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Abstract. We investigate the recently proposed notion of serialisability of seman-
tics for abstract argumentation frameworks. This notion describes semantics where
the construction of extensions can be serialised through iterative addition of min-
imal non-empty admissible sets. We investigate general relationships between se-
rialisability and other principles from the literature. We also investigate the novel
unchallenged semantics as a new instance of a serialisable semantics and, in par-
ticular, analyse it in terms of satisfied principles and computational complexity.
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1. Introduction

Abstract argumentation frameworks [1] are a simple, yet powerful formalism for repre-
senting argumentative scenarios and investigating matters regarding the acceptability of
arguments. They consist simply of a set of arguments and an attack relation between ar-
guments and can thus be represented as a directed graph. Abstract argumentation seman-
tics [2] are used to interpret abstract argumentation frameworks by appropriately con-
straining the space of possible outcomes of the underlying argumentation. In particular,
extension-based semantics define when a set of arguments (called extension) represents
a plausible constellation of arguments that makes “sense” given the attacks in a frame-
work. While we also consider extension-based semantics in this paper, it is noteworthy
to mention that there are also other approaches for semantics such as the labelling-based
approach [3], ranking and gradual semantics [4], and probabilistic approaches [5].

In [6] it has been shown that many of the mainstream extension-based semantics can
be serialised, meaning that there is non-deterministic construction principle that allows
to iteratively construct extensions by selecting minimal non-empty admissible sets—
called initial sets [7]—and moving to the reduct [8]. Individual semantics can be distin-
guished by the way they select initial sets (via a so-called selection function) and how
they terminate the construction (via a so-called termination function). For example, pre-
ferred semantics can be serialised by selecting initial sets arbitrarily until no further ini-
tial sets can be found [6]. Satisfaction of this principle of serialisability by a semantics
allows a deeper inspection of the reasons why certain arguments are contained in an ex-
tension and therefore facilitates the explanatory power of an argumentation semantics
[9,10]. In this paper, we aim at a better understanding of the principle of serialisability, in
particular with respect to its connections to other principles for argumentation semantics



[11,12]. As it turns out, serialisability is an independent principle that is neither implied
by nor implies other similar properties such as directionality.

As it has already been mentioned above, a serialisable semantics is characterised by
a selection and termination function. This parametrisation of a semantics allows the easy
development of further semantics simply by defining those two components. In [6], a
specific candidate for such a semantics has already been suggested, which we coin here
the unchallenged semantics. This semantics is defined by exhaustively adding unattacked
and unchallenged initial sets (the formal definitions of these terms will be introduced in
Section 3) and it has some interesting connections to preferred and ideal semantics. We
investigate unchallenged semantics in more depth, in particular wrt. its compliance to
principles from [11,12,13] and in terms of computational complexity. As with regard to
the latter, unchallenged semantics turns out to be highly intractable, with credulous and
skeptical reasoning shown to be ΣP

2 - and ΠP
2 -complete, respectively.

To summarise, the contributions of this paper are as follows.

1. We recall the principle of serialisability and analyse its relationship with other
principles (Section 3).

2. We investigate unchallenged semantics as a new instance of a serialisable seman-
tics wrt. to its compliance to principles (Section 4).

3. We analyse unchallenged semantics wrt. computational complexity (Section 5).

Section 2 presents the necessary background on abstract argumentation and Section 6
concludes. Proofs of technical results are omitted due to space restrictions but can be
found in an online appendix.1

2. Preliminaries

Let A denote a universal set of arguments. An abstract argumentation framework AF
is a tuple AF = (A,R) where A ⊆ A is a finite set of arguments and R is a relation
R ⊆ A×A [1]. Let AF denote the set of all abstract argumentation frameworks. For
two arguments a,b ∈ A, the relation aRb means that argument a attacks argument b. For
AF = (A,R) and AF′ = (A′,R′) we write AF′ ⊑ AF iff A′ ⊆ A and R′ = R∩ (A′×A′).
For a set X ⊆ A, we denote by AF|X = (X ,R∩ (X ×X)) the projection of AF on X . For
a set S⊆ A we define

S+AF = {a ∈ A | ∃b ∈ S : bRa} S−AF = {a ∈ A | ∃b ∈ S : aRb}

If S is a singleton set, we omit brackets for readability, i. e., we write a−AF (a+AF) instead
of {a}−AF ({a}+AF). For two sets S and S′ we write SRS′ iff S′ ∩ S+AF ̸= /0. We say that a
set S ⊆ A is conflict-free if for all a,b ∈ S it is not the case that aRb. A set S defends an
argument b∈A if for all a with aRb there is c∈ S with cRa. A conflict-free set S is called
admissible if S defends all a ∈ S. Let adm(AF) denote the set of admissible sets of AF.

Different semantics can be phrased by imposing constraints on admissible sets [2].
In particular, an admissible set E

• is a complete (co) extension iff for all a ∈ A, if E defends a then a ∈ E,
• is a grounded (gr) extension iff E is complete and minimally so,
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• is a stable (st) extension iff E ∪E+
AF = A,

• is a preferred (pr) extension iff E is maximal.
• is a semi-stable (sst) extension iff E ∪E+

AF is maximal,
• is an ideal (id) extension iff E is the maximal admissible set with E ⊆ E ′ for each

preferred extension E ′.
• is a strongly admissible (sa) extension iff E = /0 or each a∈ E is defended by some

strongly admissible E ′ ⊆ E \{a}.

All statements on minimality/maximality are meant to be with respect to set inclusion.
For σ ∈ {co,gr,st,pr,sst, id,sa} let σ(AF) denote the set of σ -extensions of AF.

3. Initial Sets and Serialisability

Non-empty minimal admissible sets have been coined initial sets by Xu and Cayrol [7].

Definition 1. For AF = (A,R), a set S ⊆ A with S ̸= /0 is called an initial set if S is
admissible and there is no admissible S′ ⊊ S with S′ ̸= /0. Let IS(AF) denote the set of
initial sets of AF.

Initial sets are not supposed to be used to solve the whole argumentation represented
in an argumentation framework, but rather a single atomic conflict within the framework.
We can also differentiate between three types of initial sets [6].

Definition 2. For AF= (A,R) and S ∈ IS(AF), we say that

1. S is unattacked iff S− = /0,
2. S is unchallenged iff S− ̸= /0 and there is no S′ ∈ IS(AF) with S′RS,
3. S is challenged iff there is S′ ∈ IS(AF) with S′RS.

In the following, we will denote with IS̸←(AF), IS̸↔(AF), and IS↔(AF) the set of
unattacked, unchallenged, and challenged initial sets, respectively.

In [6] the notion of serialisability has been introduced as a new approach for con-
structing admissible sets (and extensions of a variety of semantics) iteratively using ini-
tial sets. This approach relies also on the notion of the reduct [8].

Definition 3. For AF = (A,R) and S ⊆ A, the S-reduct AFS is defined via AFS =
AF|A\(S∪S+).

The idea behind the approach of [6] to construct admissible sets is quite simple: We
solve an atomic conflict in AF by selecting an initial set S. Afterwards, we move to the
reduct AFS which may reveal further conflicts and therefore new initial sets. This process
is continued until some termination criterion is satisfied. In order to formalise this idea,
we need a way to select initial sets in each step and also a criterion for determining if the
construction of an admissible set is finished. The following concepts have been defined
for this purpose.

Definition 4. A state T is a tuple T = (AF,S) with AF ∈ AF and S⊆ A.

Definition 5. A selection function α is any function α : 22A × 22A × 22A → 22A with
α(X ,Y,Z)⊆ X ∪Y ∪Z for all X ,Y,Z ⊆ 2A.
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Figure 1. The argumentation framework AF1 from Example 1.

We will apply a selection function α in the form α(IS̸←(AF), IS̸↔(AF), IS↔(AF))
(for some AF), so α selects a subset of the initial sets as eligible to be selected in the
construction process. We explicitly differentiate the different types of initial sets as pa-
rameters here as a technical convenience.

Definition 6. A termination function β is any function β : AF×2A→{0,1}.

A termination function β is used to indicate when a construction of an admissible
set is finished (this will be the case if β (AF,S) = 1).

For some selection function α , consider the following transition rule:

(AF,S)
S′∈α(IS ̸←(AF),IS ̸↔(AF),IS↔(AF))−−−−−−−−−−−−−−−−−−−→ (AFS′ ,S∪S′)

If (AF′,S′) can be reached from (AF,S) via a finite number of steps (this includes no
steps at all) with the above rule we write (AF,S)⇝α (AF′,S′). If, in addition, the state
(AF′,S′) also satisfies the termination criterion of β , i. e., β (AF′,S) = 1, then we write
(AF,S)⇝α,β (AF′,S′).

Given concrete instances of α and β , let E α,β (AF) be the set of all S with
(AF, /0)⇝α,β (AF′,S) (for some AF′).

Definition 7. A semantics σ is serialisable if there exists a selection function α and a
termination function β with σ(AF) = E α,β (AF) for all AF. Then σ is also called the
α,β -semantics.

In [6] it has already been shown that all of the standard admissible-based semantics
adm, co, gr, pr and st as well as sa are serialisable. On the other hand, the semi-stable,
ideal and eager semantics are not serialisable.

Example 1. As shown in [6], the preferred semantics can be serialised by the selection
function αad(X ,Y,Z) = X ∪Y ∪Z and the termination function

βpr(AF,S) =
{

1 if IS(AF) = /0
0 otherwise

Consider the argumentation framework AF1 in Figure 1. The initial sets of AF1 are
{b}, {e} and { f}. In order to obtain the preferred extensions we start with the state
(AF1, /0). According to the αad all three initial sets can be selected. Assume we select
{b} first, then we apply the transition rule as

(AF1, /0)
{b}−−→ (AF

{b}
1 ,{b}).



In this reduct AF{b}1 , we have two initial sets, namely {e} and { f}. If we select { f}, the
next transition would be

(AF
{b}
1 ,{b}) { f}−−→ (AF

{b, f}
1 ,{b, f}).

This leaves us with one more possible transition via

(AF
{b, f}
1 ,{b, f}) {c}−−→ (( /0, /0),{b,c, f}).

Now, trivially, the termination function is true, since there is no initial set for the empty
framework and {b,c, f} is a preferred extension of AF1. Similarly, we could have se-
lected {e} in the state (AF

{b}
1 ,{b}). In that case, we also obtain an empty argumentation

framework and the set {b,e}, which is the only other preferred extension of AF1.

The principle of serialisability allows to define a semantics simply by specifying a
selection function for initial sets and a termination function. In Section 4 we will define a
completely new semantics using this approach and investigate its properties. However, in
the remainder of this section we will analyse the principle of serialisability a bit deeper.

3.1. Relationship to Other Principles

In the following, we will look further at the serialisability principle and investigate its
relationship with other principles from the literature [11]. First, we recall some basic
definitions. Let AF= (A,R) be an argumentation framework. A set of arguments U ⊆ A
is called unattacked if and only if ∄a ∈ (A\U) : aRU . The set of unattacked sets of AF
is denoted as US(AF). Furthermore, a set S ⊆ A is a strongly connected component of
AF, if there is a directed path between any pair a,b ∈ S in AF and there is no S′ ⊃ S with
that property. Let SCCsAF be the set of strongly connected components of AF. For a set
S ⊆ A, we define opAF(S) = {a ∈ A | a /∈ S∧ aRS}. In order to define the principle of
SCC-Recursiveness [14], we need some additional concepts.

Definition 8. Given an argumentation framework AF=(A,R), a set E ⊆A and a strongly
connected component S ∈ SCCsAF, we define:

• DAF(S,E) = {a ∈ S | (opAF(S))Ra},
• PAF(S,E) = {a ∈ S | (E ∩opAF(S)) ̸Ra∧∃b ∈ (opAF(S)∩a−AF) : E ̸Rb},
• UAF(S,E) = S\ (DAF(S,E)∪PAF(S,E)).

Definition 9. Let AF = (A,R) be an argumentation framework and C ⊆ A is a set of
arguments.

1. A function BF (AF,C) is called base function, if, given an argumentation frame-
work AF= (A,R) such that |SCCs(AF)|= 1 and a set C⊆ A, BF (AF,C)⊆ 2A.

2. Given a base function BF (AF,C) we define the function G FBF (AF,C)⊆ 2A

as follows: for any E ⊆ A,E ∈ G F (AF,C ) if and only if

• in case |SCCsAF|= 1, E ∈BF (AF,C),
• otherwise, ∀S ∈ SCCsAF : E ∩S ∈ G FBF (AF|S\DAF(S,E),UAF(S,E)∩C).



Definition 10. Let AF = (A,R) be an argumentation framework and E ⊆ A is a set
of arguments. We say that an argument a ∈ A is strongly defended by E (denoted as
sd(a,E)) iff ∀b ∈ A : bRa =⇒ ∃c ∈ E \{a} : cRb and sd(c,E \{a}).

Finally, we recall the definitions of the different principles from the literature, that
we considered in our analysis.

Definition 11. A semantics σ satisfies the principle of:

• conflict-freeness [11], iff for every AF AF, every E ∈ σ(AF) is conflict-free with
respect to the attack relation.

• admissibility [11], iff for every AF AF, every E ∈ σ(AF) is conflict-free and de-
fends itself in AF.

• strong admissibility [11], iff for every AF AF, for every E ∈ σ(AF) it holds that
a ∈ E implies that E strongly defends a.

• reinstatement [11], iff for every AF AF = (A,R) and E ∈ σ(AF) we have: if E
defends some a ∈ A then a ∈ E.

• naivety [11], iff for every AF AF= (A,R) and E ∈ σ(AF) we have: E conflict-free
and maximal among c f (AF).

• allowing abstention [15], iff for every AF AF and for every a ∈ A, if there exist
two extensions E1,E2 ∈ σ(AF) such that a ∈ E1 and a ∈ E+

2 then there exists an
extension E3 ∈ σ(AF) such that a /∈ (E3∪E+

3 ).
• I-maximality [11], iff for every AF AF and E1,E2 ∈σ(AF), E1⊆E2 =⇒ E1 =E2.
• SCC-recursiveness [14], iff there is a base function BF σ such that for every AF
AF= (A,R) we have that σ(AF) = G FBF σ

(AF,A).
• directionality [11], iff for every AF AF= (A,R) and ∀U ∈ US(AF) we have that

σ(AF,U) = σ(AF|U ) with σ(AF,U) = {E ∩U | E ∈ σ(AF)}.
• modularization [16], iff for every AF AF we have: E1 ∈ σ(AF) and E2 ∈ σ(AFE1)

implies E1∪E2 ∈ σ(AF).
• reduct-admissibility [13], iff for every AF AF and E ∈ σ(AF), we have that ∀a ∈

E : if b attacks a then b /∈
⋃

σ(AFE).
• semi-qualified-admissibility [13], iff for every AF AF and E ∈ σ(AF), we have

that ∀a ∈ E, if b attacks a and b ∈
⋃

σ(AF) then ∃c ∈ E s.t. c attacks b.

The principle of serialisability is intrinsically linked with admissibility since the
building blocks of constructed extensions are the initial sets of an argumentation frame-
work. By design, every extension constructed by the transition system for some α and
β satisfies admissibility and thus also conflict-freeness. In other words, admissibility
and conflict-freeness are necessary criteria for serialisability. Interestingly, the recently
introduced principle of modularization [16] is also implied by serialisability.

Two of the more prominent principles from the literature are directionality and SCC-
recursiveness. Like serialisability, the SCC-recursiveness principle can also be used to
characterise existing semantics or define new semantics [14]. That raises the question if
there exists a connection between these principles.

Interestingly, the principles of directionality and serialisability are independent of
each other. The same holds true for SCC-recursiveness. While the above mentioned se-
rialisable semantics are all SCC-recursive, the unchallenged semantics, which is inves-
tigated further in the following section, is not SCC-recursive. The relevant results are
summarised in the following theorem.



Theorem 1. Let σ be any semantics.

• If σ satisfies serialisability then it satisfies conflict-freeness.
• If σ satisfies serialisability then it satisfies admissibility.
• If σ satisfies serialisability then it satisfies modularization.
• Directionality does not imply serialisability and vice versa.
• SCC-recursiveness does not imply serialisability and vice versa.

For all other mentioned principles, we could not find any relationships to serialis-
ability. We will now take a closer look on the principle of directionality.

3.2. A Closer Look on Directionality

We now specify some additional property called αβ -closure that allows us to relate se-
rialisability and directionality. This property captures whether or not every path of the
transition system for ασ and βσ of the semantics σ eventually terminates for all argu-
mentation frameworks AF ∈ AF, i. e., every path leads to some σ -extension of AF.

Definition 12. Let σ be serialisable with ασ and βσ . We say that σ is αβ -closed for
all argumentation frameworks AF ∈ AF if and only if, for every state (AF′,S′) with
(AF, /0)⇝ασ (AF′,S′) we have that, there exists some AF′′ ∈ AF and some S′′ ⊆ A such
that (AF′,S′)⇝ασ ,βσ (AF′′,S′′).

The property of αβ -closure is satisfied by most of the existing serialisable seman-
tics. Only the transition system for the stable semantics does not terminate for all paths.
Due to space limitations we do not recall the corresponding selection and termination
functions but we refer to [6].

Theorem 2. The adm, co, gr, pr and sa semantics are αβ -closed, while the st semantics
is not, wrt. the selection and termination functions defined in [6].

The fact that stable semantics is not closed wrt. its transition system is no coinci-
dence since it is also the only semantics of the above that is not directional. In fact, if
a semantics σ is serialisable and also αβ -closed, then it follows that σ must also be
directional.

Theorem 3. If a semantics σ is serialisable via ασ and βσ and is ασ βσ -closed, then σ

satisfies directionality.

4. Unchallenged Semantics

The notion of serialisability allows to define completely new semantics by defining only
a selection and a termination function. One aspect behind the initial sets is that they
represent sets of arguments that solve a local conflict. We also have the differentiation
between unattacked, unchallenged, and challenged initial sets, essentially distinguishing
how convincing these sets solve their local conflict. In general, the grounded semantics
can be considered to represent a minimal consensus, i. e., a set of arguments that everyone
can agree on. The serialised characterisation of the grounded semantics shows us that this
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Figure 2. The argumentation framework AF2 from Example 2.

is achieved by only considering unattacked initial sets in the selection function σgr. This
is formalised by the selection function αgr(X ,Y,Z) = X and the termination function

βgr(AF,S) =
{

1 if IS̸←(AF) = /0
0 otherwise

However, from the perspective of local conflicts, an unchallenged initial set S also re-
solves its conflict while being uncontested by any acceptable argument. Therefore, it is
reasonable to accept the arguments in an unchallenged initial set S as part of a consensus,
since there exists no competing acceptable solution to the conflict S is concerned with.
A natural approach to address this concern would now be to consider a semantics which
allows for unattacked as well as unchallenged initial sets to be selected until no further
unattacked or unchallenged initial sets exist. This means, we do not allow challenged
initial sets to be included since there is at least one other set of arguments that solves the
same local conflict, i. e., there is no consensual solution to this conflict. This approach
has already been suggested in [6] but we will now investigate it in-depth. The approach
can be implemented by the selection function αuc defined via

αuc(X ,Y,Z) = X ∪Y

and the termination function βuc defined via

βuc(AF,S) =
{

1 if IS ̸←(AF)∪ IS̸↔(AF) = /0
0 otherwise

Essentially, this approach amounts to exhaustively adding unattacked and unchallenged
initial sets. In light of this aspect, we also call the αuc,βuc-semantics the unchallenged
semantics (uc) where uc(AF) = {E | (AF, /0)⇝αuc,βuc (AF′,E)} denotes the set of un-
challenged extensions.

Example 2. Consider AF2 depicted in Figure 2. There are four preferred extensions E1,
E2, E3, and E4 in AF2 defined via

E1 = {a,e} E2 = {a,d, f} E3 = {b,e} E4 = {b,d, f}

while the grounded and ideal extensions are empty. However, there is one unchallenged
extension E5 = {d, f}. The reason for that is that both {d} and { f} are unchallenged



initial sets in AF2 (and once one is selected the other becomes an unattacked initial set
of the respective reduct and can be selected as well).

The unchallenged semantics is more skeptical than the preferred semantics but less
skeptical than the ideal semantics as has already been observed in [6].

Theorem 4. For every E ∈ uc(AF):

1. E ⊆ E ′ for some preferred extension E ′ and
2. Eid ⊆ E for the ideal extension Eid.

Also clear is the following observation:

Proposition 1. For every AF, uc(AF) ̸= /0.

In Definition 12 we introduced the property of αβ -closure for serialisable semantics.
This property is also satisfied by the unchallenged semantics.

Theorem 5. Unchallenged semantics is αucβuc-closed.

In light of Theorem 3 this directly implies that the unchallenged semantics is direc-
tional. In addition to the above characterisation via the selection and termination func-
tions, the unchallenged semantics can also be characterised in a different manner. The
following theorem gives a recursive definition of the unchallenged semantics based on
the notion of the reduct, but without use of the transition rule.

Theorem 6. Let AF= (A,R) be an abstract argumentation framework and E ⊆ A. E is
an unchallenged extension if and only if either

• E = /0 and IS̸←∪ IS̸↔(AF) = /0 or
• E = E1∪E2, E1 ∈ IS̸←∪ IS̸↔(AF) and E2 is an unchallenged extension in AFE1 .
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Figure 3. The argumentation framework AF3 from Example 3.

Example 3. Consider the argumentation framework AF3 in Figure 3. The initial sets
of AF3 are {c} and {a}. Here, {c} is unattacked and {a} is considered unchallenged.
Therefore, both sets are valid in terms of the selection function αuc. Assume we select
the set {c}, we transition to the framework AF

{c}
3 = ({a,b},{(a,b),(b,a)}). In this argu-

mentation framework we have two initial sets {a} and {b}. Both of which are challenged
by each other. This means, the termination function βuc is satisfied and therefore {c} is
an unchallenged extension of AF3.

On the other hand, if we select {a} as the first transition, we arrive at the argumen-
tation framework AF

{a}
3 = ({c,d},{(c,d)}). Here, {c} is the only initial set and it is



unattacked, just like it was in AF3 itself. After the transition step, we obtain AF
{a,c}
3 =

( /0, /0), which means we are in a terminal state since we have that βuc(AF
{a,c}
3 ,{a,c}) = 1.

All in all, {c} and {a,c} are the unchallenged extensions of AF3.

In the following, we further investigate the compliance of the unchallenged seman-
tics with principles from the literature. The unchallenged semantics satisfies conflict-
freeness and admissibility by design. It also satisfies the more recently introduced prin-
ciple of modularization as well as the reinstatement principle. Furthermore, the unchal-
lenged semantics also satisfies the more complex principle of directionality.

Theorem 7. The unchallenged semantics satisfies the following principles: Conflict-
Freeness, Admissbility, Reduct Admissibility, Semi-Qualified Admissibility, Reinstate-
ment, Directionality, Modularization and Serialisability.

On the other hand, the unchallenged semantics does not satisfy strong admissibil-
ity. Like most admissible-based semantics, it does not satisfy the “allowing abstention”
principle. As we have seen in Example 3 the unchallenged semantics does not satisfy
I-maximality.

Interestingly, the SCC-recursiveness property is also not satisfied by this semantics.
The reason for that stems from the inclusion of unchallenged initial sets. This allows for
situations like in Example 3 where an unchallenged initial set can become challenged
in some reduct of AF, but it can still be part of the extension if selected in an earlier
transition step. Therefore, the unchallenged semantics serves as an example to show that
not all serialisable semantics must necessarily be SCC-recursive.

Theorem 8. The unchallenged semantics does not satisfy the following principles:
Strong Admissibility, Naivety, Allowing Abstention, I-Maximality and SCC-Recursiveness.

5. Computational Complexity

We assume familiarity with basic concepts of computational complexity and basic com-
plexity classes such as P, NP, coNP, see [17] for an introduction. We also require knowl-
edge of the classes ΣP

2 , ΠP
2 , and PNP

∥ . The class ΣP
2 = NPNP is the class of decision prob-

lems that can be solved in polynomial time by a non-deterministic algorithm that has
access to an NP-oracle, i. e., in every step of the algorithm it can immediately obtain
the answer to an NP-complete problem. The class ΠP

2 = coΣP
2 = noNPNP is the com-

plement of ΣP
2 . The class PNP

∥ [18] is the class of decision problems that can be solved
by a deterministic polynomial-time algorithm that can make polynomially many non-
adaptive (or parallel) queries to an NP-oracle. Note that PNP

∥ is sometimes denoted by

ΘP
2 and is equal to PNP[log], i. e., the class of decision problems solvable by a determinis-

tic polynomial-time algorithm that can make logarithmically many adaptive NP-oracle
calls [17].

We consider the following computational tasks, cf. [19]:

Veruc Given AF= (A,R) and E ⊆ A,
decide whether E ∈ uc(AF).

Exists¬ /0
uc Given AF= (A,R),



decide whether there is an E ∈ uc(AF) with E ̸= /0.
Skeptuc Given AF= (A,R) and a ∈ A,

decide whether for all E ∈ uc(AF), a ∈ E.
Creduc Given AF= (A,R) and a ∈ A,

decide whether there is E ∈ uc(AF) with a ∈ E.

Note that we do not consider the problem Existsuc, which asks whether some unchal-
lenged extension exists, since this problem is trivial due to Proposition 1.

The results of our analysis are as follows.

Theorem 9.

1. Veruc is in ΣP
2 and PNP

∥ -hard.
2. Exists¬ /0

uc is PNP
∥ -complete.

3. Skeptuc is ΠP
2 -complete.

4. Creduc is ΣP
2 -complete.

As can be seen, the exact computational complexity of the verification task is still
an open problem (which is a bit surprising since we have exact characterisations for the
more “complex” problems). However, all results are in line with our previous observation
that unchallenged semantics is somehow “in-between” ideal and preferred semantics, cf.
Theorem 4. While most tasks related to ideal semantics are PNP

∥ -complete [20], skeptical
reasoning with preferred semantics is ΠP

2 -complete [21]. But in difference to preferred
semantics, both skeptical and credulous reasoning is on the second level of the polyno-
mial hierarchy for unchallenged semantics. As before, the proof of Theorem 9 can be
found in the online appendix.2 While the proofs of items 1 and 2 from Theorem 9 follow
quite easily from existing results, in particular from [6], the hardness proofs of items 3
and 4 require quite a different reduction technique as, e. g., the ΠP

2 -hardness proof for
skeptical reasoning with preferred semantics [21].

6. Summary and Conclusion

We investigated the principle of serialisability in-depth, in particular wrt. its relationships
to other principles from the literature [11,12,13]. While serialisability implies conflict-
freeness, admissibility, and modularization, it is independent of similar principles like
directionality and SCC-recursiveness. However, if a serialisable semantics is αβ -closed,
it is also directional. We also analysed unchallenged semantics, a specific instance of
a serialisable semantics, in terms of satisfied principles and computational complexity.
This semantics is αucβuc-closed and thus directional. It also satisfies reinstatement, but
interestingly it is not SCC-recursive, in contrast to all other serialisable semantics. We
have also implemented a general serialisable reasoner as well as reasoners for all existing
serialisable semantics3.

In future work, we intent to further investigate serialisability. That includes defining
and analysing completely new semantics with more sophisticated selection and termina-

2http://mthimm.de/misc/lbmt_uncsem_proofs.pdf
3Link to implementation: https://tinyurl.com/serialisableReasoner

http://mthimm.de/misc/lbmt_uncsem_proofs.pdf
https://tinyurl.com/serialisableReasoner


tion functions. We will also consider applying the concept of serialisability to other types
of semantics such as naive- or weak-admissible-based semantics. Regarding the unchal-
lenged semantics, the question of whether there exists a non-recursive characterisation is
also subject to future work.
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