue Example 7 and consider again the propositional stream
S1 given via

S1 = 〈a ∧ b,¬a,¬b, a ∨ b,¬b ∧ ¬a, . . .〉

We consider m = 1 (only one candidate hitting set is maintained) and use the
maximum function max as our aggregation function (g = max). Let f = f0 be
defined as f0(n) = 1/(n+ 1) for n ∈ {0, . . . , 10} and f0(n) = 0 for n > 10. We
consider the first four timepoints in the evaluation of J 1,max,f1

hs .

• For i = 0, we first initialize currentV alue = 0, Cand = {∅}, and N = 0
in Algorithm 1, and then set N = 1 in line 1 of Algorithm 2. Lines 2–5 in
Algorithm 2 are skipped as we do not have any contradictory formulas in
S1. In line 6 we set newV alue = ∞. In line 7 we select C1 = ∅. Suppose
in line 8 we determine rand = 0.7. As f0(1) = 1/2 we do not execute line
10. As there is no ω ∈ C1 that satisfies form = S1(0) = a ∧ b we add
some model, e. g., ab, to C1 in line 12. We set newV alue = 0 in line 13
and currentV alue = max(0, 0) = 0 in line 14.

• For i = 1, suppose in line 8 of Algorithm 2 we determine rand = 0.4. As
f0(2) = 1/3 we do not execute line 10. As there is no ω ∈ C1 = {ab} that
satisfies form = S1(1) = ¬a we add some model, e. g., ab, to C1 in line
12 (now we have C1 = {ab, ab}). We set newV alue = 1 in line 13 and
currentV alue = max(1, 0) = 1 in line 14.
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• For i = 2, suppose in line 8 of Algorithm 2 we determine rand = 0.5. As
f0(3) = 1/4 we do not execute line 10. Note that there is ω ∈ C1 with
ω |= form = S1(2) = ¬b (ω = ab). Therefore we skip line 12 and set
newV alue = 1 in line 13 and currentV alue = max(1, 1) = 1 in line 14.

• For i = 3, suppose in line 8 of Algorithm 2 we determine rand = 0.1.
As f0(3) = 1/5 > rand we execute line 10 and remove ab from C1. As
there is no ω ∈ C1 that satisfies form = S1(3) = a ∨ b we add some
model, e. g., ab, to C1 in line 12. We set newV alue = 1 in line 13 and
currentV alue = max(1, 1) = 1 in line 14.

AsJm,g,f
hs is a random process we cannot show thatJm,g,f

hs is an approximation
of Ihs in the general case. However, we can give the following result.

Proposition 9. For every p ∈ [0, 1), g some aggregation function with g(x, y) ≥
(x+ y)/2, f : N→ [0, 1] a null-bound function, and K ∈ K there is m ∈ N such
that with probability greater or equal p it is the case that limi→∞ Jm,g,f

hs (SK, i) =
Ihs(K).

This result states that Jm,g,f
hs indeed approximates Ihs if we choose the num-

ber of populations large enough. In the next section we will provide some empir-
ical evidence that even for small values of m results are satisfactory. As for the
runtime, note that in lines 2 and 11 of Algorithm 2 an FNP-complete problem is
solved (determining some model of a propositional formula). However, under the
reasonable assumption that formulas are usually quite small compared to the size
of the whole knowledge base the impact of this step is negligible.

Both Definition 16 and Algorithms 1 and 2 can be modified slightly in order
to approximate Ic instead of Ihs, yielding a new measure Jm,g,f

c .

Definition 17. Let m ∈ N, g an aggregation function, and f : N → [0, 1] some
null-bound function. We define the approximation algorithm Jm,g,f

c via6

Jm,g,f
c (S, i) = c-streamm,g,f (S, i)

for every S and i ∈ N. The algorithm c-streamm,g,f (S, i) is given in Algorithm 3
and its subroutine updatem,g,fc is depicted in Algorithm 4.

6Note that Jm,g,fc is not strictly a stream-based inconsistency measure (as a mathematical
function) according to Definition 11 as it is a randomized algorithm.
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Algorithm 3 c-streamm,g,f (S, i)
1: currentV alue = 0
2: Cand = {υ1, . . . , υm}
3: N = 0
4: for all j = 0, . . . , i do
5: currentV alue = updatem,g,fc (S(j))

6: return currentV alue

In c-streamm,g,f (S, i) and updatem,g,fc , the set of candidates Cand contains
three-valued interpretations instead of sets of classical interpretations (initialized
with randomly chosen interpretations υ1, . . . , υm with υ−1i (B) = ∅ for i = 1, . . . ,m).
In line 6 of updatem,g,fc , we flip some arbitrary proposition from B to T or F .
Similarly, in lines 8–13 of updatem,g,fc we flip some propositions to B in order to
satisfy the new formula. Finally, the inconsistency value is determined by taking
the number of B-valued propositions (the minimum of all candidates in Cand).

With respect to the accuracy of Jm,g,f
c , we can make a similar statement as for

Jm,g,f
hs .

Proposition 10. For every p ∈ [0, 1), g some aggregation function with g(x, y) ≥
(x+ y)/2, f : N→ [0, 1] a null-bound function, and K ∈ K there is m ∈ N such
that with probability greater or equal p it is the case that limi→∞ Jm,g,f

c (SK, i) =
Ic(K).

In order to evaluate the accuracy and performance of these stream-based in-
consistency measures in more detail, we perform some empirical experiments in
the following section.

6. Empirical Evaluation

In this section we describe our empirical experiments on runtime, accuracy,
and scalability of the discussed stream-based inconsistency measures. Our Java
implementations7 have been added to the Tweety Libraries for Knowledge Rep-
resentation (Thimm, 2014c).

7IMI, IMIc , Iη , J w,gI : http://mthimm.de/r?r=tweety-inc-commons
Ic, Ihs: http://mthimm.de/r?r=tweety-inc-pl
Jm,g,fhs : http://mthimm.de/r?r=tweety-stream-hs
Jm,g,fc : http://mthimm.de/r?r=tweety-stream-c
Evaluation framework: http://mthimm.de/r?r=tweety-stream-eval
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Algorithm 4 updatem,g,fc (form)

1: N = N + 1
2: newV alue =∞
3: for all υ ∈ Cand do
4: rand ∈ [0, 1]
5: if rand < f(N) and υ−1(B) 6= ∅ then
6: Set random proposition in υ from B to T or F
7: if υ 6|=3 form then
8: Select random ω ∈ Mod(form)
9: for all p ∈ At do

10: if ω |= p and υ(p) = F then
11: υ(p) = B

12: if ω 6|= p and υ(p) = T then
13: υ(p) = B

14: newV alue = min(newV alue, |υ−1(B)|)
15: currentV alue = g(newV alue, currentV alue)
16: return currentV alue

6.1. Evaluated Approaches
For our evaluation, we considered the inconsistency measures IMI, IMIc , Iη, Ic,

and Ihs. We used the SAT solver lingeling8 for the sub-problems of determining
consistency and to compute a model of a formula.

For enumerating the set of MIs of a knowledge base (as required by IMI and
IMIc) we used MARCO9, a tool for computing all minimal unsatisfiable sets of
clauses from a knowledge base given in conjunctive normal form (CNF). In order
to apply MARCO to our general non-CNF knowledge bases, we used the fol-
lowing approach. First, a general knowledge base K is converted to CNF, i. e.,
each formula of K is converted to a set of clauses. In doing so, we retain a map-
ping from each original formula to its set of clauses (note that clauses may appear
multiple times in the resulting knowledge base, if they originate from different for-
mulas). On the knowledge base in CNF we apply MARCO, which returns the set
of all minimal sets of unsatisfiable clauses. Using the mapping to the original for-
mulas, from each minimal set of unsatisfiable clauses a set of formulas is derived.

8http://fmv.jku.at/lingeling/
9http://sun.iwu.edu/˜mliffito/marco/
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By construction, the resulting set of formulas is inconsistent, but not necessarily
minimally inconsistent. Therefore, after all these sets have been computed, a fi-
nal minimality check is performed and all non-minimal sets are filtered out. This
approach is similar to the one employed by MIMUS (McAreavey et al., 2014),
a tool which also determines MIs from a general knowledge base and is based
on CAMUS10. We decided to use MARCO with the above preprocessing step in-
stead of MIMUS directly, as initial experiments suggested that the former one is
usually faster if the knowledge base contains at least one minimal inconsistent
subset (which is the standard case in our evaluation). This observation is con-
sistent with the observations made by Liffiton and Malik (2013), where CAMUS
is criticized to be slower than MARCO for determining many minimal unsatis-
fiable sets. While CAMUS is a multi-purpose tool that also computes minimal
correction sets, MARCO is optimized for computing minimal unsatisfiable sets
of clauses fast.

The measure Iη was implemented using the linear optimization solver lp solve11.
The measures IMI, IMIc , and Iη were used to define three different versions of

the window-based measure J w,g
I (with w = 500, 1000, 2000 and g = max). For

the measures Ic and Ihs we tested each three versions of their streaming variants
Jm,g0.75,f1
c andJm,g0.75,f1

hs (withm = 10, 100, 500) with f1 : N→ [0, 1] defined via
f1(i) = 1/(i+1) for all i ∈ N with i ≤ 232 and f1(i) = 0 otherwise. Furthermore,
g0.75 is the smoothing function for α = 0.75 as defined in the previous section.

6.2. Experiment Setup
For measuring the runtime of the different approaches we generated 100 ran-

dom knowledge bases in CNF with each 5000 formulæ and 30 propositions.12 A
knowledge base was generated by randomly determining the propositions appear-
ing in a clause (uniformly distributed and up to a maximum of 4) and randomly
negating some of these propositions (uniformly for each proposition). For each
generated knowledge base K we considered its K-stream and processing of the
stream was aborted after 40000 iterations. We fed theK-stream to each of the eval-
uated stream-based inconsistency measures and measured the average runtime per
iteration and the total runtime. For each iteration, we set a time-out of 2 minutes
and aborted processing of the stream completely if a time-out occurred.

10http://sun.iwu.edu/˜mliffito/camus/
11http://lpsolve.sourceforge.net
12All sampling algorithms can be found at

http://mthimm.de/r?r=tweety-sampler
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Measure RT (iteration) RT (total) Measure RT (iteration) RT (total)

J 500,max
IMI

198ms 133m J 10,g0.75,f1
c 0.16ms 6.406s

J 1000,max
IMI

359ms 240m J 100,g0.75,f1
c 1.1ms 43.632s

J 2000,max
IMI

14703ms 9812m J 500,g0.75,f1
c 5.21ms 208.422s

J 500,max
IMIc

198ms 134m J 10,g0.75,f1
hs 0.07ms 2.788s

J 1000,max
IMIc

361ms 241m J 100,g0.75,f1
hs 0.24ms 9.679s

J 2000,max
IMIc

14812ms 9874m J 500,g0.75,f1
hs 1.02ms 40.614s

Table 2: Runtimes for the evaluated measures; each value is averaged over 100 random knowledge
bases of 5000 formulæ; the total runtime is after 40000 iterations

In order to measure accuracy, for each of the considered approaches we gen-
erated another 100 random knowledge bases (not necessarily in CNF) with spe-
cifically set inconsistency values, used otherwise the same settings as above, and
measured the returned inconsistency values.

To evaluate the scalability of our stream-based approach of Ihs we conducted
a third experiment13 where we fixed the number of propositions (60) and the spe-
cifically set inconsistency value (200) and varied the size of the knowledge bases
from 5000 to 50000 (with steps of 5000 formulæ). We measured the total runtime
up to the point when the inconsistency value was within a tolerance of ±1 of the
expected inconsistency value.

The experiments were conducted on a server with two Intel Xeon X5550
QuadCore (2.67 GHz) processors with 8 GB RAM running SUSE Linux 2.6.

6.3. Results
Our first observation concerns the inconsistency measure Iη which proved to

be not suitable to work on large knowledge bases. Computing the value Iη(K)
for some knowledge base K includes solving a linear optimization problem over
a number of variables which is (in the worst-case) exponential in the number of
propositions of the signature. In our setting with |At| = 30 the generated optim-
ization problem contained therefore 230 = 1073741824 variables. Hence, even

13We did the same experiment with our stream-based approach of Ic but do not report the results
due to the similarity to Ihs.
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Figure 1: Accuracy performance for the evaluated measures (dashed line is actual inconsistency
value); each value is averaged over 100 random knowledge bases of 5000 formulæ (30 proposi-
tions) with varying inconsistency values

propositions of the signature. In our setting with |At| = 30 the generated optim-
ization problem contained therefore 230 = 1073741824 variables. Hence, even
the optimization problem itself could not be constructed within the timeout of 2
minutes for every step. In the following, we will therefore not report on further
results for I⌘.

As for the runtime of the window-based approaches of IMI and IMIc and our
stream-based approaches for Ic and Ihs see Table 2. There one can see that J w,g

IMI

and J w,g
IMIc

on the one hand, and J m,g,f
c and J m,g,f

hs on the other hand, have com-
parable runtimes, respectively. The former two have almost identical runtimes,
which is obvious as the determination of the MIs is the main problem in both their
computations. Clearly, J m,g,f

c and J m,g,f
hs are significantly faster per iteration (and

in total) than J w,g
IMI

and J w,g
IMIc

, only very few milliseconds for the latter and several
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the optimization problem itself could not be constructed within the timeout of 2
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the optimization problem itself could not be constructed within the timeout of 2
minutes for every step. In the following, we will therefore not report on further
results for Iη.

As for the runtime of the window-based approaches of IMI and IMIc and our
stream-based approaches for Ic and Ihs see Table 2. There one can see that J w,g

IMI

and J w,g
IMIc

on the one hand, and Jm,g,f
c and Jm,g,f

hs on the other hand, have com-
parable runtimes, respectively. The former two have almost identical runtimes,
which is obvious as the determination of the MIs is the main problem in both their
computations. Clearly, Jm,g,f

c andJm,g,f
hs are significantly faster per iteration (and

in total) than J w,g
IMI

and J w,g
IMIc

, only very few milliseconds for the latter and several
hundreds and thousands of milliseconds for the former (for all variants of m and
w). The impact of increasing m for Jm,g,f

c and Jm,g,f
hs is expectedly linear while

the impact of increasing the window size w for J w,g
IMI

and J w,g
IMIc

is exponential (this
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hundreds and thousands of milliseconds for the former (for all variants of m and
w). The impact of increasing m for J m,g,f

c and J m,g,f
hs is expectedly linear while

the impact of increasing the window size w for J w,g
IMI

and J w,g
IMIc

is exponential (this
is also clear as both solve an FNP-hard problem).

As for the accuracy of the different approaches see Figure 1. There one can see
that both J m,g,f

hs and J m,g,f
c (Figures 1a and 1b) converge quite quickly (almost

right after the knowledge base has been processed once) into a [�1, 1] interval of
the actual inconsistency value, where J m,g,f

hs is even closer to it. The window-
based approaches (Figures 1c and 1d) have a comparable bad performance (this
is clear as those approaches cannot see all MIs at any iteration due to the limited
window size). Surprisingly, the impact of larger values of m for J m,g,f

hs and J m,g,f
c

is rather small in terms of accuracy which suggests that the random process of our
algorithm is quite robust. Even for m = 10 the results are quite satisfactory.

As for the scalability of J m,g0.75,f1

hs see Figure 2. There one can observe a
linear increase in the runtime of all variants wrt. the size of the knowledge base.
Furthermore, the difference between the variants is also linearly in the parameter
m (which is also clear as each population is an independent random process). It
is noteworthy, that the average runtime for J 10,g0.75,f1

hs is about 66.1 seconds for
knowledge bases with 50000 formulæ. As the significance of the parameter m for
the accuracy is also only marginal, the measure J 10,g0.75,f1

hs is clearly an effective
and accurate stream-based inconsistency measure.

7. Related Work

This work is the first to address inconsistency measurement in streaming scen-
arios. The closest family of related works are approaches for efficient inconsist-
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is also clear as both solve an FNP-hard problem).
As for the accuracy of the different approaches see Figure 1. There one can see

that both Jm,g,f
hs and Jm,g,f

c (Figures 1a and 1b) converge quite quickly (almost
right after the knowledge base has been processed once) into a [−1, 1] interval of
the actual inconsistency value, where Jm,g,f

hs is even closer to it. The window-
based approaches (Figures 1c and 1d) have a comparable bad performance (this
is clear as those approaches cannot see all MIs at any iteration due to the limited
window size). Surprisingly, the impact of larger values ofm forJm,g,f

hs andJm,g,f
c

is rather small in terms of accuracy which suggests that the random process of our
algorithm is quite robust. Even for m = 10 the results are quite satisfactory.

As for the scalability of Jm,g0.75,f1
hs see Figure 2. There one can observe a

linear increase in the runtime of all variants wrt. the size of the knowledge base.
Furthermore, the difference between the variants is also linear in the parameter
m (which is also clear as each population is an independent random process). It
is noteworthy, that the average runtime for J 10,g0.75,f1

hs is about 66.1 seconds for
knowledge bases with 50000 formulæ. As the significance of the parameter m for
the accuracy is also only marginal, the measure J 10,g0.75,f1

hs is clearly an effective
and accurate stream-based inconsistency measure.

7. Related Work

This work is the first to address inconsistency measurement in streaming scen-
arios. The closest family of related works are approaches for efficient inconsist-
ency measure computation for the classical setting (where a knowledge base is
given as a whole).
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In (Ma et al., 2009, 2010; Xiao et al., 2010) Ma and colleagues present an any-
time algorithm that approximates an inconsistency measure based on a 4-valued
paraconsistent logic (similar to the contension inconsistency measure). The al-
gorithm provides lower and upper bounds for this measure and can be stopped at
any point in time with some guaranteed quality. The main difference between our
framework and the algorithm of (Ma et al., 2009, 2010) is that the latter needs
to process the whole knowledge base in each atomic step and is therefore not dir-
ectly applicable for the streaming scenario. The empirical evaluation in (Ma et al.,
2009, 2010) also suggests that our streaming variant of Ihs is much more perform-
ant as Ma et al. report an average runtime of their algorithm of about 240 seconds
on a knowledge base with 120 formulæ and 20 propositions (no evaluation on
larger knowledge bases is given) while our measure has a runtime of only a few
seconds for knowledge bases with 5000 formulæ with comparable accuracy14.

In (McAreavey et al., 2014) an approach is developed for computing meas-
ures based on minimal inconsistent subsets (such as IMI and IMIc) more effi-
ciently. Core to the computation of these measures is the determination of MI(K)
for an arbitrary knowledge base K. While the computational challenges of de-
termining the set of minimal inconsistent subsets for knowledge bases in CNF
has been studied for some time in the SAT community—see e. g. (Liffiton and
Sakallah, 2005; Büning and Kullmann, 2009; Liffiton and Malik, 2013; Previti
and Marques-Silva, 2013)—additional issues arise when considering knowledge
bases that are not in CNF. These issues are addressed by McAreavey et al. (2014)
where an approach for efficiently computing minimal inconsistent sets for arbit-
rary knowledge is presented. The approach has been implemented in the tool
MIMUS which is based on the tool CAMUS15 for computing minimal inconsist-
ent subsets of knowledge bases in CNF. In (McAreavey et al., 2014) this tool has
been empirically evaluated, also in the context of measuring inconsistency with
measures based on minimal inconsistent subsets. Compared to (McAreavey et al.,
2014) we consider arbitrary inconsistency measures and not just those based on
minimal inconsistent subsets. Still, the work of McAreavey et al. is relevant for
applying those inconsistency measures to our streaming scenario. We slightly
adapted the general approach of McAreavey et al. (2014) and used MARCO16,
instead of the predecessor CAMUS, for our empirical evaluation (see Section 6).

14Although hardware specifications for these experiments are different this huge difference is
quite relevant.

15http://sun.iwu.edu/˜mliffito/camus/
16http://sun.iwu.edu/˜mliffito/marco/
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8. Summary and Conclusion

In this paper we introduced and discussed the problem of stream-based in-
consistency measurement. For that, we developed a novel inconsistency measure
Ihs that is based on the notion of a hitting set and analyzed its properties. We
presented a general framework for applying classical inconsistency measures to
the streaming scenario and developed specific approximation algorithms for Ihs
and the contension measure Ic. Our empirical evaluation showed that the latter
two approaches outperform the baseline window-based approaches to measure in-
consistency and streams and provide general evidence of the feasibility of stream-
based inconsistency measurement.

All discussed inconsistency measures (classical and stream-based ones), as
well as the evaluation framework have been implemented in Java and added to
the open source project Tweety17 (Thimm, 2014c). Current work is about the
application of our work on linked open data sets (Isele et al., 2010) enriched with
OWL semantics.

Acknowledgements. I thank the anonymous reviewers for their valuable com-
ments to improve a previous version of this paper.
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Appendix A. Proofs of Technical Results

Proposition 1. Let K be a knowledge base. The following two statements are
equivalent:

1. there is no φ ∈ K with φ |=⊥
2. there exists a hitting set H of K

Proof. Let K = {φ1, . . . , φn}. First, assume that there is no φi ∈ K with φi |=⊥
for i = 1, . . . , n. It follows Mod(φi) 6= ∅ for every i = 1, . . . , n. Let ωi ∈
Mod(φi), then by definition {ω1, . . . , ωn} is a hitting set of K. Let now H =
{ω1, . . . , ωm} be a hitting set of K. Then for every φ ∈ K there is ω ∈ H with
ω |= φ. Therefore there can be no φ ∈ K with Mod(φ) 6= ∅.
Proposition 2. Let K be a knowledge base.

1. If H is a hitting set of K then every H ′ with H ⊆ H ′ is a hitting set of K.
2. H = ∅ is a hitting set of K if and only if K = ∅.
3. K is consistent if and only if there is a hitting set H of K with |H| = 1.
4. If H is a hitting set of K then H is a hitting set of every K′ with K′ ⊆ K.

Proof. Let K = {φ1, . . . , φn}.
1. Let H be a hitting set of K and let H ′ be such that H ⊆ H ′. Then for every
φ ∈ K we have ω ∈ H ⊆ H ′ such that ω |= φ. Therefore H ′ is a hitting set
of K.

2. LetK = ∅. ThenH = ∅ is a trivial hitting set ofK by definition of universal
quantification. Note also that for any K with K 6= ∅ the set H = ∅ cannot
be a hitting set.

3. LetK 6= ∅ be consistent. Then there is ω ∈ Int(At) with ω |= K, i. e., ω |= φ
for every φ ∈ K. Therefore, {ω} is a hitting set of K with |{ω}| = 1. Let
H be any hitting set of K with |H| = 1, i. e., H = {ω}. Then ω |= φ for all
φ ∈ K and, hence, φ |= K. Therefore, K is consistent. For the case K = ∅
note that every subset of Int(At) is a hitting set of K.

4. Let H be a hitting set of K and let K′ ⊆ K. Then for every φ ∈ K′ there is
ω ∈ H with ω |= φ as K′ ⊆ K. Hence, H is a hitting set of K.
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Proposition 3. The function Ihs is a (basic) inconsistency measure.

Proof. We have to show that properties 1.), 2.), and 3.) of Definition 4 are satis-
fied.

1. This follows directly from items 2.) and 3.) of Proposition 2.
2. This follows directly from item 4.) of Proposition 2.
3. Let α ∈ Free(K) and defineK′ = K\{α}. Let H be a hitting set ofK′ with
|H| being minimal and let ω ∈ H . Furthermore, letK′′ ⊆ K′ be the set of all
formulæ β such that ω |= β. It follows that K′′ is consistent. As α is a free
formula it follows that K′′ ∪ {α} is also consistent (otherwise there would
be a minimal inconsistent subset of K′′ containing α). Let ω′ be a model of
K′′ ∪ {α}. Then H ′ = (H \ {ω}) ∪ {ω′} is a hitting set of K and due to 2.)
also of minimal cardinality. Hence, we have Ihs(K′) = Ihs(K).

Proposition 4. The measure Ihs satisfies the following properties:

• If α ∈ K is such that At(α)∩At(K\{α}) = ∅ then Ihs(K) = Ihs(K\{α})
(safe formula independence).

• If K ≡σ K′ then Ihs(K) = Ihs(K′) (irrelevance of syntax).

• If α |= β and α 6|=⊥ then Ihs(K ∪ {α}) ≥ Ihs(K ∪ {β}) (dominance).

Proof.

• This is satisfied as safe formula independence follows from free formula
independence, cf. (Hunter and Konieczny, 2010; Thimm, 2013).

• Let H be a hitting set of K with minimal cardinality. So, for every α ∈ K
we have ω ∈ H with ω |= α. Due to α ≡ σ(α) we also have ω |= σ(α) and,
thus for very β ∈ K′ we have ω ∈ H with ω |= β. So H is also a hitting set
of K′. Minimality follows from the fact that σ is a bijection.

• Let H be a minimal hitting set of K1 = K ∪ {α} with minimal cardinality
and let ω ∈ H be such that ω |= α. Then we also have that ω |= β and H is
also a hitting set of K2 = K ∪ {β}. Hence, Ihs(K1) ≥ Ihs(K2).
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Proposition 5. For every knowledge base K

Ihs(K) = min{|Φ| | Φ is a consistent partitioning of K} − 1

with min ∅ =∞ for every K ∈ K \ {∅} and Ihs(∅) = 0.

Proof. For K = ∅ and the case that K contains φ with φ |=⊥, the statement is
trivially satisfied so assume K 6= ∅ and that K does not contain an inconsistent
formula. Let Φ = {Φ1, . . . ,Φn} be a consistent partitioning with |Φ| being min-
imal and let ωi ∈ Int(At) be such that ωi |= Φi (for i = 1, . . . , n). Observe
that ωi 6= ωj for all i 6= j, otherwise Φi ∪ Φj would have a model ωi = ωj and
Φ′ = Φ\{Φi,Φj}∪{Φi∪Φj} would be a consistent partitioning with |Φ′| < |Φ|.
Then H = {ω1, . . . , ωn} is a hitting set of K and we have Ihs(K) ≤ |Φ| − 1.
Let now H = {ω1, . . . , ωn} be a hitting set of K with |H| being minimal. Let
Φ = {Φ1, . . . ,Φn} be a set such that φ ∈ Φi implies ωi |= φ for every φ ∈ K
(note that there may be multiple partitionings satisfying this property but they all
have the same cardinality). Note that Φ is a partitioning of K and that Φi is con-
sistent for every i = 1, . . . , n. It follows Ihs(K) ≥ |Φ| − 1 and therefore the
claim.

Proposition 6. Let K be a knowledge base. If∞ > Ihs(K) > 0 then

Iη(K) ≤ 1− 1

Ihs(K) + 1

Proof. Let H be a minimal hitting set of K with minimal cardinality, i. e., we
have Ihs(K) = |H| − 1. Define a probability function P : Int(At) → [0, 1] via
P (ω) = 1/|H| for every ω ∈ H and P (ω′) = 0 for every ω′ ∈ Int(At) \H (note
that P is indeed a probability function). As H is a hitting set of K we have that
P (φ) ≥ 1/|H| for every φ ∈ K as at least one model of φ gets probability 1/|H|
in P . So we have Iη(K) ≤ 1− 1/|H| = 1− 1/(Ihs(K) + 1).

Proposition 7. There is no subsumption relation between Ihs and any I ∈ {IMI, IMIc , Ic, Iη}.
Proof.

1. Ihs 6v IMI: Consider the knowledge bases K1 and K2 given as

K8 = {a ∧ b,¬a ∧ b, a ∧ ¬b}
K9 = {a, b, c,¬a ∧ ¬b ∧ ¬c}

Then we have Ihs(K9) = 1 < 2 = Ihs(K8) but IMI(K9) = 3 = IMI(K8).
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2. IMI 6v Ihs: Consider the knowledge bases K4 and K10 given as

K4 = {a,¬a}
K10 = {a,¬a ∧ ¬b, b}

Then we have IMI(K4) = 1 < 2 = IMI(K10) but Ihs(K4) = 1 = Ihs(K10).
3. Ihs 6v IMIc: For the knowledge bases from item 1.) we also have IMI(K8) =

1.5 = IMI(K9).
4. IMIc 6v Ihs: For the knowledge bases from item 2.) we also have IMIc(K4) =

1/2 < 1 = IMIc(K10).
5. Ihs 6v Ic: see Example 6.
6. Ic 6v Ihs: see Example 6.
7. Ihs 6v Iη: Consider the knowledge bases K4 and K11 given as

K4 = {a,¬a}
K11 = {(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c),

(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c),
(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (¬a ∧ b ∧ c),
(a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ ¬c),
(a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c),
(a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c),
(a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ ¬c),
(a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c),
(a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c),
(a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c)}

Then we have Ihs(K4) = 1 < 2 = Ihs(K11) but Iη(K4) = 1/2 > 2/5 =
Iη(K11). Let us discuss K11 a bit more. Consider the five interpretations
ω1, . . . , ω5 of the propositional signature At = {a, b, c} defined via

ω1 = abc

ω2 = abc

ω3 = abc

ω4 = abc

ω5 = abc
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Then K11 comprises of formulas φ that are satisfied by exactly three out
of these five interpretations (and for each 3-element subset of {ω1, . . . , ω5}
there is exactly one corresponding formula). It follows that a probability
function P assigning probability 1/5 to each of these five interpretations
(and zero to the remaining interpretations) yields P (φ) = 3/5 for each φ ∈
K2 (and this is maximal), thus yielding Iη(K11) = 1− 3/5 = 2/5. Further,
any 3-element subset of {ω1, . . . , ω5} is also a hitting set of K11: as every
φ ∈ K2 is satisfied by exactly three interpretations, one can remove any two
of them and still maintain the hitting set property. So H = {ω1, ω2, ω3}
is a hitting set and one can easily see that there is no smaller one, yielding
Ihs(K11) = |H| − 1 = 2.

8. Iη 6v Ihs: Consider the knowledge bases K4 and K12 given as

K4 = {a,¬a}
K12 = {a, b,¬a ∨ ¬b}

Then we have Iη(K12) = 1/3 < 1/2 = Iη(K4) but Ihs(K12) = 1 =
Ihs(K4).

Corollary 1. Ihs 6' IMI, Ihs 6' IMIc , Ihs 6' Ic, and Ihs 6' Iη.

Proof. This follows directly from Proposition 7 and the definition of equivalence.

Proposition 8. Let I be an inconsistency measure, w ∈ N ∪ {∞}, and g an
aggregation function.

1. If w is finite then J w,g
I is not an approximation of I.

2. J w,g
I (SK, i) ≤ I(K) for every K ∈ K and i ∈ N.

3. If w =∞ and g(x, y) ≥ (x+ y)/2 then J w,g
I is an approximation of I.

Proof.

1. AssumeK is a minimal inconsistent set with |K| > w. Then I(Smax{0,i−w},i) =
0 for all i > 0 (as every subset of K is consistent) and J w,g

I (S, i) = 0 for
all i > 0 as well. As I is an inconsistency measure I(K) > 0 and, hence,
J w,g
I does not approximate I.

2. This follows from the fact that I is a basic inconsistency measure and there-
fore satisfies I(K) ≤ I(K′) for K ⊆ K′.
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3. If w = ∞ there is i0 ∈ N such that I(Smax{0,i−w},i) = I(K) for all i > i0.
Due to item 2 above (all previous values estimated the inconsistency value
from below) and as g(x, y) > (x + y)/2 (in each step the new value is the
average of the previous value and the actual inconsistency value) the value
I(K) will be approximated by J w,g

I eventually.

Proposition 9. For every p ∈ [0, 1), g some aggregation function with g(x, y) ≥
(x+ y)/2, f : N→ [0, 1] a null-bound function, and K ∈ K there is m ∈ N such
that with probability greater or equal p it is the case that limi→∞ Jm,g,f

hs (SK, i) =
Ihs(K).

Proof. Let p ∈ [0, 1), g some aggregation function with g(x, y) ≥ (x + y)/2,
f : N → [0, 1] a null-bound function, and K ∈ K. Let H = {ω1, . . . , ωh} ⊆
Int(At) be a hitting set of K such that Ihs(K) = |H| − 1. Consider the evolution
of a single candidate set during the iterated execution of updatem,g,fhs (form). If
K contains a contradictory formula then lines 2–5 ensure that the return value of
Algorithm 2 is always∞ and thus the claim holds trivially. We now assume that
K contains no contradictory formula.

LetC0 = ∅ be the initial candidate set and letCi for i ∈ N denote the candidate
set after iteration i. In the first iteration, C0 does not contain any interpretations
yet, so lines 9 and 10 of Algorithm 2 are vacuous. As the condition in line 11
evaluates to true, we add some interpretation to C0. As H is a hitting set of K
there is ω ∈ H with ω ∈ Mod(form). The probability of choosing ω in line 12,
so the probability of C0 evolving to C1 = {ω}, is p0 = 1/|Mod(form)| > 0. In
the second iteration, the probability q1 that line 10 is not executed is greater than
zero (as f is bounded by 1 and the condition involves a strictly less comparison).
Assume that ω 6|= form (otherwise simply continue with the next formula in the
next iteration). Then, again, there is ω′ ∈ H with ω′ |= form and the probability
of choosing ω′ in line 12 is 1/|Mod(form)| > 0. Therefore, the probability of C0

evolving through C1 to C2 = {ω, ω′} is p1 = p0q1/|Mod(form)| > 0. It follows
that the probability ofC0 evolving toCh = H in its h-th iteration is strictly greater
than zero. Note that beginning in the h + 1-th iteration the condition in line 11 is
not satisfied anymore and that Ci = Ci+1 for every i > h with positive probability
as well as there is a positive probability that line 10 will not be executed (with
increasing probability over the iterations as f is a null-bound function). So for
every candidate set C ∈ Cand there is a positive probability p̂ that C evolves to
H and does not change anymore thereafter.

In general, observe that every candidate set C ∈ Cand evolves into a hitting
set of K as the probability of executing line 10 becomes zero eventually and lines
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11 and 12 ensure that every formula in K has a model in C. Furthermore, each
evolution of a candidate set C ∈ Cand is an independent random process. So for
|Cand| = m the probability that at least one element of Cand evolves to H in the
above described manner is 1− (1− p̂)m (here (1− p̂)m is the probability that none
of the candidate sets evolve to H). Observe that 1 − (1 − p̂)m, due to p̂ > 0, is
monotonously increasing in m with limm→∞ 1− (1− p̂)m = 1. Therefore we can
choose m̂ such that 1−(1− p̂)m̂ ≥ p ∈ [0, 1) and with probability at least p the set
of candidate sets Cand with |Cand| = m̂ contains at least one candidate set that
evolves to H . Let C0, C1, . . . , Ch, Ch+1, . . . be the evolution of this candidate set
with C0 ⊆ C1 . . . ⊆ Ch = Ch+1 = . . . with Ch = H . It follows that the variable
newV alue has never a value larger than |H|− 1 whenever line 14 is executed. As
currentV alue is initialized with 0 it also follows that currentV alue has never a
larger value than |H| − 1 in line 15, as g is an aggregation function.

Consider now an iteration step i where all candidate sets in Cand have stabil-
ized and do not change thereafter. Then newV alue always has the value |H| − 1
in line 14. If at iteration step i currentV alue has already the value |H| − 1
then the value of currentV alue is not changed (as g is an aggregation func-
tion). Then we have that the return value of Algorithm 2 in line 15 is always
|H| − 1 = Ihs(K) and therefore limi→∞ Jm,g,f

hs (SK, i) = Ihs(K). If at iteration
step i currentV alue has a value α0 < |H| − 1 then observe that currentV alue
is updated to some value α1 ≥ (α0 + (|H| − 1))/2 with α1 ≤ |H| − 1 (as g is an
aggregation function). In subsequent iterations this value is updated while satis-
fying αj ≥ (αj+1 + (|H| − 1))/2 with αj ≤ |H| − 1 which converges to |H| − 1
and thus proves the claim.

Proposition 10. For every p ∈ [0, 1), g some aggregation function with g(x, y) ≥
(x+ y)/2, f : N→ [0, 1] a null-bound function, and K ∈ K there is m ∈ N such
that with probability greater or equal p it is the case that limi→∞ Jm,g,f

c (SK, i) =
Ic(K).

Proof. Let p ∈ [0, 1), g some aggregation function with g(x, y) ≥ (x + y)/2,
f : N → [0, 1] a null-bound function, and K ∈ K. Let υ̂ : At → {T, F,B}
be a three-valued interpretation of the atoms appearing in K such that υ̂ |=3 K
and Ic(K) = |υ̂−1(B)| = t. Consider the evolution of a single three-valued
interpretation υ ∈ Cand during the iterated execution of updatem,g,fc (form).

Let υ0 be the initial interpretation with υ−1(B) = ∅ set and let υi for i ∈ N
denote the interpretation after iteration i. As f is null-bound there is an iteration
k > 0 from which on line 6 is not executed anymore. Furthermore, observe that
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lines 7–13 ensure that υ is changed in such a way that it satisfies the formula
form. Note that once we are in an iteration k′ ≥ k and υ satisfies all formulas
in K lines 7–13 will also not be executed anymore. Consequently, the evolution
of υ always converges at some iteration l > 0 and υl satisfies all formulas in
K. Similarly to the analysis in the proof of Proposition 9 the probability of υ
evolving to υ̂, i. e., υl = υ̂, is strictly greater than zero (albeit potentially quite
small). In particular, the probability p̂ of the evolution υ0, υ1, . . . , υt, . . . with
|υ−10 (B)| = 0,|υ−11 (B)| = 1,. . . , |υ−1t (B)| = t, and υj+1 = υj = υ̂ for all j ≥ t is
strictly greater zero. So for |Cand| = m the probability that at least one element
of Cand evolves to υ̂ in the above described manner is 1−(1− p̂)m (here (1− p̂)m
is the probability that none of the interpretations evolve to υ̂). Therefore we can
choose m̂ such that 1 − (1 − p̂)m̂ ≥ p ∈ [0, 1) and with probability at least p the
set Cand with |Cand| = m̂ contains at least one interpretation that evolves to υ̂.
It follows that the variable newV alue has never a value larger than t whenever
line 15 is executed. As currentV alue is initialized with 0 it also follows that
currentV alue has never a larger value than t in line 16, as g is an aggregation
function.

Consider now an iteration step i where all interpretations in Cand have sta-
bilized and do not change thereafter. Then newV alue always has the value t in
line 15. If at iteration step i currentV alue has already the value t then the value
of currentV alue is not changed (as g is an aggregation function). Then we have
that the return value of Algorithm 4 in line 16 is always t = Ic(K) and therefore
limi→∞ Jm,g,f

c (SK, i) = Ic(K). If at iteration step i currentV alue has a value
α0 < t then observe that currentV alue is updated to some value α1 ≥ (α0 + t)/2
with α1 ≤ t (as g is an aggregation function). In subsequent iterations this value
is updated while satisfying αj ≥ (αj+1 + t))/2 with αj ≤ t which converges to t
and thus proves the claim.
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