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Abstract

The exact relationship between formal argumentation and
nonmonotonic logics is a research topic that keeps on eluding
researchers despite recent intensified efforts. We contribute to
a deeper understanding of this relation by investigating char-
acterizations of abstract dialectical frameworks in conditional
logics for nonmonotonic reasoning. We first show that in gen-
eral, there is a gap between argumentation and conditional se-
mantics when applying several intuitive translations, but then
prove that this gap can be closed when focusing on specific
classes of translations.

1 Introduction
It is well-known that argumentation and nonmonotonic resp.
default logics are closely connected: In (Dung 1995) it is
shown that Reiter’s default logic can be implemented by
abstract argumentation frameworks, a most basic form of
computational model of argumentation to which many exist-
ing approaches to formal argumentation refer. On the other
hand, it is clear that argumentation allows for nonmonotonic,
defeasible reasoning, and in (Rienstra, Sakama, and van der
Torre 2015) computational models of argumentation are as-
sessed by formal properties that have been adapted from
nonmonotonic logics. Nevertheless, argumentation and non-
monotonic reasoning are perceived as two different fields
which do not subsume each other, and indeed, often at-
tempts to transform reasoning systems from one side into
systems of the other side have been revealing gaps that could
not be closed (cf., e.g., (Thimm and Kern-Isberner 2008;
Kern-Isberner and Simari 2011; Heyninck 2019). While one
might argue that this is due to the seemingly richer, dialec-
tical structure of argumentation, in the end the evaluation of
arguments often boils down to comparing arguments with
their attackers, and comparing degrees of belief is a basic
operation in qualitative nonmonotonic reasoning. Therefore,
in spite of the abundance of existing work studying connec-
tions between the two fields, the true nature of the relation-
ship between argumentation and nonmonotonic reasoning
has not been fully understood.
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We aim at deepening the understanding of the relation-
ships between argumentation and nonmonotonic logics and
establishing a theoretical basis for integrative approaches by
focusing on most fundamental approaches on either side:
Abstract Dialectical Frameworks (ADFs) (Brewka et al.
2013) for argumentation, and Conditional Logics (CL) (Nute
1984; Spohn 1988) for nonmonotonic logics. ADFs are an
approach to formal argumentation, which subsumes many
other argumentative formalisms in a generic, logic-based
way. On the side of nonmonotonic logics, conditionals have
been shown (and often used) to implement nonmonotonic
inferences and provide expressive formalisms to represent
knowledge bases; some of the most popular nonmonotonic
inference systems (e. g., system Z (Goldszmidt and Pearl
1996)) make use of conditionals. Both ADFs and CL can
be considered as high-level formalisms implementing prop-
erly the basic nature of the respective field without being
restricted too much by subtleties of specific approaches, and
both are based on 3-valued logics.

In this paper we investigate the correspondence between
abstract dialectical frameworks and system Z. Syntactically,
both frameworks focus on pairs of objects such as (φ, ψ). In
conditional logic, these pairs are interpreted as condition-
als with the informal meaning “if φ is true then, usually,
ψ is true as well” and written as (ψ|φ). In abstract dialec-
tical frameworks, these pairs are interpreted as acceptance
conditions, and interpreted as “if φ is accepted then ψ is
accepted as well”. The resemblance of these informal in-
terpretations is striking, but both approaches use fundamen-
tally different semantics to formalise these interpretations.
Here we ask the question of whether, and how we can inter-
pret abstract dialectical frameworks in terms of conditional
logic so that acceptance in the argumentative system is de-
fined by a nonmonotonic inference relation based on condi-
tionals. We continue work from (Kern-Isberner and Thimm
2018) by considering several translations of ADFs into con-
ditional knowledge bases and applying the Z-inference rela-
tion (Goldszmidt and Pearl 1996) to these knowledge bases.
We first show that there is a gap between argumentation
and conditional semantics when applying several intuitive
translations, but then define a class of translations that are Z-
adequate—i. e. they preserve the semantics, see Section 3.1



for the formal definition—for the 2-valued model semantics
of ADFs, and for other semantics under certain conditions
on the ADFs. Furthermore, we show that none of the trans-
lations studied in this paper are Z-adequate for the grounded
semantics.
Outline of this Paper: After stating all the necessary pre-
liminaries in Section 2, we investigate a family of transla-
tions from ADFs into conditional knowledge bases in Sec-
tion 3, where we first define Z-adequacy for such trans-
lations (Section 3.1), after which we investigate the Z-
adequacy of the suggested translations for 2-valued models
(Section 3.2), preferred and stable semantics (Section 3.3)
and grounded semantics (Section 3.4). We finally discuss re-
lated work in Section 4 before concluding (Section 5).

2 Preliminaries
In the following, we we briefly recall some general prelimi-
naries on propositional logic, as well as technical details on
conditional logic and ADFs (Brewka et al. 2013).

2.1 Propositional Logic
For a set At of atoms let L(At) be the corresponding propo-
sitional language constructed using the usual connectives ∧
(and), ∨ (or), ¬ (negation) and ⊃ (material implication). A
(classical) interpretation (also called possible world) ω for a
propositional languageL(At) is a function ω : At→ {T,F}.
Let Ω(At) denote the set of all interpretations for At. We
simply write Ω if the set of atoms is implicitly given. An in-
terpretation ω satisfies (or is a model of) an atom a ∈ At,
denoted by ω |= a, if and only if ω(a) = T. The satis-
faction relation |= is extended to formulas as usual. As an
abbreviation we sometimes identify an interpretation ω with
its complete conjunction, i. e., if a1, . . . , an ∈ At are those
atoms that are assigned T by ω and an+1, . . . , am ∈ At are
those propositions that are assigned F by ω we identify ω by
a1 . . . anan+1 . . . am (or any permutation of this). For exam-
ple, the interpretation ω1 on {a, b, c} with ω(a) = ω(c) = T
and ω(b) = F is abbreviated by abc. For Φ ⊆ L(At) we also
define ω |= Φ if and only if ω |= φ for every φ ∈ Φ. De-
fine the set of models Mod(X) = {ω ∈ Ω(At) | ω |= X}
for every formula or set of formulas X . A formula or set of
formulas X1 entails another formula or set of formulas X2,
denoted by X1 ` X2, if Mod(X1) ⊆ Mod(X2).

2.2 Reasoning with Nonmonotonic Conditionals
There are many different conditional logics (cf., e. g.,
(Kraus, Lehmann, and Magidor 1990; Nute 1984)), we will
just use basic properties of conditionals that are common
to many conditional logics and are especially important for
nonmonotonic reasoning: Basically, we follow the approach
of de Finetti (1974) who considered conditionals as gener-
alized indicator functions for possible worlds resp. proposi-
tional interpretations ω:

((ψ|φ))(ω) =

{
1 : ω |= φ ∧ ψ
0 : ω |= φ ∧ ¬ψ
u : ω |= ¬φ

(1)

where u stands for unknown or indeterminate. In other
words, a possible world ω verifies a conditional (ψ|φ) iff it

satisfies both antecedent and conclusion ((ψ|φ)(ω) = 1); it
falsifies, or violates it iff it satisfies the antecedence but not
the conclusion ((ψ|φ)(ω) = 0); otherwise the conditional
is not applicable, i. e., the interpretation does not satisfy the
antecedence ((ψ|φ)(ω) = u). We say that ω satisfies a con-
ditional (ψ|φ) iff it does not falsify it, i. e., iff ω satisfies its
material counterpart φ ⊃ ψ. Hence, conditionals are three-
valued logical entities and thus extend the binary setting of
classical logics substantially in a way that is compatible with
the probabilistic interpretation of conditionals as conditional
probabilities. Such a conditional (ψ|φ) can be accepted as
plausible if its verification φ ∧ ψ is more plausible than its
falsification φ∧¬ψ, where plausibility is often modelled by a
total preorder on possible worlds. This is in full compliance
with nonmonotonic inference relations φ |∼ψ (Makinson
1988) expressing that from φ, ψ may be plausibly/defeasibly
derived. An obvious implementation of total preorders are
ordinal conditional functions (OCFs), (also called ranking
functions) κ : Ω → N ∪ {∞} (Spohn 1988). They express
degrees of (im)plausibility of possible worlds and proposi-
tional formulas φ by setting κ(φ) := min{κ(ω) | ω |= φ}.
OCFs κ provide a particularly convenient formal environ-
ment for nonmonotonic and conditional reasoning, allow-
ing for simply expressing the acceptance of conditionals and
nonmonotonic inferences via stating that (ψ|φ) is accepted
by κ iff φ |∼κψ iff κ(φ∧ψ) < κ(φ∧¬ψ), implementing for-
mally the intuition of conditional acceptance based on plau-
sibility mentioned above. For an OCF κ, Bel (κ) denotes the
propositional beliefs that are implied by all most plausible
worlds, i. e. Bel (κ) = {φ | ∀ω ∈ κ−1(0) : ω |= φ}. We de-
note with CL the framework of reasoning from conditional
knowledge bases based on OCFs.

Specific examples of ranking models are system Z yield-
ing the inference relation |∼Z (Goldszmidt and Pearl 1996)
and c-representations (Kern-Isberner 2001). We focus on
system Z defined as follows. A conditional (ψ|φ) is toler-
ated by a finite set of conditionals ∆ if there is a possible
world ω with (ψ|φ)(ω) = 1 and (ψ′|φ′)(ω) 6= 0 for all
(ψ′|φ′) ∈ ∆, i. e. ω verifies (ψ|φ) and does not falsify any
(other) conditional in ∆. The Z-partitioning (∆0, . . . ,∆n)
of ∆ is defined as:

• ∆0 = {δ ∈ ∆ | ∆ tolerates δ};

• ∆1, . . . ,∆n is the Z-partitioning of ∆ \∆0.

For δ ∈ ∆ we define: Z∆(δ) = i iff δ ∈ ∆i and
(∆0, . . . ,∆n) is the Z-partioning of ∆. Finally, the ranking
function κZ∆ is defined via: κZ∆(ω) = max{Z(δ) | δ(ω) =
0, δ ∈ ∆}+1, with max ∅ = −1. We can now define ∆ |∼Z φ
iff φ ∈ Bel (κZ∆). Below the following Lemma about system
Z will prove useful:

Lemma 1. ω 6∈ (κZ∆)−1(0) iff δ(ω) = 0 for some δ ∈ ∆.

Proof. This follows immediately in view of the fact that ω ∈
(κZ∆)−1(0) iff δ(ω) 6= 0 for every δ ∈ ∆.

Example 1. Let ∆ = {(b|¬a), (a|¬b), (c|¬a ∨ ¬b)}. For
this set of conditionals, ∆ = ∆0 and therefore we have:



ω κz∆(ω) ω κz∆(ω) ω κz∆(ω) ω κz∆(ω)

abc 0 abc 0 abc 0 abc 1
abc 0 abc 1 abc 1 abc 1

Thus, (κZ∆)−1(0) = {abc, abc, abc, abc}. This means that,
for example, ∆ |∼Z a ∨ b and ∆ 6 |∼Z c.

2.3 Abstract Dialectical Frameworks
We briefly recall some technical details on ADFs following
loosely the notation from (Brewka et al. 2013). An ADF D
is a tuple D = (S,L,C) where S is a set of statements,
L ⊆ S × S is a set of links, and C = {Cs}s∈S is a set
of total functions Cs : 2parD(s) → {>,⊥} for each s ∈
S with parD(s) = {s′ ∈ S | (s′, s) ∈ L} (also called
acceptance functions). An acceptance function Cs defines
the cases when the statement s can be accepted (truth value
>), depending on the acceptance status of its parents in D.
By abuse of notation, we will often identify an acceptance
function Cs by its equivalent acceptance condition which
models the acceptable cases as a propositional formula.

Example 2. We consider the following ADF D1 =
({a, b, c}, L, C) with L = {(a, b), (b, a), (a, c), (b, c)} and:

Ca = ¬b Cb = ¬a Cc = ¬a ∨ ¬b
Informally, the acceptance conditions can be read as “a is
accepted if b is not accepted”, “b is accepted if a is not ac-
cepted” and “c is accepted if a is not accepted or b is not
accepted”.

An ADF D = (S,L,C) is interpreted through 3-valued
interpretations v : S → {>,⊥, u}, which assign to each
statement in S either the value > (true, accepted), ⊥ (false,
rejected), or u (unknown). V consists of all three-valued in-
terpretations whereas V2 consists of all the two-valued in-
terpretations (i.e. interpretations such that for every s ∈ S,
v(s) ∈ {>,⊥}). Then v is a model of D if for all s ∈ S, if
v(s) 6= u then v(s) = v(Cs). We define an order ≤i over
{>,⊥, u} by making u the minimal element: u <i > and
u <i ⊥ and this order is lifted pointwise as follows (given
two valuations v, w over S): v ≤i w iff v(s) ≤i w(s) for ev-
ery s ∈ S. The set of two-valued interpretations extending
a valuation v is defined as [v]2 = {w ∈ V2 | v ≤i w}.
Given a set of valuations V , uiV (s) = v(s) if for ev-
ery v′ ∈ V , v(s) = v′(s) and uiV (s) = u otherwise.
ΓD(v) : S → {>,⊥, u} where s 7→ ui{w(Cs) | w ∈ [v]2}.

For the definition of the stable model semantics, we need
to define the reduct Dv of D given v, defined as: Dv =
(Sv, Lv, Cv) with:

• Sv = {s ∈ S | v(s) = >},
• Lv = L ∩ (Sv × Sv), and

• Cv = {Cs[{φ | v(φ) = ⊥}/⊥] | s ∈ Sv}.
whereCs[φ/ψ] is the formula obtained by substituting every
occurence of φ in Cs by ψ.

Definition 1. Let D = (S,L,C) be an ADF with v : S →
{>,⊥, u} an interpretation:

• v is a 2-valued model iff v ∈ V2 and v is a model.
• v is complete for D iff v = ΓD(v).
• v is preferred for D iff v is ≤i-maximally complete.

• v is grounded for D iff v is ≤i-minimally complete.
• v is stable iff v is a model of D and {s ∈ S | v(s) =
>} = {s ∈ S | w(s) = >} where w is the grounded
interpretation of Dv .

We denote by 2mod(D), complete(D), preferred(D),
grounded(D) respectively stable(D) the sets of 2-valued
models and complete, preferred, grounded respectively sta-
ble interpretations of D.

We recall the following relationships between the seman-
tics defined above:

Theorem 1 ((Brewka et al. 2013)). Given any ADF D, the
following relationships hold:

• stable(D) ⊆ 2mod(D);
• 2mod(D) ⊆ preferred(D);
• preferred(D) ⊆ complete(D);
• grounded(D) ⊆ complete(D).

Below we will make use of the following ADF subclasses
which will prove useful in the generalisation of our results
(in particular Theorem 2):

Definition 2 ((Diller et al. 2018)). An ADF D is called:

• weakly coherent if 2mod(D) ⊆ stable(D);
• coherent if preferred(D) ⊆ stable(D);
• semi-coherent if preferred(D) ⊆ 2mod(D).

We finally define consequence relations for ADFs:

Definition 3. Given an ADF D = (S,L,C) and s ∈ S
and sem ∈ {2mod, preferred, grounded, stable}, we define:
D |∼∩sem s[¬s] iff v(s) = >[⊥] for all v ∈ sem(D).1

Example 3 (Example 2 continued). The ADF of Ex-
ample 2 has three complete models v1, v2, v3 with:
v1(a) = > v1(b) = ⊥ v1(c) = >
v2(a) = ⊥ v2(b) = > v2(c) = >
v3(a) = u v3(b) = u v3(c) = u

v3 is the grounded interpretation whereas v1 and v2 are both
preferred and 2-valued.

3 Interpreting ADFs in Conditional Logic
In this section, we systematically investigate translations
from ADFs into conditional knowledge bases. The transla-
tions considered in this paper will be introduced in Section
3.1, where we will also formally define what it means for a
translation to be adequate. We then investigate the adequacy
for these translations with respect to the two-valued models
(Section 3.2), the stable and the preferred semantics (Section
3.3) and the grounded semantics (Section 3.4).

3.1 Translations from ADFs to Conditional
Logics

The general aim of this paper is to study translations of
ADFs in CL. In more detail, let S be a set of propositions
and DS be the set of all ADFs defined on the basis of S (i.e.

1Since (Brewka et al. 2013) showed the grounded extension to
be unique for any ADF, we will omit ∩ from |∼grounded .



all ADFs D = (S,L,C)), and CS be the set of all condi-
tional knowledge bases over the propositional language gen-
erated by S. Then we investigate mappings Θ : DS → CS
(for arbitrary S).

Once an ADF D has been translated into a conditional
knowledge base Θ(D), we are able to use nonmonotonic
inferences from this knowledge base by using, e. g., system
Z:

Definition 4. Let S be a set of atoms and θ : DS → CS be
a translation from ADFs to conditional knowledge bases.
θ is Z-adequate with respect to semantics sem if: for every
D = (S,L,C) and every s ∈ S it holds that D |∼∩sem s iff
Θ(D) |∼Z s.

There is a whole family of translations from ADFs to con-
ditional logics which are prima facie apt to express the links
between nodes s and their acceptance conditions Cs:

• Θ1(D) = {(s|Cs) | s ∈ S}
• Θ2(D) = {(Cs|s) | s ∈ S}
• Θ3(D) = Θ1(D) ∪Θ2(D)

• Θ4(D) = Θ1(D) ∪ {(¬s|¬Cs) | s ∈ S}
• Θ5(D) = {((Cs ≡ s)|>) | s ∈ S}
Θ1 formalizes the intuition that whenever the condition of a
node s is true, normally, s should be true as well. Likewise,
Θ2 formalizes the idea that if a node is true, its condition
should be true as well. Θ3 combines the two aforementioned
intuitions. Θ4 is a slight variation on this idea, combining
Θ1 with the constraint that whenever a condition of a node
is false, the node itself should be false as well. Θ5, finally,
postulates that a node should be equivalent to its condition.
Note that Θ1 has already been investigated some small ex-
tent in (Kern-Isberner and Thimm 2018).

There are, of course, many more translations possible, for
example one could suggest instead of Θ1(D) the following
Θ′1(D) = {(Cs ⊃ s|>) | s ∈ S}. However, “shifting”
the conditional to the right hand side does not impact the
consequences of a translation:

Proposition 1. Given a set of conditionals ∆, ∆ ∪
{(ψ|φ)} |∼Z θ iff ∆ ∪ {(φ ⊃ ψ|>)} |∼Z θ.

Proof. Suppose ∆ is a set of conditionals. In what fol-
lows, we will denote κZ∆∪{(ψ|φ)} by κ and κZ∆∪{(φ⊃ψ|>)}
by κ′. We show that κ−1(0) = κ′−1(0), which implies the
proposition. For this, suppose towards a contradiction that
ω ∈ κ′−1(0) yet ω 6∈ κ−1(0). By Lemma 1 this means that
there is some (λ|δ) ∈ ∆ ∪ {(ψ|φ)} s.t. (λ|δ)(ω) = 0. Since
κ′ accepts ∆, (λ|δ) = (ψ|φ). Thus, ω |= φ ∧ ¬ψ. This
means that ω |= > ∧ ¬(φ ⊃ ψ), i.e. (φ ⊃ ψ|>)(ω) =
0. This contradicts κ′(ω) = 0 and the assumption that
κ′ accepts ∆ ∪ {(φ ⊃ ψ|>)} and thus we have shown
that κ′−1(0) ⊆ κ−1(0). Analogously, we can show that
κ′−1(0) ⊇ κ−1(0) and thus κ′−1(0) = κ−1(0). This im-
plies Bel (κ) = Bel (κ′)

The above proposition thus establishes that within our
perspective, it does not matter if we consider the conditional
“ψ is plausible if φ is the case” or the conditional “φ ⊃ ψ

is plausible”. This does not imply that we can equivalently
consider φ ⊃ ψ to be true.

3.2 Z-Adequacy w.r.t. Two-Valued Semantics
In this section we study Z-adequacy with respect to the
2mod-semantics for the translations suggested in the pre-
vious subsection. In particular, we will show that Θ1 and
Θ2 are not Z-adequate whereas Θ3, Θ4 and Θ5 are in fact
Z-adequate for the 2mod-semantics.

We first observe that Θ1 and Θ2 are not Z-adequate.
Example 4 (Z-Inadequacy of Θ1 w.r.t. 2mod). We con-
sider the following ADF D1 from Example 2. Notice that
Θ1(D1) = {(b|¬a), (a|¬b), (c|¬a∨¬b)}, which is the con-
ditional knowledge base considered in Example 1. We there-
fore see that Θ1(D1) 6 |∼Z c even though D |∼∩2mod c and thus
Θ1 is not Z-adequate with respect to the 2mod-semantics.
Example 5 (Z-Inadequacy of Θ2 w.r.t. 2mod). We con-
sider the following ADF D2 = ({a, b, c}, L, C) where:
Ca = ¬b Cb = ¬a Cc = a ∨ b D2 has three com-

plete models v1, v2, v3 with: v1(a) = v2(b) = v1(c) =
v2(c) = >, v1(b) = v2(a) = ⊥ and v3(a) = v3(b) =
v3(c) = u. Only v1 and v2 are 2-valued.

Moving to Θ2(D) = {(¬a|b), (¬b|a), (a ∨ b|c)}, we see
that (κZΘ2(D))

−1(0) = {abc, abc, abc, abc, abc}. This means
that Θ2(D2) 6 |∼Z c even though D |∼∩2mod c, i.e. Θ2 is not Z-
adequate with respect to the 2mod-semantics.

We will now show that the translations Θ3, Θ4 and Θ5 are
Z-adequate for 2-valued models but not in general for the
grounded semantics. For these results, the following condi-
tions on translations will prove useful:
• C1: κZΘ(D)(Cs ∧ ¬s) > 0 and κZΘ(D)(¬Cs ∧ s) > 0 for

every s ∈ S.
• C2: {

∧
s∈S Cs ≡ s} `

∧
(ψ|φ)∈Θ(D)(φ ⊃ ψ)

Θ3, Θ4 and Θ5 satisfy both of the above conditions:
Proposition 2. For any i ∈ {3, 4, 5} and any ADF D,
Θi(D) satisfies C1 and C2.

Proof. We show the claim for i = 3 and C1, the proofs
for i ∈ {4, 5} and C2 are analogous. Suppose towards a
contradiction that there is some ADF D = (S,L,D) and
some s ∈ S s. t. κZΘ3(D)(Cs ∧ ¬s) = 0 or κZΘ3(D)(¬Cs ∧
s) = 0. Suppose the former. Then κZΘ3(D)(Cs ∧ ¬s) ≥
κZΘ3(D)(Cs ∧ s), which contradicts (s|Cs) ∈ Θ3(D).
Likewise, κZΘ3(D)(¬Cs ∧ s) = 0 contradicts (Cs|s) ∈
Θ3(D).

Below we will use the notion of a world ωv based on a
2-valued interpretation v ∈ V2 defined as:

ωv =
∧

v(s)=>

s ∧
∧

v(s)=⊥

¬s

Likewise we define the valuation vω based on a world ω as
vω(s) = > if ω |= s and vω(s) = ⊥ otherwise.
Proposition 3. For any Θ that satisfies C1 for the ADF D,
ω ∈ (κZΘ(D))

−1(0) implies vω ∈ 2mod(D).



Proof. Suppose that Θ(D) satisfies C1 for the ADF D =
(S,L,C) and that ω ∈ (κZΘ(D))

−1(0). We show that vω is
a model of D. Indeed suppose towards a contradiction that
vω(s) 6= vω(Cs) for some s ∈ S. This means that ω |=
s ∧ ¬Cs or ω |= ¬s ∧ Cs. Since ω ∈ (κZΘ(D))

−1(0), this
contradicts Θ(D) satisfying C1 for D. Thus, it has to be the
case that vω is a model of D. That vω ∈ V2 is clear from the
fact that ω |= s ∨ ¬s for every s ∈ S.

Proposition 4. For any Θ that satisfies C2 for the ADF D,
ωv ∈ (κZΘ(D))

−1(0) if v ∈ 2mod(D).

Proof. Suppose that Θ(D) satisfies C2 for the ADF D, and
suppose that v is a 2-valued model of D. Suppose towards
a contradiction that ωv 6∈ (κZΘ(D))

−1(0). By Lemma 1 this
means that ωv |= φ′ ∧ ¬ψ′ for some (ψ′|φ′) ∈ Θ(D). But
then since {

∧
s∈S Cs ≡ s} `

∧
(ψ|φ)∈Θ(D)(φ ⊃ ψ), by

contraposition, and since {φ′∧¬ψ′} ` ¬(
∧

(ψ|φ)∈Θ(D)(φ ⊃
ψ)), ωv |= ¬

∧
s∈S Cs ≡ s. But then there is some s ∈ S

s. t. ωv |= s∧¬Cs or ωv |= ¬s∧Cs. But then v(s) 6= v(Cs),
contradiction to v being a 2-valued model of D.

We can now derive the Z-adequacy with respect to the 2-
valued model semantics for the translations Θ3, Θ4 and Θ5:
Theorem 2. For any ADF D, and i ∈ {3, 4, 5}:
D |∼∩2mod s[¬s] iff Θi(D) |∼Z s[¬s] for any s ∈ S.

Proof. Let i ∈ {1, 2, 3} and D be an ADF. By definition,
D |∼∩2mod s[¬s] iff for every model v ∈ V2, v(s) = >[⊥].
By Propositions 2, 3 and 4, (κZΘi(D))

−1(0) = {ωv | v ∈
V2, v ∈ 2mod(D)}. Thus, D |∼∩2mod s[¬s] iff for every ω ∈
(κZΘi(D))

−1(0), ω |= s[¬s], which implies: D |∼∩2mod s[¬s]
iff Θi(D) |∼Z s[¬s].

Remark 1. In (Kern-Isberner and Thimm 2018), where Θ1

was first proposed, the authors noted that there might be
cases where an ADFD has a grounded interpretation but no
ranking exists since there might be a conditional (s|Cs) ∈
Θ1(D) s.t. Cs ∧ s is not satisfiable, which implies that there
does not exist any world ω for which ((s|Cs))(ω) = 1. This
would mean that there is no ranking κ that accepts (s|Cs).
For Theorem 2, such a situation is unproblematic, since if
Cs ∧ s (or ¬Cs ∧¬s for that matter) is not satisfiable, there
will be no 2-valued model for D .

3.3 Z-Adequacy w.r.t. Stable and Preferred
Semantics

We can strengthen Theorem 2 to obtain Z-adequacy with re-
spect to the stable and preferred semantics for specific sub-
classes of ADFs (the proof is an easy consequence of Theo-
rems 1 and 2):
Theorem 3. For any ADF D, and i ∈ {3, 4, 5} the follow-
ing results hold:

1. D |∼∩stable s[¬s] iff Θi(D) |∼Z s[¬s] for any s ∈ S, if D is
weakly coherent.

2. D |∼∩preferred s[¬s] iff Θi(D) |∼Z s[¬s] for any s ∈ S, if D
is semi-coherent.

3.4 Z-Inadequacy w.r.t. the Grounded Semantics
Theorem 2 can also be used to derive the Z-inadequacy of
Θ3, Θ4 and Θ5 with respect to the grounded semantics:

Proposition 5. For any Θ(D) that satisfies C1 and C2, Θ
is not Z-adequate with respect to grounded.

Proof. We consider the following ADF D =
({a, b, c, d}, L, C) where:

Ca = ¬b; Cb = ¬a; Cc = ¬a ∧ ¬b; Cd = ¬c
This ADF has the following 2-valued models: v1 which
assigns v1(a) = v1(d) = > and v1(b) = v1(c) = ⊥ and v2

with v2(b) = v2(d) = > and v2(a) = v2(c) = ⊥. Since
v1(d) = v2(d) = >, by Proposition 3 and Proposition 4,
Θ(D) |∼Z d. However, the grounded assignment vG sets
vG(a) = vG(b) = vG(c) = vG(d) = u.

4 Related Works
Our aim in this paper is to lay foundations of integra-
tive techniques for argumentative and conditional reasoning.
There are previous works, which have similar aims or are
otherwise related to this endeavour. We will discuss those in
the following.

First, there is huge body of work on structured argumen-
tation (see e. g. (Besnard et al. 2014)). In these approaches,
arguments are constructed on the basis of a knowledge base
possibly consisting of conditionals. An attack relation be-
tween these arguments is constructed based on some syn-
tactic criteria. Acceptable arguments are then identified by
applying argumentation semantics to the resulting argumen-
tation frameworks. Thus, even though structured argumenta-
tion syntactically uses conditional knowledge bases, it relies
semantically on formal argumentation.

There have been some attempts to bridge the gap between
specific structured argumentation formalisms and condi-
tional reasoning. For example, in (Kern-Isberner and Simari
2011) conditional reasoning based on System Z (Goldszmidt
and Pearl 1996) and DeLP (Garcı́a and Simari 2004) are
combined in a novel way. Roughly, the paper provides a
novel semantics for DeLP by borrowing concepts from Sys-
tem Z that allows using plausibility as a criterion for com-
paring the strength of arguments and counterarguments. Our
approach differs both in goal (we investigate the correspon-
dence between argumentation and conditional logics instead
of integrating insights from the latter into the former) and
generality (DeLP is specific and arguably rather peculiar ar-
gumentation formalism whereas ADFs are the most general
formalism around).

Several works investigate postulates for nonmonotonic
reasoning known from conditional logics (Kraus, Lehmann,
and Magidor 1990) for specific structured argumenta-
tion formalisms, such as assumption-based argumentation
(Čyras and Toni 2015; Heyninck and Straßer 2018) and
ASPIC+ (Li, Oren, and Parsons 2017). These works re-
vealed gaps between nonmonotonic reasoning and argumen-
tation which we try to bridge in this paper.

Besnard et al. (Besnard, Grégoire, and Raddaoui 2013)
develop a structured argumentation approach where general



conditional logic is used as the base knowledge representa-
tion formalism. Their framework is constructed in a similar
fashion as the deductive argumentation approach (Besnard
and Hunter 2008) but they also provide with conditional
contrariety a new conflict relation for arguments, based on
conditional logical terms. Even though insights from condi-
tional logics are used in that paper, this approach stays well
within the paradigm of structured argumentation. In (Wey-
dert 2013) a new semantics for abstract argumentation is
presented, which is also rooted in conditional logical terms.
In more detail, a ranking interpretation is provided for ex-
tensions of arguments instantiated by strict and defeasible
rules by using conditional ranking semantics. Thus, Wey-
dert presupposes a conditional knowledge base that is used
to contruct an argumentation framework whereas we investi-
gate what are sensible translations of ADFs into conditional
knowledge bases. In (Strass 2015) Strass presents a transla-
tion from an ASPIC-style defeasible logic theory to ADFs.
While actually Strass embeds one argumentative formalism
(the ASPIC-style theory) into another argumentative for-
malism (ADFs) and shows how the latter can simulate the
former, the process of embedding is similar to our approach.

5 Conclusion
In this paper we systematically investigated translations
from ADFs into conditional knowledge bases based on the
syntactic similarities between the two frameworks. We have
shown that there is a class of translations that is semanti-
cally adequate with respect to the 2-valued model semantics
and, under certain assumptions on the ADF, also for the sta-
ble and preferred semantics. Finally, we have shown that,
at least for the translations under consideration, Z-adequacy
with respect to the grounded semantics is not guaranteed. In
future work we want to both generalize these results by in-
vestigating translations that are Z-adequate for grounded se-
mantics and looking at other ways to obtain a ranking κ on
the basis of a translation Θ (from e. g. (Kern-Isberner 2001;
Kraus, Lehmann, and Magidor 1990)). Furthermore, we plan
to take advantage of the results from this paper to transfer
features and results from conditional logics to ADFs.
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