
A General Approach to Reasoning with Probabilities

Federico Ceruttia, Matthias Thimmb

aCardiff University, UK
bUniversity of Koblenz-Landau, Germany

Abstract
We propose a general scheme for adding probabilistic reasoning capabilities to
a wide variety of knowledge representation formalisms and we study its proper-
ties. Syntactically, we consider adding probabilities to the formulas of a given
base logic. Semantically, we define a probability distribution over the subsets of
a knowledge base by taking the probabilities of the formulas into account accord-
ingly. This gives rise to a probabilistic entailment relation that can be used for un-
certain reasoning. Our approach is a generalisation of many concrete probabilistic
enrichments of existing approaches, such as ProbLog (an approach to probabilistic
logic programming) and the constellation approach to abstract argumentation. We
analyse general properties of our approach and provide some insights into novel
instantiations that have not been investigated yet.

1. Introduction

The ability to reason under uncertainty is a core requirement for most intel-
ligent systems and many approaches for uncertain reasoning have been proposed
in the area of knowledge representation and reasoning (KR) and artificial intel-
ligence (AI) in general, see e. g. [43, 42, 3] for some textbooks on that topic. In
general, we can distinguish between qualitative uncertain reasoning and quanti-
tative uncertain reasoning. The former encompasses approaches such as default
logic [51], answer set programming [24, 22], or abstract argumentation [16]. The
latter makes use of formalisms such as probability theory [43, 42], fuzzy logic [26],
or Dempster-Shafer theory [56]. A common approach to define a new quantitative
model for uncertain reasoning is to take some non-quantitative approach—which
may either be a qualitative model as mentioned before or something completely
different such as propositional logic—add quantities to the syntax and define a
new quantitative semantics on top of that. This approach is followed by e. g. prob-
abilistic logics [41, 27]; distribution semantics for logic programming [55], then

Preprint submitted to International Journal of Approximate Reasoning May 2, 2019

implemented in ProbLog [11]; P-log [2]; probabilistic approaches to formal argu-
mentation [35, 29, 30, 53, 44], and many more.

In this paper we aim at unifying many of the aforementioned approaches and
defining a general methodology for reasoning with quantitative uncertainty. This
allows for a general study of its properties while abstracting away from any spe-
cific instantiation. We focus on probability theory as a means for quantitative un-
certain reasoning but a similar methodology can be defined by building on other
formalisms such as fuzzy logic or Dempster-Shafer theory. We start by consider-
ing an arbitrary base logic and define its probabilistic augmentation by extending
the syntax to allow for annotated probabilities on each formula. Therefore, a
knowledge base of probabilistic augmentation consists of a set of formulas, each
annotated with a probability. We define a general probabilistic semantics on top
of the built-in semantics of the base logic by (1) considering each subset of the
knowledge base, (2) performing ordinary inference within the subset, and (3) ac-
cumulating the inferences by taking the probabilities into account. This gives us
a general methodology for defining probabilistic versions of a wide spectrum of
existing knowledge representation formalisms, and is inspired by many concrete
realisations such as the distribution semantics for logic programming [55] and
probabilistic data bases [57], cf. Section 6.

In order to illustrate our general methodology we provide instantiations of
it using propositional logic, logic programming, and abstract argumentation. For
those formalisms we provide the necessary preliminaries in Section 2. Afterwards,
we present the contributions of this paper, namely:

1. We define the syntax and semantics of the probabilistic augmentation of
a general knowledge representation formalism as a probabilistic version of
it, and show how our general approach subsumes existing approaches to
probabilistic reasoning (Section 3).

2. We provide an extensive analysis of our approach in terms of robustness of
reasoning results (Section 4).

3. We discuss novel instantiations of our approach that have not been investi-
gated yet (Section 5).

Section 6 reviews related works and Section 7 concludes this paper with a sum-
mary.

An extended abstract of this work has been published in [7] and a preliminary
workshop version in [8].

2

2. Knowledge representation formalisms

We consider a very general definition for a logic. For a set S let 2S denote its
power set.

Definition 1. A logic L is a tuple L = (W ,V , |=) where W is the set of well-
formed formulas, V is the set of “inferrable” formulas, and |=⊆ 2W × V is an
inference relation.

As we aim to model a wide range of logics we explicitly distinguish between
well-formed formulas W and formulas that can be inferred in the formalism V .
For example, note that most approaches to logic programming (see Section 2.2)
have rules as well-formed formulas, but inference is usually defined for ground
atoms.

We write K |= φ (“K entails φ”) instead of (K, φ) ∈|= for K ⊆ W , φ ∈ V .
K ⊆ W is |=-inconsistent if K |= φ for all φ ∈ V; otherwise K is |=-consistent.

Let us give instantiations of propositional logic, logic programming (Prolog
and Answer Set Programming), and abstract argumentation in this simple frame-
work.

2.1. Propositional logic
For a set of propositional atoms At we define propositional logic

LP (At) = (WP (At),VP (At), |=P)

as follows. LetWP (At) be the propositional language generated using At and the
usual connectives ∧, ∨, ⇒, and ¬. An interpretation ω is a function ω : At →
{true, false}. With slight abuse of notation we abbreviate (let φ, ψ ∈ WP and
Ψ ⊆ WP)

ω(ψ ∧ φ) = true iff ω(ψ) = true and ω(φ) = true
ω(ψ ∨ φ) = true iff ω(ψ) = true or ω(φ) = true
ω(ψ ⇒ φ) = true iff ω(ψ) = false or ω(φ) = true

ω(¬φ) = true iff ω(φ) = false
ω(Ψ) = true iff for all ψ ∈ Ψ, ω(ψ) = true

We define VP (At) = WP (At) and classical entailment |=P via K |=P φ iff for
all interpretations ω with ω(K) = true, ω(φ) = true as well. With this notion,
observe that K ⊆ WP (At) is |=P -inconsistent iff it is classically inconsistent.

3

Example 1. Let us consider the following example inspired by [49] and mod-
elling a simple e-mail spam filter. Let K be the knowledge base consisting of the
following formulas:

sc⇒ sp
ss⇒ sp
us⇒ sp ∨ jo
sc
ss

where sc means “suspicious content”, ss means “suspicious subject”, sp means
“spam”, us means “unknown sender”, and jo means “job offer”. For example,
the third formula can then be read as “a mail from an unknown sender is either
spam or a job offer”. From K we can infer sp (K |=P sp), sc (K |=P sc), and ss
(K |=P ss).

2.2. Logic programming
We now consider logic programming [34, 4, 24, 23, 22]. Let Pred be a set of

predicate symbols, U a set of constant symbols, and V a set of variables. For every
predicate symbol p ∈ Pred we denote by arity(p) its arity. An atom p(t1, . . . , tn)
is a predicate symbol p ∈ Pred with arity(p) = n and t1, . . . , tn ∈ U ∪ V . A
literal is either an atom p(t1, . . . , tn) or its classical negation ¬p(t1, . . . , tn). A
rule r has the form

r : H ← A1, . . . , An,not Bn+1, . . . ,not Bm

with literals H,A1, . . . , An, Bn+1, . . . , Bm. The literal H = head(r) is called
head of the rule and body(r) = {A1, . . . , An,not Bn+1, . . . ,not Bm} is called
body of the rule. We also differentiate between the positive body body+(r) =
{A1, . . . , An} and the negative body body−(r) = {not Bn+1, . . . ,not Bm}.

A rule is safe if every variable appearing in it, also appears in body+(r). A
rule is normal if it does not contain classical negation ¬. If m = n = 0 we write
H instead of H ← and call this rule a fact. A rule is ground if it does not contain
any variables. For a set P of rules we denote by ground(P) its grounding, i. e., the
set of all rules that can be obtained by some rule in P by substituting all variables
homogeneously by constants.

4

We consider two concrete logics as instances of logic programming. First, we
define1 Prolog [34, 4] as the general logic

LProlog(Pred, U, V) =

(WProlog(Pred, U, V),VProlog(Pred, U, V), |=Prolog)

where

• WProlog(Pred, U, V) is the set of all safe and normal rules as defined above
and

• VProlog(Pred, U, V) is the set of all ground atoms.

For a set P ⊆ WProlog(Pred, U, V) (also called Prolog program) the relation
|=Prolog is inductively defined via:2

1. for all r ∈ P with body(r) = ∅, P |=Prolog head(r).
2. P |=Prolog H for H ← A1, . . . , An,not Bn+1, . . . ,not Bm ∈ ground(P), if
P |=Prolog A1, . . . , P |=Prolog An, P 6|=Prolog Bn+1,. . . , P 6|=Prolog Bm.

If there is an H for which P |=Prolog H cannot be decided “with a finite deriva-
tion” (such as in P = {H ← not H.}, we define P |=Prolog φ for all φ ∈
WProlog(Pred, U, V) (P is |=Prolog-inconsistent).

Example 2 (Evolved from [11, Example 1]). Let us consider the following knowl-
edge base represented as a Prolog program P ⊆ WProlog(Pred, U, V):

likes(X, Y)← friendof(X, Y)

likes(X, Y)← friendof(X,Z), likes(Z, Y)

friendof(john,mary)

friendof(mary, pedro)

Consistently with Prolog semantics, P |=Prolog likes(john,mary), P |=Prolog

likes(mary, pedro), P |=Prolog likes(john, pedro).

1We simplify the syntax for matters of presentation.
2Note that we define the operational semantics of Prolog in an informal manner sufficient for

this paper, for details please see [4].

5

Secondly, we consider answer set programming [24, 23, 22] and define

LASP(Pred, U, V) =

(WASP(Pred, U, V),VASP(Pred, U, V), |=ASP)

where

• WASP(Pred, U, V) is the set of all safe rules and

• VASP(Pred, U, V) is the set of all ground literals.

For a set P ⊆ WASP(Pred, U, V) (also called answer set program) and a set M of
ground literals, the reduct PM is defined via

PM = {head(r)← body+(r) | r ∈ ground(P),

M ∩ body−(r) = ∅}

A set M of ground literals is called answer set if it is the minimal (wrt. set in-
clusion) model of PM . Then P |=ASP H for a ground literal H iff H ∈ M for
all answer sets M .3 If there are no answer sets in P , we define P |=ASP φ for all
φ ∈ VASP(Pred, U, V) (P is |=ASP-inconsistent).

Example 3. Let us consider the following answer set program K:

drill← alarm,not real
real← alarm,not drill
alarm

Remembering that |=ASP is a skeptical relation, we have only K |=ASP alarm as
there are the following two answer sets: {alarm, real} and {alarm,drill}.

2.3. Abstract argumentation
We represent abstract argumentation frameworks [16] as a logic as follows.

Let A be a set of arguments (abstract atomic entities) and define the language

WAAF(A) = A ∪ (A×A)

3Observe that we define |=ASP to be a skeptical inference relation, but using a credulous ap-
proach can be defined analogously by requiring that H is contained in some answer set.

6

In other words, WAAF(A) is the set of all arguments and all pairs of arguments.
Each K ⊆ WAAF(A) defines a directed graph GK = (VK, EK) via

VK = K ∩A
EK = K ∩ (VK × VK)

A set M ⊆ VK (also called extension) is conflict-free if for all a,b ∈ M , (a,b) /∈
EK. An argument a ∈ A is acceptable wrt. M ⊆ VK if for all (b, a) ∈ EK
there is c ∈ M with (c,b) ∈ EK. The extension M is admissible if every a ∈
M is acceptable wrt. M . The four major semantics of abstract argumentation
frameworks are the complete, grounded, preferred, and stable semantics defined
as follows. For M ⊆ VK we say that

1. M is a complete extension if it is admissible and and every a ∈ A that is
acceptable wrt. M belongs to M ;

2. M is the grounded (GR) extension if it is complete and minimal wrt. set
inclusion;

3. M is a preferred (PR) extension if it is complete and maximal wrt. set in-
clusion;

4. M is a stable (ST) extension if it is conflict-free and for all a ∈ VK \M ,
there is b ∈M with (b, a) ∈ EK.

Note that the grounded extensionM is uniquely determined [16]. The set VAAF(A)
is simply A.

Let σ ∈ {GR,PR, ST} be any of the above semantical notions. We define the
inference relation |=σ

AAF via K |=σ
AAF a if for all σ-extensions M of GK, a ∈ M .

Note that with this definition, an abstract argumentation framework K is |=σ
AAF-

inconsistent iff there is no σ-extension (this can actually only happen for stable
semantics). The above definitions give us for any semantics σ a logic

LσAAF(A) = (WAAF(A),VAAF(A), |=σ
AAF).

Example 4. Consider the argumentation framework in Figure 1 formed of three
arguments: a stating that tomorrow will not rain; b stating that tomorrow will
rain; and c stating that tomorrow we should have a barbecue. a and b are mutually
exclusive,4 and b provides enough reasons for not having a barbecue tomorrow.

4We consider the entire day as a single atomic unit of time.

7

a b c

Figure 1: An argumentation framework

This setting can be represented in LσAAF({a, b, c}) as the knowledge base K
via

K = {a, b, c,
(a, b), (b, a), (b, c)}

The grounded extension here is empty, and the following are both preferred and
stable extensions: {a, c}, and {b}. It is therefore immediate to see that for any
σ ∈ {GR,PR, ST}, the set of inferences using |=σ

AAF is empty.

3. A general probabilistic approach

Let L = (W ,V , |=) be some logic, which will also be referred to as base logic
in the following. We define its probabilistic augmentation Z(L) = (Ŵ , V̂ , |̂=) as
follows.

The languages Ŵ and V̂ consist of the quantification of formulas of L with
probabilities:

Ŵ = {φ : p | φ ∈ W , p ∈ [0, 1]}
V̂ = {φ : p | φ ∈ V , p ∈ [0, 1]}

The semantics of Z(L) are defined in terms of probabilities of subsets of a knowl-
edge base K ⊆ Ŵ . For every K ⊆ Ŵ define

K ↓ = {φ | φ : p ∈ K} ⊆ W (1)

In other words, K ↓ is the flattened—i.e. without probabilities—version of the
knowledge base K. We define now the general probability PK of subsets of a
probabilistic knowledge base K ⊆ Ŵ via

PK(K′) =
∏

φ : p∈K′

p
∏

φ : p∈K\K′

(1− p) (2)

for all K′ ⊆ K. Observe that PK is indeed a probability distribution over subsets
of K.

8

Proposition 1. For every K ⊆ Ŵ ,
∑
K′⊆K PK(K′) = 1.

Proof. We prove the statement through induction by |K| = n.

• n = 1. Assume K = {φ : p} and consider

∑
K′⊆K

PK(K′) =
∑
K′⊆K

 ∏
φ : p∈K′

p
∏

φ : p∈K\K′

(1− p)


=

 ∏
φ : p∈∅

p
∏

φ : p∈K

(1− p)


+

 ∏
φ : p∈K

p
∏
φ : p∈∅

(1− p)


= (1− p) + p = 1

• n→ n+ 1. Assume K = K̃ ∪ {ψ} with ψ = φ : p, |K̃| = n and consider∑
K′⊆K

PK(K′) =
∑

K′⊆K,ψ∈K′

PK(K′) +
∑

K′⊆K,ψ /∈K′

PK(K′)

=
∑
K′⊆K̃

pPK̃(K′) +
∑
K′⊆K̃

(1− p)PK̃(K′)

= p
∑
K′⊆K̃

PK̃(K′)

︸ ︷︷ ︸
=1

+(1− p)
∑
K′⊆K̃

PK̃(K′)

︸ ︷︷ ︸
=1

= p+ (1− p) = 1

Based on the general probability PK we can define the degree of belief of any
formula φ ∈ V wrt. K via

ΠK(φ) =
∑

K′⊆K,K′↓|=φ

PK(K′)

In other words, a probabilistic knowledge base K ⊆ Ŵ defines a probability dis-
tribution over all subsets of K. For each subset K′ ⊆ K, we consider its flattened
version K′ ↓ and decide using the base logic L, whether K′ ↓ infers φ. We sum up

9

the probabilities of all subsets where this is the case in order to obtain the degree
of belief of φ wrt. the probabilistic knowledge base K.

Based on ΠK we define probabilistic inference |̂= via

K |̂= φ : p if ΠK(φ) = p

for all K ⊆ Ŵ .
Before we continue with some concrete examples of probabilistic augmenta-

tions, we make some first general analysis. Note that we defined ΠK as a degree
of belief and not as a probability. This is sensible as we did not require our base
logic to possess some form of negation. However, for any reasonable definition of
probability, we need some form of complement operator.

Definition 2. Let L = (W ,V , |=) be a logic.

1. We say that L has a weak negation operator − if, for every |=-consistent
K ⊆ W and φ ∈ V such that −φ ∈ V as well, it is not the case that both
K |= φ and K |= −φ.

2. We say that L has a strict negation operator − if, for every |=-consistent
K ⊆ W and φ ∈ V such that −φ ∈ V as well, either K |= φ or K |= −φ
(but not both).

3. We say that L has a universal negation − if, for all φ ∈ V , −φ ∈ V .

Every strict negation is also weak and a logic may possess multiple types of
negations.

Example 5. We revisit our example logics from Section 2.

1. A propositional logic LP (At) = (WP (At),VP (At), |=P) (under classical
semantics) has a weak negation ¬ as it can be the case that K 6|=P φ and
K 6|=P ¬φ for some formula φ. Furthermore, ¬ is a universal negation.

2. Prolog’s negation not is trivially strict (and weak) as for every φ ∈ VProlog(Pred, U, V)
it is not the case that not φ ∈ VProlog(Pred, U, V) (negation-as-failure is
only used in rule bodies). It is obviously not universal.

3. Answer set programming has two negations ¬ and not. The former is weak
and universal, the latter is (trivially) strict and not universal.

4. Abstract argumentation has no negation operator.

Having a certain type of negation constrains the degrees of belief in comple-
mentary statements as follows.

10

Proposition 2. Let L be a logic with a negation operator −.

1. If − is strict then ΠK(φ) + ΠK(−φ) = 1 for every |=-consistent K ⊆ Ŵ
and φ ∈ V such that −φ ∈ V as well.

2. If − is weak then ΠK(φ) + ΠK(−φ) ≤ 1 for every |=-consistent K ⊆ Ŵ
and φ ∈ V such that −φ ∈ V as well.

Proof. Let us consider 1.

ΠK(φ) + ΠK(−φ) =

=
∑

K′⊆K,K′↓|=φ

PK(K′) +
∑

K′⊆K,K′↓|=−φ

PK(K′) =

(since − is strict)

=
∑
K′⊆K

PK(K′) = 1 (from Proposition 1)

Let us consider 2.

1 =

=
∑
K′⊆K

PK(K′) (from Proposition 1)

=
∑

K′⊆K,K′↓|=φ

PK(K′) +
∑

K′⊆K,K′↓|=−φ

PK(K′)+

+
∑

K′⊆K,K′↓6|=φ∨−φ

PK(K′) =

=ΠK(φ) + ΠK(−φ) +
∑

K′⊆K,K′↓6|=φ∨−φ

PK(K′)

hence ΠK(φ) + ΠK(−φ) ≤ 1.

Among others, our approach generalises ProbLog and the constellation ap-
proach to abstract argumentation.

11

3.1. ProbLog
ProbLog [11] (Probabilistic Prolog) is a probabilistic logic programming lan-

guage building on Prolog and Sato’s distribution semantics [55], in which facts
can be annotated with the probability that they hold. Although ProbLog is not the
only implementation of distribution semantics, e.g. [21, 9], for the purpose of this
paper we will focus on it as an example.

In our general framework it can be easily defined as follows.

Definition 3. Let Pred be a set of predicate symbols, U a set of constant symbols,
and V a set of variables. The logic Z(LProlog(Pred, U, V)) is called ProbLog.5

In other words, in ProbLog a knowledge base consists of a set of safe and
normal rules, each annotated with a probability.

Let us redefine the Prolog program introduced in Example 2 as a knowledge
base and its probabilistic augmentation.

Example 6 (Evolved from [11, Example 1]). Let us extend Example 2 with prob-
abilities, and let

K ⊆Z(LProlog(Pred, U, V))

= Z((WProlog(Pred, U, V),VProlog(Pred, U, V), |=Prolog))

be the knowledge base consisting of the following formulas:

likes(X, Y)← friendof(X, Y) : 1.0

likes(X, Y)← friendof(X,Z), likes(Z, Y) : 0.8

friendof(john,mary) : 0.5

friendof(mary, pedro) : 0.5

5As discussed in https://dtai.cs.kuleuven.be/problog/tutorial/
advanced/04_prolog.html (on 7 May 2018), in the ProbLog2 python interface and
implementation available at https://dtai.cs.kuleuven.be/problog/index.
html#download (on 7 May 2018)—and differently from other ProbLog implementations that
use Prolog based interface—each grounding of a query is restricted to occur only once as a result,
even if their are multiple proofs. Moreover, ProbLog extends Prolog’s tabling to support cyclic
ProbLog programs [39]. We will not discuss further those aspects as they are just implementation
details.

12

Consistently with ProbLog semantics,6 K ̂|=Prolog likes(john, pedro) : 0.2. In-
deed, the two K′ ⊆ K such that K′ ↓ |=Prolog likes(john, pedro) are (we abbre-
viate all predicate and atoms by their first letter):

K′1 =


l(j, p)← f(j,m), l(m, p) : 0.8

f(j,m) : 0.5
l(m, p)← f(m, p) : 1.0

f(m, p) : 0.5


and K′2 = K′1 ∪ {l(j,m)← f(j,m) : 1.0}.

3.2. The constellation approach to abstract argumentation
The constellation approach to abstract argumentation [35, 29, 30] is an exten-

sion of abstract argumentation that adds probabilities to arguments and attacks. In
our general framework it can be defined as follows.

Definition 4. Let σ be some semantics for abstract argumentation. The logic
Z(LσAAF) is called the logic of probabilistic argumentation frameworks.

Example 7. Consider the probabilistic argumentation framework in Figure 2 that
extends Example 4. Informally, this representation means that argument a is
“present” with probability 0.9, argument b is “present” with probability 0.6 and
the attack (a, b) is “present” with conditional probability 0.3, given that both a
and b are present. This setting can be represented in Z(LσAAF)({a, b, c}) as the
knowledge base K consisting of the formulas

a : 0.9

b : 0.6

c : 0.8

(a, b) : 0.3

(b, a) : 0.6

(b, c) : 0.7

The way we defined the induced graph GK (see Section 2.3) ensures that proba-
bilities of attacks are indeed interpreted as conditional probabilities.

6https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&
hash=1cee65d0c7262ad6ba48092942c46088 (on 7 May 2018)

13

a
0.9

b

0.6

c
0.80.3

0.6

0.7

Figure 2: A simple argumentation framework

a b

Figure 3: An argumentation framework

Note that the above definition captures the original definition of [35] where
probabilities of arguments are independent of each other and the probabilities of
attacks are independent given that both arguments of an attack are present. With
a more general base logic we are also able to capture the more general setting of
[30] where probabilistic dependencies between components are allowed. For that
let A again be a set of arguments and define the languageW ind

AAF(A) to be the set
of normal logic programming rules with atomsA∪(A×A). Therefore,W ind

AAF(A)
contains rules such as (b, c) ← a,d meaning “if arguments a and d are present
then the attack (b, c) is present”. Then a set K ⊆ W ind

AAF(A) defines an abstract
argumentation framework GK = (VK, EK) via

VK = {a ∈ A | K |=Prolog a}
EK = {(a,b) ∈ (VK × VK) | K |=Prolog (a,b)}

Note that in the definition of EK above we ensure that GK is a well-defined graph
by considering only (a,b) ∈ (VK×VK). ThenLσ,ind

AAF (A) = (W ind
AAF(A),VAAF(A), |=σ

AAF
) is defined analogously as LσAAF(A).

Example 8. Consider the following set of rules from K ⊆ W ind
AAF({a, b, c}):

(a, b)← not c
b← a
a

We obtain GK as depicted in Figure 3.

14

We now consider the probabilistic augmentation Z(Lσ,ind
AAF) of Lσ,ind

AAF and show
that it fully captures the framework of [30]. For that we generalise the definition
of PK—see Equation (2)—for graphs G = (V,E) via

PK(G) =
∑

K′⊆K,GK′=G

PK(K′)

for all K ⊆ W ind
AAF(A). In other words, PK(G) is the sum of the probabilities of all

sets K′ ⊆ K that define the graph G.
Now recall that a probabilistic attack graph [30] is a tuple (V,E,Q) where

(V,E) is a directed graph and Q is a probability function on subgraphs of (V,E).
For a probabilistic attack graph (V,E,Q) let

sub((V,E)) = {(V ′, E ′) | V ′ ⊆ V,E ′ ⊆ E ∩ (V ′ × V ′)}

be the set of subgraphs of G = (V,E). Then Q : sub(G)→ [0, 1] with∑
G′∈G

Q(G′) = 1

The following theorem states that every probability function on subgraphs can be
represented using the logic Z(Lσ,ind

AAF), in particular those that contain probabilistic
dependencies between the components of the graph.

Theorem 1. For every probabilistic attack graph (V,E,Q) we can define K ⊆
W ind

AAF(V) such that for every (V ′, E ′) ∈ sub((V,E))

PK((V ′, E ′)) = Q((V ′, E ′)) (3)

Proof. For C ⊆ {c,not c | c ∈ V ∪ E} let

Q(X) =
∑

(V ′,E′)∈sub(G),∀c∈X:c∈V ′∪E′,∀not c∈X:c/∈V ′∪E′

Q(G′)

be the probability of the set of components (vertices and/or edges) X . Let C =
〈c1, . . . , cn〉 be an arbitrary ordering of the elements in V ∪E. Define a sequence
Ki ∈ W ind

AAF(V) via

K0 = {c1 : Q({c1})}

15

and for every 1 < i ≤ n

Ki = Ki−1 ∪ {ci ← ċ1, . . . , ċi−1 : Q(ci, ċ1, . . . , ċi−1)/Q(ċ1, . . . , ċi−1) | ċi ∈ {ci,not ci}}

In order to illustrate the above construction consider the abstract argumentation
framework in Figure 3 and assume the order C = 〈a, (a,b),b〉. Then we get

K0 = {a : Q({a})

K1 = K0 ∪ {
(a,b)← a : Q({(a,b), a})/Q({a})
(a,b)← not a : Q({(a,b),not a})/Q({not a})
}

K2 = K1 ∪ {
b← a, (a,b) : Q({b, (a,b), a})/Q({(a,b), a})
b← a,not (a,b) : Q({b,not (a,b), a})/Q({not (a,b), a})
b← not a, (a,b) : Q({b, (a,b),not a})/Q({(a,b),not a})
b← not a,not (a,b) : Q({b,not (a,b),not a})/Q({not (a,b),not a})

}

Note that Kn models a kind of binary decision tree over all subsets of the compo-
nents of the graph (V,E). For the example above, Figure 4 shows an illustration
of this binary decision tree. Each path from the root to the leafs corresponds to the
construction of a subset of the components of the graph (V,E), where traversing
left from a node means adding this component and traversing right means omit-
ting this component. Each non-leaf node in this tree corresponds to a rule in Kn,
namely that one with the node label as head and the current path as premise (in-
terpreting the omission of a component with not). The leaf nodes correspond to
the final subsets.

Note that for every subgraph G′ = (V ′, E ′) there is a uniquely determined
path in the decision tree. Furthermore, the probability of the corresponding set
V ′ ∪ E ′ can be determined by multiplying the corresponding probabilities of the
rules included in that path whenever we turn left and the complements of the
probabilities of rules whenever we turn right. For example, for the set {a,b} we

16

a

(a,b) (a,b)

b b b b

{a, (a,b),b}
{a, (a,b)} {a,b} {a} {(a,b),b}{(a,b)} {b} ∅

Figure 4: A binary decision tree for subset construction.

get

PK2({a,b}) = Q({a})(1− Q({(a,b), a})
Q({a})

)
Q({b,not (a,b), a})
Q({not (a,b), a})

= Q({a})(Q({a})
Q({a})

− Q({(a,b), a})
Q({a})

)
Q({b,not (a,b), a})
Q({not (a,b), a})

= Q({a})Q({a})−Q({(a,b), a})
Q({a})

Q({b,not (a,b), a})
Q({not (a,b), a})

= Q({a})Q({not (a,b), a})
Q({a})

Q({b,not (a,b), a})
Q({not (a,b), a})

= Q({a,not (a,b), a})
= Q((V ′, E ′))

Note that the probabilities of rules not on the path to a leaf do not influence the
final probability (both subsets containing such rules and not containing such rules
have no effect on the derived graph of the subset). Therefore PKn(V ′ ∪ E ′) =
PKn((V ′, E ′)) and this naturally extends to the general case.

4. Analysis

In the following, we analyse our general approach to probabilistic reasoning
and investigate its properties. Note that for this investigation we assume any ar-

17

bitrary base logic L = (W ,V , |=), so our results are valid for a wide range of
concrete knowledge representation formalisms.

Our first observation is that a probabilistic augmentation trivialises to the base
logic if only the probability value 1 is used. More formally, we define the trivial
lifting of K ⊆ W as the knowledge base Kt = {φ : 1 | φ ∈ K}. In other words,
Kt consists of all formulas of K with probability 1.

Theorem 2 (Trivialisation). Let L = (W ,V , |=) be some logic andK ⊆ W . Then
K |= φ iff Kt|̂=φ : 1.

Proof. Kt is the only subset ofKt that has positive probability wrt. PKt and in fact
PKt(Kt) = 1. As Kt ↓ = K the claim follows by definition.

The above result shows that a probabilistic augmentation faithfully extends its
base logic.

Our next result pertains to robustness of inference wrt. changes of probabili-
ties. For example, if φ : 0.7 is an inference of a knowledge base K ∪ {ψ : 0.4}
then we expect that K ∪ {ψ : 0.4001}|̂=φ : x with x being “close” to 0.7. In fact,
probabilistic reasoning is continuous in this aspect.

Theorem 3 (Continuity). Let Z(L) = (Ŵ , V̂ , |̂=) be some probabilistic augmen-
tation and let K ⊆ Ŵ be some knowledge base, φ, ψ ∈ V some formulas. Let
p1, p2, . . . be a sequence with pi ∈ [0, 1] for all i ∈ N such that limi→∞ pi = p.
Then

lim
i→∞

(
ΠK∪{φ:pi}(ψ)

)
= ΠK∪{φ:p}(ψ)

Proof. We have

lim
i→∞

(
ΠK∪{φ:pi}(ψ)

)
= lim

i→∞

(
piΠK∪{φ:1}(ψ) + (1− pi)ΠK(ψ)

)
=
(

lim
i→∞

piΠK∪{φ:1}(ψ) + lim
i→∞

(1− pi)ΠK(ψ)
)

=
(
pΠK∪{φ:1}(ψ) + (1− p)ΠK(ψ)

)
= ΠK∪{φ:p}(ψ)

We continue with another notion of robustness pertaining to addition of irrel-
evant knowledge. For that we need some further notation.

18

Definition 5. The signature Σ(L) of a logic L = (W ,V , |=) is the set of all
vocabulary elements appearing in formulas ofW .

The above definition is a bit informal, but here are concrete examples for the
logics under consideration:

• The signature of a propositional logic LP (At) = (WP (At),VP (At), |=P) is
the set of atoms: Σ(LP (At)) = At.

• The signature of Prolog

LProlog(Pred, U, V) = (WProlog(Pred, U, V),VProlog(Pred, U, V), |=Prolog)

is the union of predicates and variables: Σ(LProlog(Pred, U, V)) = Pred∪U
(similar for LASP).

• The signature of abstract argumentation WAAF(A) = A ∪ (A × A) is the
set of arguments: Σ(WAAF(A)) = A.

The signature Σ(K) of a knowledge base K ⊆ W of an arbitrary logic L =
(W ,V , |=) is the set of vocabulary elements appearing in the knowledge base
only.

The next result shows that adding independent information to a knowledge
base does not change previous inferences.

Theorem 4 (Independence). Let Z(L) = (Ŵ , V̂ , |̂=) be some probabilistic aug-
mentation and let K1,K2 ⊆ Ŵ be knowledge bases with

1. Σ(K1) ∩ Σ(K2) = ∅ and
2. for every K′ ⊆ K2, K′ ↓ is |=-consistent.

Then for all formulas φ : p such that Σ({φ}) ∩ Σ(K2) = ∅, K1|̂=φ : p iff K1 ∪
K2 |̂=φ : p.

Proof (Sketch). Let K1 |̂=φ : p and note that for every subset K′ ⊆ K2, K′ ↓ 6|= φ
as K′ is |=-consistent and has a disjoint signature from φ. The claim follows by
induction on the number of elements in K2. Consider any ψ : q ∈ K2 and

ΠK1∪{ψ:q}(φ) = qΠK1∪{ψ:1}(φ) + (1− q)ΠK1(φ)

Now ΠK1∪{ψ:1}(φ) = ΠK1(φ) as {ψ : 1} is consistent and has a disjoint signature
from K1. It follows

ΠK1∪{ψ:q}(φ) = qΠK1(φ) + (1− q)ΠK1(φ) = ΠK1(φ)

and inductively the claim.

19

Observe that it is not sufficient to only require that K2 is |=-consistent in item
2 above: |= may be a non-monotonic inference relation. Then it may be the case
that K2 is |=-consistent while there is a subset of K2 that is |=-inconsistent. For
example, under the answer set semantics the logic program P = {a, a ← not a}
is |=ASP-consistent while its subset P ′ = {a← not a} is |=ASP-inconsistent

For our next results, we consider a certain (reasonable) class of base logics,
i. e., those where the inference relation is reflexive. More formally, an inference
relation |= is reflexive if K |= φ for all φ ∈ K ∩ V . Reflexivity of the inference
relation of a base logic provides certain guarantees on the degrees of belief of its
probabilistic augmentation.

Theorem 5 (Reflexivity). Let Z(L) = (Ŵ ,V , |̂=) be some probabilistic augmen-
tation and let K ⊆ Ŵ be some knowledge base. If |= is reflexive then for every
φ : p ∈ K with φ ∈ V , ΠK(φ) ≥ p.

Proof. Observe that if K′ = K ∪ {φ : p} then ΠK′(φ) = pΠK∪{φ:1}(φ) + (1 −
p)ΠK(φ). As ΠK∪{φ:1}(φ) = 1 due to the reflexivity of |=, we have ΠK′(φ) ≥
p.

Theorem 6 (Strengthening). Let Z(L) = (Ŵ ,V , |̂=) be some probabilistic aug-
mentation and let K ⊆ Ŵ be some knowledge base and φ ∈ V . If |= is reflexive
then ΠK(φ) ≤ ΠK∪{φ:p}(φ) for every p > 0. If, in addition ΠK(φ) < 1 then
ΠK(φ) < ΠK∪{φ:p}(φ).

Proof. For the first claim, observe

ΠK∪{φ:p}(φ) = pΠK∪{φ:1}(φ) + (1− p)ΠK(φ)

= pΠK∪{φ:1}(φ) + ΠK(φ)− pΠK(φ)

and ΠK∪{φ:1}(φ) = 1 as |= is reflexive. We get

ΠK∪{φ:p}(φ) = p+ ΠK(φ)− pΠK(φ)

= ΠK(φ) + p(1− ΠK(φ))︸ ︷︷ ︸
≥0

showing ΠK(φ) ≤ ΠK∪{φ:p}(φ) for every p > 0 and ΠK(φ) < ΠK∪{φ:p}(φ) for
ΠK(φ) < 1.

20

Let us close our analysis with some brief comments regarding to computa-
tional complexity and algorithms. In its generality, computing the exact value
p ∈ [0, 1] s. t. K|̂=φ : p for some probabilistically augmented knowledge base
K and formula φ is an intractable problem. A naı̈ve algorithm for computing p
would consider all subsets ofK, check whetherK ↓ entails φw. r. t. the underlying
entailment relation |=, and then accumulate the probabilities of all these subsets.
Even if the problem K ↓ |= φ is decidable in polynomial time, by considering all
subsets of K, we need exponential total time. However, there are ways to avoid
this complexity. For one, we can resort to approximating p instead of computing p
exactly. In fact, the Monte-Carlo method has already been shown to be successful
for the special cases of ProbLog [12] and the constellation approach to abstract
argumentation [35]. Algorithm 1 shows a general Monte-Carlo approach to ap-
proximate p in K|̂=φ : p. Given some integer N ∈ N it samples N subsets of
K w. r. t. to their probability (lines 3–7) and checks whether φ is entailed in that
subset (line 8). It then accumulates positive cases and returns the average value
(lines 9–10). Assuming that the random number generator in line 5 is truly ran-
dom (uniform distribution), then by the law of large numbers we get the following
general result.

Theorem 7. For K|̂=φ : p, limN→∞MC(K, φ,N) = p.

The main complexity of Algorithm 1 comes from the entailment test in line 8,
which has to be executed N times.

For some cases, approximation may not be necessary and an efficient exact
algorithm for computing p in K|̂=φ : p can be devised after all. For example, in
[20] it is shown that computing p in K|̂=ST

AAFa : p—i. e., computing the probability
p of an argument a in the constellation approach to abstract argumentation w. r. t.
stable semantics—can be done in polynomial time. Investigating such cases in
our general setting is left for future work.

5. Novel probabilistic augmentations

In the following, we discuss two novel instantiations of our framework.

5.1. The probabilistic augmentation of classical propositional logic
Extending classical logic with probabilistic reasoning capabilities has a long

tradition in KR [41, 27]. While, syntactically, the probabilistic augmentation
of propositional logic Z(LP (At)) is a classical Nilsson-style probabilistic logic

21

Algorithm 1 MC(K, φ,N): Approximating p inK|̂=φ : p using the Monte-Carlo
method

Input: knowledge base K, formula φ, N ∈ N
Output: p

1: psum = 0
2: for i = 1, . . . , N do
3: K′ ← ∅
4: for ψ : d ∈ K do
5: q ←random number in [0, 1)
6: if d > q then
7: K′ ← K′ ∪ {ψ}
8: if K′ |= φ then
9: psum← psum+ 1

10: return psum/N

[41], our semantics seems not to have been investigated in this context as classi-
cal Nilsson-style probabilistic logics usually define its probabilistic semantics by
considering probability functions on interpretations.

Let us consider an example that illustrates the probabilistic augmentation of
propositional logic.

Example 9. Let us extend Example 1 by considering now the following knowledge
base K:

sc⇒ sp : 0.6

ss⇒ sp : 0.6

us⇒ sp ∨ jo : 0.9

sc : 0.7

ss : 0.6

where sc means “suspicious content”, ss means “suspicious subject”, sp means
“spam”, us means “unknown sender”, and jo means “job offer”. For example,
now the third formula can then be read as “a mail from an unknown sender is
either spam or a job offer with probability 0.9”. Consider the subset K′ ⊆ K with

K′ = {sc⇒ sp : 0.6, sc : 0.7}

22

and verify PK(K′) = 0.00672 and K′ ↓ |=P sp. In fact, we obtain

K|̂=Psp : 0.6288

We leave a deeper investigation of Z(LP (At)) for future work.

5.2. The probabilistic augmentation of answer set programming
To our knowledge, the only attempt to extend answer set programming with

probabilities is P-log [2], a declarative language capable of reasoning which com-
bines both logical and probabilistic arguments. Instead, in this section let us con-
sider the probabilistic augmentation of an answer set programZ(LASP(Pred, U, V))—
syntactically analogous to ProbLog programs—and let us illustrate its semantics
by the means of an example.7

Example 10. Let us augment with probabilities the answer set program intro-
duced in Example 3:

drill← alarm,not real : 0.2

real← alarm,not drill : 0.9

alarm : 1

Hence, K |̂=ASP real : 0.72 as the only subset K′ |=ASP real is K′ = {r ←
a,not d; a}.

We leave a deeper investigation of Z(LASP(Pred, U, V)) for future work.

6. Related work

Our approach addresses a very general topic—namely the combination of
logic and probability—that has been addressed before in one way or the other by
many researchers. Halpern and colleagues [27, 17, 1] combine classical first-order
logic with different probabilistic interpretations, and [19] in the case of abstract
argumentation. Their focus is similar in spirit to classical Nilsson-style probabilis-
tic logic [41] and they discuss probability distributions over the interpretations of

7Although no formal definitions or analysis are provided, at first sight it appears that part of
the approach discussed in [15] is close in spirit to the probabilistic augmentation of an answer set
program we propose in this paper.

23

the language, not over subsets of knowledge bases as we do. In particular, they ad-
dress the challenge of considering first-order logic instead of propositional logic
and the computational issues raised by, e. g., considerations of infinity. Further-
more, Wilson [58] pointed out the possibility to augment a logic with probabilities
in a general way. However, he discusses this idea in a very abstract way without
technical details. Of particular interest is the case of concurrent constraint pro-
gramming [54], and its probabilistic extensions, e.g. [13, 25], as they can become
another interesting test-case between our approach and ad-hoc proposals, as it is
in the case of our proposed probabilistic version of ASP (cf. Section 5.2) versus
the P-log [2] proposal.

Modern approaches for combining logic and probability can be found within
the field of statistical relational AI [10], which are general approaches to deal with
relational information (i. e., limited first-order logic expressions) and probabilistic
reasoning. For example, Markov logic [52] is an extension of first-order logic with
weights on formulas. These weights are used to obtain probabilities on formulas
using a log-linear probabilistic model over the interpretations. This gives a robust
knowledge representation formalism which is apt to be used as the output for a
variety of machine learning tasks, see e. g. [14].

All the approaches mentioned so far consider a different, somewhat Bayesian
point of view in the combination of logic and probability than we do here. The
above approaches use probabilities over interpretations do obtain degrees of belief
in inferred information. In our work, we take a frequentist approach as interpret
probabilities over formulas s. t. the probability of a formula corresponds to its fre-
quency of actually occurring in the knowledge base. Both points of view provide
important insights into the general challenge of combining logic and probability.
In addition, as already noted in [55], probabilistic facts (or binary switches) are
expressive enough to represent a wide range of models including Bayesian net-
works.

Specific instances of our general framework have been developed and investi-
gated before, some of them have already been discussed in Sections 3.1 and 3.2.
One of those first approaches is the distribution semantics for logic programs [55],
which is also the foundation for ProbLog as discussed in Section 3.1. However,
in the original proposal [55] only facts of logic programs were annotated with
probabilities. Still, the general idea of considering all possible subsets of the set
of facts and weighing the inferences by the probabilities of these subsets, can be
found there as well. The independent choice logic and its predecessor probabilis-
tic Horn abduction [45, 46, 47] feature a similar setting where facts of logic pro-
grams are treated as probabilistic hypotheses. Kohlas and colleagues [33, 32, 31]

24

also consider combinations of logics with probabilities using the subset-based in-
terpretation. Their focus is on classical logics, though, and algorithmic issues for
reasoning. They do not consider conceptual questions and general logic instantia-
tions. Probabilistic data bases [57] are another instance of our general framework.
There, tuples of a relational data base instance can be annotated with probabilities,
which model the likelihood that the tuple is actually present. Conceptually, this
is a probabilistic augmentation on a restricted first-order logic where probabilities
smaller than 1 are assigned to ground atoms. One of the driving research chal-
lenges is probabilistic data bases is, however, algorithmic reasoning mechanisms
[9].

The aim of this paper is to provide a general umbrella that unifies these works
from different areas. To the best of our knowledge, no other work has considered
the issue of probabilistic augmentation in the generality proposed in this paper.

7. Discussion and summary

In this paper we developed a general scheme for adding probabilistic reason-
ing capabilities to any knowledge representation formalism. Pivotal in our pro-
posal is the notion of probabilistic augmentation of a knowledge representation
formalism, which extends it by enabling probabilities to be expressed on the log-
ical formulas of the chosen formalism. In addition to showing that it subsumes
existing approaches, we provided an extensive analysis which includes proofs of
desirable behaviours, such as trivialisation, continuity, independence, reflexively,
and strengthening. We also showed how novel instantiations of our approach can
be derived using propositional logic and answer set programming as examples.

Our logical setting is general enough to use a wide variety of logics as a base
logic. In addition to our examples, the use of e.g. modal logics, default logics,
epistemic logics, temporal logics, paraconsistent logics, and others is straightfor-
ward as long as they can be cast into our general form L = (W ,V , |=). Fur-
thermore, as a probabilistic augmentation Z(L) of a logic L is a logic itself it
can probabilistically augmented as well, yielding a doubly-probabilistically aug-
mented logic Z(Z(L)). While the practical use of the latter may be disputable, it
shows that we have a rich framework with high expressivity.

The proposal by [28] of considering the constellation approach to argumen-
tation to the case of extended argumentation frameworks—i.e. argumentation
frameworks that allow attacks to be the target of attacks themselves—can be en-
compassed as another special case of our approach. In addition, extending it to

25

the case of other extended argumentation frameworks will be the subject of fu-
ture investigation. Also the logics of [44], [50, 18] and [53] can be represented
as probabilistic augmentations of the their corresponding base logics Abstract Di-
alectical Frameworks [5], Bipolar Abstract Argumentation Frameworks [6] and
ASPIC+ [40].

We also showed that, despite the fact that our framework relies on probabilistic
independence assumptions between formulas, we are able to model probabilistic
dependencies as well (see Section 3.2). The results from this section can easily be
applied to other probabilistic models with dependency features such as Bayesian
Networks [43]. Finally, we agree that relaxing the probabilistic independence as-
sumptions between formulas is important, and we aim at doing so in general terms
as part of future work. Indeed, it would be interesting to explore how to generalise
the framework to capture other probabilistic logics based on distribution seman-
tics with no probabilistic independence such as Lukasiewicz’s Probabilistic Logic
Programming (e. g., [37, 38]).8 In this way we will have a solid, coherent setting
to use for theoretical and experimental comparison with other approaches relaxing
the independence assumption such as [36, 55, 48].

This paper lays the foundation for a general approach to probabilistic reason-
ing that has the potential to create synergies between different fields interested in
incorporating probability into a specific framework. For example, fields such as
probabilistic data bases (see previous section) have developed highly efficient pro-
cedures for reasoning problems and our framework allows for lifting these ideas
and applying them to other formalisms, such as the constellation approach to ab-
stract argumentation. The exploitation of our framework in these matters is part
of ongoing work.

Acknowledgements The research reported here was partially supported by the
Deutsche Forschungsgemeinschaft (grant KE 1686/3-1).

This research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed
or implied, of the U.S. Army Research Laboratory, the U.S. Government, the
U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Govern-
ments are authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

8We thank one of the anonymous reviewers for this suggestion.

26

[1] Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern, and Daphne Koller.
From Statistical Knowledge Bases to Degrees of Belief. Artificial Intelli-
gence, 87(1-2):75–143, 1996.

[2] Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic Reason-
ing With Answer Sets. In Vladimir Lifschitz and Ilkka Niemelä, editors,
Logic Programming and Nonmonotonic Reasoning, pages 21–33. Springer
Berlin Heidelberg, 2004.

[3] Ronald J. Brachman and Hector J. Levesque. Knowledge Representation
and Reasoning. Morgan Kaufmann Publishers, 2004.

[4] Ivan Bratko. Prolog programming for artificial intelligence. Addison Wes-
ley, 2001.

[5] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter Wall-
ner, and Stefan Woltran. Abstract dialectical frameworks revisited. In
Proceedings of the 23rd International Joint Conference on Artificial Intel-
ligence, pages 803–809, 2013.

[6] C. Cayrol and M. C. Lagasquie-Schiex. On the acceptability of arguments
in bipolar argumentation frameworks. In Lluı́s Godo, editor, Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, pages 378–389,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[7] Federico Cerutti and Matthias Thimm. A General Approach to Reasoning
with Probabilities (Extended Abstract). In Proceedings of the 16th Interna-
tional Conference on Principles of Knowledge Representation and Reason-
ing (KR’19), October 2018.

[8] Federico Cerutti and Matthias Thimm. Probabilistic Augmentations for
Knowledge Representation Formalisms. In Proceedings of the Workshop
on Hybrid Reasoning and Learning (HRL’18), October 2018.

[9] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic
databases. The International Journal on Very Large Data Bases, 16(4):523–
544, 2007.

[10] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Sta-
tistical Relational Artificial Intelligence: Logic, Probability, and Computa-
tion. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2016.

27

[11] Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming
concepts. Machine Learning, 100(1):5–47, 2015.

[12] Luc De Raedt, Angelika Kimmig, Bernd Gutmann, Kristian Kersting, Vi-
tor Santos Costa, and Hannu Toivonen. Probabilistic inductive querying us-
ing problog. Technical Report CW 552, Department of Computer Science,
Katholieke Universiteit Leuven, Belgium, June 2009.

[13] Alessandra Di Pierro and Herbert Wiklicky. Probabilistic concurrent con-
straint programming: Towards a fully abstract model. In Luboš Brim, Jozef
Gruska, and Jiřı́ Zlatuška, editors, Mathematical Foundations of Computer
Science 1998, pages 446–455, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[14] Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for
Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan and Claypool, San Rafael, CA, 2009.

[15] Stanislav Dragiev, Alessandra Russo, Krysia Broda, Mark Law, and Calin-
Rares Turliuc. An abductive-inductive algorithm for probabilistic inductive
logic programming. In Proceedings of the 26th International Conference on
Inductive Logic Programming (Short papers), pages 20–26, 2016.

[16] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77(2):321–357, 1995.

[17] Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and prob-
ability. Journal of the ACM, 41(2):340–367, 1994.

[18] Bettina Fazzinga, Sergio Flesca, and Filippo Furfaro. Probabilistic bipolar
abstract argumentation frameworks: complexity results. In IJCAI, pages
1803–1809, 2018.

[19] Bettina Fazzinga, Sergio Flesca, and Filippo Furfaro. Complexity of funda-
mental problems in probabilistic abstract argumentation: Beyond indepen-
dence. Artificial Intelligence, 268:1 – 29, 2019.

[20] Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. On the complexity
of probabilistic abstract argumentation. In Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’13), 2013.

28

[21] Norbert Fuhr. Probabilistic datalog: Implementing logical information re-
trieval for advanced applications. Journal of the Association for Information
Science and Technology, 51(2):95–110, 2000.

[22] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Answer Set Solving in Practice. Morgan & Claypool Publishers, 2012.

[23] Michael Gelfond and Nicola Leone. Logic programming and knowledge
representation – the A-Prolog perspective. Artificial Intelligence, 138(1–
2):3–38, 2002.

[24] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9(3/4):365–
386, 1991.

[25] Vineet Gupta, Radha Jagadeesan, and Vijay Saraswat. Probabilistic con-
current constraint programming. In Antoni Mazurkiewicz and Józef
Winkowski, editors, CONCUR ’97: Concurrency Theory, pages 243–257,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[26] Petr Hájek. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer, 1998.

[27] Joseph Y. Halpern. An Analysis of First-Order Logics of Probability. Artifi-
cial Intelligence, 46:311–350, 1990.

[28] Nguyen Duy Hung. The distribution semantics of extended argumentation.
In Proceedings of the 18th International Symposium on Knowledge and Sys-
tems Sciences, pages 197–211, 2017.

[29] Anthony Hunter. Some foundations for probabilistic abstract argumentation.
In Proceedings of the 4th International Conference on Computational Mod-
els of Argument, pages 117–128, 2012.

[30] Anthony Hunter. Probabilistic qualification of attack in abstract argumen-
tation. International Journal of Approximate Reasoning, 55(2):607–638,
2014.

[31] Jürg Kohlas. Probabilistic argumentation systems: A new way to combine
logic with probability. Journal of Applied Logic, 1(3):225 – 253, 2003. Com-
bining Probability and Logic.

29

[32] Jürg Kohlas, Bernhard Anrig, Rolf Haenni, and Paul-André Monney. Model-
based diagnostics and probabilistic assumption-based reasoning. Artificial
Intelligence, 104(1-2):71–106, September 1998.

[33] Jürg Kohlas and Paul-André Monney. Probabilistic Assumption-Based Rea-
soning, pages 82–135. Springer Berlin Heidelberg, Berlin, Heidelberg,
1995.

[34] Robert A. Kowalski. The early years of logic programming. Communica-
tions of the ACM, 31(1):38–43, 1988.

[35] Hengfei Li, Nir Oren, and Timothy J. Norman. Probabilistic argumenta-
tion frameworks. In Proceedings of the First International Workshop on the
Theory and Applications of Formal Argumentation, pages 1–16, 2011.

[36] Hengfei Li, Nir Oren, and Timothy J Norman. Relaxing independence as-
sumptions in probabilistic argumentation. In Tenth International Workshop
on Argumentation in Multi-Agent Systems (ArgMAS 2013), 2013.

[37] Thomas Lukasiewicz. Probabilistic logic programming. In ECAI, pages
388–392, 1998.

[38] Thomas Lukasiewicz. Local probabilistic deduction from taxonomic and
probabilistic knowledge-bases over conjunctive events. International Jour-
nal of Approximate Reasoning, 21(1):23–61, 1999.

[39] Theofrastos Mantadelis and Gerda Janssens. Dedicated Tabling for a Prob-
abilistic Setting. In Manuel Hermenegildo and Torsten Schaub, editors,
Technical Communications of the 26th International Conference on Logic
Programming, volume 7 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 124–133, Dagstuhl, Germany, 2010. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[40] Sanjay Modgil and Henry Prakken. The ASPIC+ framework for structured
argumentation: a tutorial. Argument & Computation, 5:31–62, 2014.

[41] Nils J. Nilsson. Probabilistic logic. Artificial intelligence, 28(1):71–87,
1986.

[42] Jeff B. Paris. The Uncertain Reasoner’s Companion – A Mathematical Per-
spective. Cambridge University Press, 1994.

30

[43] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plau-
sible inference. Springer-Verlag, 1988.

[44] Sylwia Polberg and Dragan Doder. Probabilistic abstract dialectical frame-
works. In Proceedings of the 14th European Conference on Logics in Artifi-
cial Intelligence, pages 591–599, 2014.

[45] David Poole. Representing diagnostic knowledge for probabilistic horn ab-
duction. In Proceedings of the 12th International Joint Conference on Ar-
tificial Intelligence - Volume 2, IJCAI’91, pages 1129–1135, San Francisco,
CA, USA, 1991. Morgan Kaufmann Publishers Inc.

[46] David Poole. Probabilistic horn abduction and bayesian networks. Artificial
Intelligence, 64(1):81 – 129, 1993.

[47] David Poole. The independent choice logic and beyond. In Luc De Raedt,
Paolo Frasconi, Kristian Kersting, and Stephen Muggleton, editors, Prob-
abilistic Inductive Logic Programming: Theory and Application, number
4911 in Lecture Notes in Artificial Intelligence. Springer, 2008.

[48] David Poole. Probabilistic programming languages: Independent choices
and deterministic systems. In Heuristics, Probability and Causality: A Trib-
ute to Judea Pearl. College Publications, 2010.

[49] Nico Potyka and Matthias Thimm. Consolidation of probabilistic knowledge
bases by inconsistency minimization. In Proceedings of the 21st European
Conference on Artificial Intelligence, pages 729–734, 2014.

[50] Carlo Proietti. Polarization and bipolar probabilistic argumentation frame-
works. In AIˆ 3@ AI* IA, pages 22–27, 2017.

[51] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13:81–132, 1980.

[52] Matthew Richardson and Pedro Domingos. Markov logic networks. Ma-
chine Learning, 62(1–2):107–136, 2006.

[53] Tjitze Rienstra. Towards a probabilistic Dung-style argumentation system.
In Proceedings of the First International Conference on Agreement Tech-
nologies, pages 138–152, 2012.

31

[54] Vijay A. Saraswat and Martin Rinard. Concurrent constraint programming.
In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’90, pages 232–245, New York, NY,
USA, 1990. ACM.

[55] Taisuke Sato. A statistical learning method for logic programs with distri-
bution semantics. In Proceedings of the 12th International Conference on
Logic Programming, pages 715–729, 1995.

[56] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[57] Dan Suciu, Dan Olteanu, Christopher Re, and Christoph Koch. Probabilistic
Databases. Morgan & Claypool Publishers, 2011.

[58] Nic Wilson. How much do you believe? International Journal of Approxi-
mate Reasoning, 6(3):345–365, May 1992.

32

