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Abstract. We revisit the foundations of ranking semantics for abstract argumenta-
tion frameworks by observing that most existing approaches are incompatible with
classical extension-based semantics. In particular, most ranking semantics violate
the principle of admissibility, meaning that admissible arguments are not neces-
sarily better ranked than inadmissible arguments. We propose new postulates for
capturing said compatibility with classical extension-based semantics and present a
new ranking semantics that complies with these postulates. This ranking semantics
is based on the recently proposed notion of serialisability that allows to rank argu-
ments according to the number of conflicts needed to be solved in order to include
that argument in an admissible set.
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1. Introduction

Abstract argumentation frameworks [1] represent argumentative scenarios via directed
graphs, where vertices represent arguments and a directed edge from an argument a to
an argument b denotes an “attack” from a to b. This simple representation formalism is
already powerful enough to analyse and discuss many facets of argumentative reasoning
such as argumentation-based dialogue [2], strategic argumentation [3], and dynamics of
belief [4], see also [5,6]. Abstract argumentation frameworks are interpreted through for-
mal semantics that assess which arguments can be deemed “acceptable”. The classical
approach to formal semantics is by means of extensions [1,7], i. e., sets of arguments
that form a plausible point of view on the outcome of the argumentation modelled by
an abstract argumentation framework. Concrete extension-based semantics specify ad-
ditional constraints that should be satisfied by their extensions, which capture, e. g., as-
pects such as conflict-freeness (no argument in an extension should attack another ar-
gument in the extension) or admissibility (arguments should be defended by the exten-
sion against attacks from outside). Another formal framework for the interpretation of
abstract argumentation frameworks is given by ranking-based [8,9,10,11] or graded se-
mantics [12,13,14,15,16,17]. There, argument strength is assessed by either qualitative
(for ranking-based semantics) or quantitative (for graded semantics) rankings of argu-
ments. For reasons of simplicity, we will use the term ranking semantics to capture both
technical frameworks in the following.

Most ranking semantics such as [12,13,8,15] assess argument strength by weighing
numbers of attackers and defenders and lengths of paths in the argumentation frame-



work, in some form or the other. As it has already been observed by Bonzon and col-
leagues [10], there are some fundamental differences in the way ranking semantics as-
sess the acceptability (or better: strength) of arguments, compared to the way this is done
by extension-based semantics. As a result, they proposed some hybrid approaches that
combine both views by pairing a concrete extension-based semantics with a concrete
ranking semantics. In this paper, we pursue another direction, namely the development
of a family of ranking semantics that is compatible with extension-based semantics in
the sense that they refine the acceptability assessment of extension-based semantics. As
a motivation for this endeavour we start from the general principle of admissibility, a no-
tion that is central to almost all extension-based semantics—with exceptions, of course
[18,19]—and demands that acceptable arguments should be defended by acceptable ar-
guments. This core principle is violated by most of the existing ranking semantics in
the sense that admissible arguments are not necessarily ranked higher than inadmissi-
ble arguments (see Section 3 for details). We consequently propose novel postulates for
ranking semantics that capture the intuition behind our aim of developing ranking se-
mantics that are compatible with classical extension-based semantics. We then present
and analyse a new ranking semantics that complies with this interpretation. This ranking
semantics is based on the notion of serialisability [20], which is a principle satisfied by
all semantics from [1] and allows the step-wise construction of extensions via iterative
selection of non-empty minimal admissible sets—also called initial sets [21]—and con-
sideration of the resulting reducts [19]. We will use the minimal number of steps required
to include an argument in such a construction as an assessment of the acceptability of
an argument. This basically amounts to the number of conflicts between arguments that
have to be resolved in order to accept an argument.

To summarise, the contributions of this paper are as follows.

1. We revisit and re-assess the foundations of ranking semantics by introducing and
analysing postulates aiming at compatibility with extension-based semantics (Sec-
tion 3).

2. We discuss a novel ranking semantics based on serialisability (Section 4).

Section 2 presents the background on abstract argumentation and Section 5 concludes
this paper. Proofs of technical results can be found in an online appendix.1

2. Preliminaries

We present basic background on abstract argumentation and extension-based semantics
in Section 2.1 and ranking semantics in Section 2.2.

2.1. Abstract Argumentation

Let A denote a universal set of arguments. An abstract argumentation framework AF is a
tuple AF= (A,R) where A⊆A is a finite set of arguments and R is a relation R⊆ A×A
[1]. Let AF denote the set of all abstract argumentation frameworks. For two arguments
a,b ∈A the relation aRb means that argument a attacks argument b. For AF= (A,R) and
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AF′ = (A′,R′) we write AF′ ⊑ AF iff A′ ⊆ A and R′ = R∩ (A′×A′). For a set X ⊆ A, we
denote by AF|X = (X ,R∩ (X ×X)) the projection of AF on X . For a set S ⊆ A we define

S+ = {a ∈ A | ∃b ∈ S : bRa} S− = {a ∈ A | ∃b ∈ S : aRb}

If S is a singleton set, we omit brackets for readability, i. e., we write a− (a+) instead of
{a}− ({a}+). For two sets S and S′ we write SRS′ iff S′∩S+ ∕= /0.

Two abstract argumentation frameworks AF = (A,R) and AF′ = (A′,R′) are iso-
morphic, written AF ≡ AF′, if there is a bijective function γ : A→ A′ such that aRb iff
γ(a)R′γ(b) for all a,b ∈ A (γ is then called an isomorphism).

A set S ⊆ A is conflict-free if S∩S+ = /0. S is a naive (na) extension if it is maximal
wrt. set inclusion among the conflict-free sets of AF. A set S defends an argument b∈A if
b− ⊆ S+. A conflict-free set S is called admissible if S defends all a∈ S. Let adm(AF) de-
note the set of admissible sets of AF. Different extension-based semantics can be phrased
by imposing constraints on admissible sets [7]. In particular, an admissible set E

• is a complete (co) extension iff for all a ∈ A, if E defends a then a ∈ E,
• is a grounded (gr) extension iff E is complete and minimal,
• is a stable (st) extension iff E ∪E+ = A,
• is a preferred (pr) extension iff E is maximal.

All statements on minimality/maximality are meant to be with respect to set inclusion.
For σ ∈ {co,gr,st,pr} let σ(AF) denote the set of σ -extensions of AF. The acceptance
of an argument a wrt. a given semantics σ distinguishes three levels:

• a is skeptically accepted wrt. σ iff a ∈ E for all E ∈ σ(AF),
• a is credulously accepted wrt. σ iff there is E ∈ σ(AF) with a ∈ E,
• a is rejected wrt. σ iff a /∈ E for all E ∈ σ(AF).

2.2. Ranking Semantics

Directly comparing individual arguments with each other yields another class of argu-
mentation semantics. Ranking semantics evaluate the acceptability (or better: strength)
of single arguments instead of sets of arguments, their output is a (partial) preorder on
the arguments of a given AF.

Definition 1. A ranking semantics is a mapping τ : AF→ 2A×A which assigns to each
AF= (A,R) ∈ AF a partial preorder ≽τ(AF) on A, i. e., ≽τ(AF) is transitive and reflexive.

If the AF we refer to is clear from the context, the shorthand ≽τ is used instead. The
stronger an argument, the greater its rank among the other arguments, i. e., a is at least as
strong as b is represented by a ≽τ b. We use the standard shorthands a ≻τ b to say that a
is strictly stronger than b (a ≽τ b ∧ b ⋡τ a) and a ≃τ b when both arguments are equally
strong (a ≽τ b ∧ b ≽τ a). An example of a ranking semantics is the categoriser [22,15].

Definition 2. Let AF = (A,R) be an AF. The categoriser semantics cat assigns to AF
the ranking ≽cat defined by a ≽cat(AF) b iff cat(AF)(a)≥ cat(AF)(b) where

cat(AF)(a) =

!
"

#

1 if a− = /0
1

1+ ∑
b∈a−

cat(AF)(b) otherwise
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Figure 1. Example with Categoriser values

The above definition yields a system of equations, which can be uniquely solved
[15] to obtain the ranks of the individual arguments.

Example 1. The arguments in the AF from Figure 1 are ranked a ≃cat b ≻cat c ≃cat d
according to the resp. values of the categoriser function (depicted next to the arguments).
Since a and b only attack each other, their rank is the same i.e. higher than c and d which
are both additionally attacked by c (resulting in the same values for this pair, too).

Following the tradition of the principle-based analysis for extension-based seman-
tics, desirable properties for ranking semantics have been formulated to compare these
different approaches. The principles considered in this paper are a selection from [9,17].
Before stating them, we need further notation. A path P of length lP = n between two
arguments a,b is a sequence of arguments P(a,b) = (a,a1, ...,an−1,b) with aiRai+1 ∀i
(with a = a0,b = an). cc(AF) is the set of all connected components of AF, i. e. all max-
imal subgraphs AF′ = (A′,R′) such that for every two arguments a,b ∈ A′ an undirected
path Pu(a,b) = (a = a0,a1, ...,an = b)⊆ AF′ with aiRai+1 or ai+1Rai ∀i exists.

Definition 3. A ranking semantics τ satisfies the respective principle iff for any AF =
(A,R) ∈ AF and any a,b ∈ A:

Abstraction If for any AF′ = (A′,R′) with AF≡AF′ and for every isomorphism γ : A→
A′: a ≽τ(AF) b iff γ(a)≽τ(AF′) γ(b). (The ranking on arguments should be defined
only on the basis of the attacks between them.)

Independence If for every AF′ = (A′,R′) ∈ cc(AF) and for all a,b ∈ A′: a ≽τ(AF′) b iff
a ≽τ(AF) b. (The ranking between two arguments a and b should be independent of
any argument that is neither connected to a nor to b.)

Void precedence If a− = /0 and b− ∕= /0 then a ≻τ(AF) b. (A non-attacked argument
should be ranked strictly higher than any attacked argument.)

Self-contradiction If not aRa but bRb then a ≻τ(AF) b. (A self-attacking argument
should be ranked strictly lower than any non self-attacking argument.)

Cardinality precedence If |a−| < |b−| then a ≻τ(AF) b. (The greater the number of di-
rect attackers for an argument, the weaker the level of acceptability of this argu-
ment.)

Quality precedence If there is c∈ b− such that for all d ∈ a−, c≽τ(AF) d but not d ≽τ(AF)
c, then a ≻τ(AF) b. (The greater the acceptability of one direct attacker for an
argument, the weaker the level of acceptability of this argument.)

Counter-Transitivity If some injective f : a− → b− exists such that f (x)≽τ x ∀x ∈ a−

then a≽τ(AF) b. (If the direct attackers of b are at least as numerous and acceptable
as those of a, then a is at least as acceptable as b.)
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Figure 2. Two simple choice problems

Strict Counter-Transitivity If some injective f : a− → b− exists such that f (x) ≽τ
x ∀x ∈ a− and either |a−| < |b−| or there exists some x ∈ a− with f (x) ≻τ (x)
then a ≻τ b. (If the direct attackers of b are strictly more numerous or acceptable
than those of a, then a is strictly more acceptable than b.)

Defense precedence If |a−|= |b−| and (a−)− ∕= /0 but (b−)− = /0 then a ≻τ(AF) b. (For
two arguments with the same number of direct attackers, a defended argument is
ranked higher than a non-defended argument.)

Distributed Defense precedence If |a−| = |b−| and |(a−)−| = |(b−)−|, and if the de-
fense of a is simple—every direct defender of a directly attacks exactly one direct
attacker of a—and distributed—every direct attacker of a is attacked by at most
one argument—and the defense of b is simple but not distributed, then a ≻τ(AF) b.
(The best defense is when each defender attacks a distinct attacker (distributed
defense).)

Total If a ≽τ(AF) b or b ≽τ(AF) a. (All pairs of arguments can be compared.)
Non-attacked Equivalence If a− = /0 and b− = /0 then a ≽τ(AF) b and b ≽τ(AF) a. (All

the non-attacked arguments have the same rank.)
Attack vs Full Defense If AF is acyclic and every path P(u,a) in AF from an

unattacked u to a has lp = 0 mod 2 and there exists u ∈ b− unattacked then a ≻τ b.
(An argument without any unattacked indirect attackers should be ranked higher
than an argument only attacked by one unattacked argument.)

3. Rankings, Admissibility, and Reinstatement

Let us start with the motivation for our work in form of a practical example.

Example 2. The argumentation framework depicted in Figure 2 illustrates two everyday
choice problems. While the average employee might have to choose between a new car or
an overseas holiday, those who have hit rock bottom often find themselves in unsolvable
dilemmas. Suppose a homeless person with no money decided to change her life and
look for work. Any company would need her address to handle taxes. So she first has to
find herself a place to live. But she cannot pay the deposit for renting a flat. So she needs
a credit. However any credit institute would require her to have a job in the first place.

When we apply the categoriser semantics to the argumentation framework from the
example, all five arguments receive the same value of approximately 0.618. But rank-
ing the impossible choices of the second case just as high as the two options of the
first, which can actually materialize, seems inaccurate. The same issue is present in Ex-



ample 1, where the self-attacker c and the credulously acceptable d end up having the
same value. In practice we would have to execute caution when interpreting this ranking.
For example, one known strategy of conspiracy theories is to convince with the sheer
amount of arguments in favor of their hypothesis. Under existing ranking semantics, a
classically acceptable argument with lots of attackers could end up with a lower rank
than, e. g., one of its attackers which is in turn attacked by an unattacked argument like a
fact (objective measurement etc.). This potentially leads to a nonsensical argument being
ranked higher than a scientifically supported position. We therefore suggest the accept-
ability of an argument should be represented in its rank somehow. Strictly speaking, if
an argument has no chance of being classically accepted, we should expect it to rank
lower than any argument which is actually acceptable. Since existing ranking semantics
do not conform to this, a need to investigate new options for ranking semantics emerges.
That is not to say acceptance has been completely ignored in ranking semantics so far. A
few existing principles already incorporate some aspects of classic defense, e. g., defense
precedence demands that a ranking-semantics prefers an argument with defenders over
one with only attackers provided they have the same number of attackers. The principle
we introduce here is a more general approach to integrate extension-based acceptability
into ranking semantics. In this paper we limit our investigations to its implications under
classic admissible semantics, though.

Definition 4. Let σ be an extension-based semantics. A ranking semantics τ satisfies
σ -compatibility iff for any AF = (A,R) and any a,b ∈ A, if a is credulously accepted
under σ and b is rejected then a ≻τ(AF) b.

σ -compatibility ensures no non-acceptable argument can rank as high or higher
than any of the acceptable arguments under σ . A special case of σ -compatibility is na-
compatibility which results in self-attackers ranking strictly lower than the rest. This is
actually equivalent to the existing principle of self-contradiction.

Proposition 1. A ranking semantics τ satisfies self-contradiction iff it satisfies na-
compatibility.

Let us turn our attention to adm-compatibility. The classic admissible, complete
and preferred semantics credulously accept the same arguments, so adm-compatibility
covers all three. adm-compatibility is incompatible with a number of known principles
for ranking semantics, notably with strict counter-transitivity. This also generalizes some
observations from [11].

Proposition 2. Let τ be a ranking semantics satisfying adm-compatibility. Then τ
does not satisfy any of the following four principles: strict counter-transitivity, counter-
transitivity, cardinality precedence, and quality precedence.

We briefly demonstrate the contradiction with strict counter-transitivity using Ex-
ample 2. The credulously accepted arguments under classic admissibility are car first
and holiday first. Suppose some ranking semantics τ satisfies adm-compatibility, then
both car first ≻τ(AF) credit first and holiday first ≻τ(AF) flat first hold. But under strict
counter-transitivity car first≻τ(AF) credit first implies flat first≻τ(AF) holiday first, so τ
can at most satisfy one of the two principles. Many existing ranking semantics such as the
categoriser semantics from above, but also the burden- and discussion-based semantics



a b2

b1

c

d

e f

g h

Figure 3. Weak and strong σ -support

[8] and the social abstract argumentation semantics [14] satisfy strict counter-transitivity
[9]. Therefore none of them satisfies adm-compatibility.

For our next new properties we investigate the innate relational structure of ex-
tensions or, more precisely, the relations between acceptable arguments under a given
extension-based semantics. A longstanding defense-related principle for extension-based
semantics is reinstatement, the inclusion of defended arguments in an extension [23].
Now, an argument depending on other arguments to become defended should not be
ranked higher than its defenders and strictly lower, if its defenders are acceptable inde-
pendently from it. A way to express this is as follows.

Definition 5. Let AF= (A,R), a,b ∈ A, and σ some extension-based semantics.

• a weakly σ -supports b if b is credulously accepted wrt. σ and for all E ∈ σ(AF),
if b ∈ E then a ∈ E.

• a strongly σ -supports b if b is credulously accepted wrt. σ and for all E ∈ σ(AF),
if b ∈ E then there is E ′ ∈ σ(AF) with E ′ ⊆ E, a ∈ E ′, and b /∈ E ′.

Informally, an argument a weakly σ -supports an argument b, if a is a part of any σ -
extension containing b which intuitively amounts to a being an unavoidable side-effect
of accepting b. Moreover, a strongly σ -supports b, if the presence of b in an extension
(which necessarily also includes a) implies the existence of a smaller extension with a
but without b. In that case a becomes a prerequisite for accepting b while b can be said
to be irrelevant for accepting a. It is clear that strong σ -support implies weak σ -support.

Example 3. Let σ = adm, then in the AF depicted in Figure 3 the arguments a and c
weakly σ -support each other, since they take care of each others attackers in the 4-cycle.
Neither of them can be accepted on its own, so a does not strongly σ -support c nor vice
versa. Both of them strongly σ -support f because c is the only attacker of e and cannot
be accepted without a. Note that although a and c strongly σ -support f , this does not
imply they are sufficient for accepting f , g strongly σ -supports f as well. Take also note
of d weakly σ -supporting b1 but not the other way around. Since no admissible subset
of b1,d containing only d exists, d does not strongly σ -support b1, though.

Using these two notions of σ -support, we can define the according principles for
ranking semantics as follows.

Definition 6. Let τ be a ranking semantics.

• τ satisfies weak σ -support iff for every AF = (A,R), a,b ∈ A, if a weakly σ -
supports b then a ≽τ(AF) b.



• τ satisfies strong σ -support iff for every AF = (A,R), a,b ∈ A, if a strongly σ -
supports b then a ≻τ(AF) b.

The two principles are independent from each other, unlike the argument relations
they are based upon.

Proposition 3. Strong σ -support does not imply weak σ -support and weak σ -support
does not imply strong σ -support.

Reflecting on these two principles for ranking semantics leads again to some inter-
esting observations. Weak σ -support firmly links the rank of an argument with the situa-
tions (extensions) in which it is accepted. If two arguments are always accepted together
they are of equal rank.

Remark 1. Let τ be a ranking semantics satisfying weak σ -support, AF= (A,R) an AF
and a,b ∈ A. If a weakly σ -supports b and b weakly σ -supports a then a ≃τ(AF) b.

In case of a single-status semantics (or semantics providing a single extension for
some framework) the above observation results in all accepted arguments sharing the
same rank.

Corollary 1. Let τ be a ranking semantics satisfying weak σ -support, AF = (A,R) an
AF. If |σ(AF)|= 1 then for all credulously accepted a,b ∈ A, a ≃τ(AF) b.

For the same reason weak σ -support enforces the same rank on all skeptically ac-
cepted arguments wrt. any semantics.

Corollary 2. Let τ be a ranking semantics satisfying weak σ -support, AF = (A,R) an
AF. For all skeptically accepted a,b ∈ A, a ≃τ(AF) b.

While weak σ -support only blocks arguments from ranking better than those they
depend on, strong σ -support discriminates between arguments in order to express one-
sided dependencies as asymmetric rank differences. It has a kind of chain effect, an
argument is not only ranked lower than the arguments it depends on but also lower than
the arguments those arguments depend on in turn. When applied to classic admissibility,
this property leads to a preference of short defense routes. Let us now investigate the
relationships of weak/strong adm-support.

Proposition 4. Let τ be a ranking semantics satisfying strong adm-support. Then τ
does not satisfy any of the following four principles: strict counter-transitivity, counter-
transitivity, cardinality precedence and quality precedence.

Proposition 5. Let τ be a ranking semantics satisfying weak adm-support. Then τ does
not satisfy strict counter-transitivity or cardinality precedence.

As expected, the two forms of adm-support do not go well with attacker-focused
properties like strict counter-transitivity for which we already demonstrated their con-
tradiction with adm-compatibility. Since, e. g., the categoriser semantics, burden- and
discussion-based semantics, and social abstract argumentation semantics all satisfy strict
counter-transitivity [9], none of them satisfies weak/strong adm-support.



4. A Ranking Semantics Based on Serialisability

In this section we will introduce a ranking semantics capable of expressing both the ac-
ceptability differences and the dependencies between arguments under the classic admis-
sible semantics formalized in the previous section as adm-compatibility and weak/strong
adm-support. In order to do this, we take the admissible extensions apart and analyze
them for the relevant dependencies. The smallest units within an admissible set, which
still maintain admissibility are the so-called initial sets introduced in [21].

Definition 7. For AF = (A,R), a set S ⊆ A with S ∕= /0 is called an initial set if S is
admissible and there is no admissible S′ ⊊ S with S′ ∕= /0. Let IS(AF) denote the set of
initial sets of AF.

Example 4. The initial sets of the AF depicted in Figure 3 are {g},{a,c},{b1,d} and
{b2,d}.

Note that not all credulously accepted arguments wrt. admissibility are members of
initial sets, e. g., f in Figure 3 is part of the admissible set {a,c, f ,g} but not contained
in any initial set. Arguments like f are exactly those which depend on others for their de-
fense while not being necessary for the defense of their defenders. In [20], a construction
method for admissible sets is presented, which implements a form of step-by-step addi-
tion for including such arguments. This approach relies on the reduct [19] of an argument
set in an argumentation framework.

Definition 8. For AF= (A,R) and S ⊆ A, the reduct of S wrt. AF is AFS = AF|A\(S∪S+).

Using the reduct, the central idea of [20] can be formalised with the following notion
of a serialisation sequence.

Definition 9. A serialisation sequence for AF = (A,R) is a sequence S = (S1, ...,Sn)
with S1 ∈ IS(AF) and for each 2 ≤ i ≤ n we have Si ∈ IS(AFS1∪...∪Si−1).

It has been shown that admissible sets can be characterized by serialisation [20]:

Proposition 6. Let AF= (A,R) be an AF and E ⊆ A. E ∈ adm(AF) if and only if there
is a serialisation sequence (S1, ...,Sn) with E = S1 ∪ . . .∪Sn.

Let us demonstrate this for some of the admissible sets of our previous example.

Example 5. Consider the admissible sets S1 = {b1,d}, S2 = {b1,b2,d,g}, and S3 =
{a,c,g, f} and corresponding serialisation sequences:

S1 = ({b1,d}) (for S1)

S2 = ({b1,d},{b2},{g}) (for S2)

S3 = ({a,c},{g},{ f}) (for S3)

Serialisation sequences are not necessarily unique, but certain arguments can only
be selected after they appear in some initial set. For example, { f} only becomes an initial
set after g (and {a,c}) are already part of the sequence. This dependency between sets
in a serialisation sequence is similar to the strong adm-support introduced in Section 3.



Now that we have a tool for representing the structure of admissible sets, we can use it
for defining a new argument ranking that is based on the length of shortest serialisation
sequences.

Definition 10. For AF= (A,R) and a ∈ A define the serialisation index serAF(a) via

serAF(a) = min{n | (S1, . . . ,Sn) is a serialisation sequence and a ∈ Sn}

with min /0 = ∞.

Intuitively, the value of serAF(a) represents the minimal number of conflicts, which
have to be solved before an argument a can be accepted. In this context, serAF(a) = 1
means a can solve all relevant conflicts by “itself” or—to be correct—by being a member
of an initial set itself. The serialisation-index serAF(a) = ∞ for non-acceptable arguments
can be read as no serialisation sequence of any length will be sufficient for this argument.
From the choice of a trivial value for all non-acceptable arguments, it already becomes
clear that our ranking will only represent differences between acceptable arguments. To
foster our understanding of these values let us compute the serialisation indices for our
running example.

Example 6. For the arguments of the AF from Figure 3 we get serAF(x) = 1 for
x ∈ {a,c,b1,b2,d,g} a member of an initial set, serAF(e) = 2, since the two smallest
admissible sets containing e are {b1,d,e} and {b2,d,e} which both can be serialised in
k = 2 steps, serAF( f ) = 3 because two initial sets, {g} and {a,c} are needed for the de-
fense of f and have to be included first before { f} becomes an initial set in AF{a,c}∪{g}

and serAF(h) = ∞ for the non-acceptable argument h.

The ranking semantics naturally arising from the serialisation index is as follows.

Definition 11. For AF = (A,R) and a,b ∈ A, we say that a is at least as preferred as b
(wrt. serialisability), written a ≽ser b iff serAF(a)≤ serAF(b).

The lower the serialisation index, the higher the rank of an argument with the mem-
bers of initial sets all being ranked equally at the top. Applying this ranking semantics
to our running example yields a ≃ser b1 ≃ser b2 ≃ser c ≃ser d ≃ser g ≻ser e ≻ser f ≻ser h.
We will now prove that this ranking semantics indeed has the desired properties defined
in Section 3 and begin by demonstrating that ≽ser produces the intended results for our
motivating example.

Example 7. The options for the decision problems represented in Figure 2 are assigned
the serialisation indices serAF(holiday first) = serAF(car first) = 1 and serAF(flat first) =
serAF(work first) = serAF(credit first) = ∞ respectively, resulting in a higher ranking for
the viable options of the average employee.

Indeed, the serialisation ranking satisfies adm-compatbility per definition, since the
serialisation index for non-acceptable arguments of ∞ cannot be reached by acceptable
arguments. The conformity to weak and strong adm-support is not that trivial, but can
also be shown.

Theorem 1. ≽ser satisfies adm-compatibility and both strong and weak adm-support.



The similarities of our new ranking semantics to classical extension-based seman-
tics do not stop with the above result. Another important property of admissibility se-
mantics is directionality, i. e., the admissible sets of an unattacked subset of an AF are
also admissible in the AF as a whole [23]. The intuition behind this principle is that an
argument a which has no directed path to an argument b should not have any impact on
the acceptability of b. This idea makes sense for ranking semantics as well and an ac-
cording principle for graded semantics was formulated in [24]. Here we generalize this
directionality principle for ranking semantics.

Definition 12. A ranking-based semantics τ satisfies directionality iff for any AF =
(A,R) and any a,b,x,y ∈ A such that (a,b) /∈ R and no directed path from b to neither x
nor y exists, then x ≻τ(AF) y if and only if x ≻τ((A,R∪{(a,b)})) y.

Proposition 7. ≽ser satisfies directionality.

Regarding the principles from Definition 3, ≽ser satisfies the general ones such as
abstraction and independence. Most of the other principles are not satisfied, in particular
because of the incompatibilities we already showed in Propositions 2, 4, and 5. Further
principles are not satisfied because they demand rank differences under certain structural
conditions, like distributed defense precedence. Since all non-acceptable arguments have
the same rank under ≽ser, those principles are violated if their conditions can apply to
pairs of non-acceptable arguments. For example, defense precedence is only uphold in
case the stronger argument is acceptable. The following proposition summarizes our
findings.

Proposition 8. ≽ser satisfies abstraction, independence, totality, non-attacked equiva-
lence, and attack vs full defense. All other principles from Def. 3 are not satisfied.

5. Summary and Conclusion

We revisited the foundation of ranking semantics for abstract argumentation and pro-
posed a new interpretation of ranking semantics as refinements of classical extension-
based semantics. For that aim, we presented the new postulates σ -compatibility as well
as weak and strong σ -support and showed that these are generally incompatible with
existing postulates for ranking semantics. We proposed a new ranking semantics based
on the concept of serialisibility and showed that this new semantics behaves well wrt.
these postulates.

Our contributions should be regarded as an additional aspect of interpreting ranking
semantics and not as disregarding previous approaches. The central aspect of existing
ranking semantics is that they aim at assessing strength of arguments, which is—as we
have seen in this paper — not necessarily the same as acceptability. Here, we aimed
at comparing acceptability (wrt. admissibility) of arguments. An interesting avenue for
future work is also to investigate more general foundations for acceptability such as weak
admissibility [19,23] or to exploit different notions of defense [25] for our formalisation
of weak and strong σ -support.
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