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Abstract. We introduce an argumentation-based approach for conduct-
ing probabilistic causal reasoning. For that, we consider Pearl’s causal
models where causal relations are modelled via structural equations and
a probability distribution over background atoms. The probability that
some causal statement holds is then computed by constructing a prob-
abilistic argumentation framework and determining its extensions. This
framework can then be used to generate argumentative explanations for
the (non-)acceptance of the causal statement. Furthermore, we present
an argumentation-based version of the twin network method for dealing
with counterfactuals. Finally, we show that our approach yields the same
results for causal and counterfactual queries as Pearl’s model.
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1 Introduction

A recent work [17] presents a machine learning model capable of predicting
the mortality within the next 24 hours of the in-patients of a hospital with an
accuracy of 95%. This impressive example of the recent advances in AI research is
also an excellent example of the limits of machine learning approaches. While it
is of course helpful to know which patients need immediate treatment to prevent
them from dying, the model leaves us completely in the dark regarding the
kind of treatment they need. Imagine this kind of algorithm to be used during a
major incident where triage is necessary. Using this model to decide who receives
treatment could do more harm than it helps, because patients that could be saved
with simple and fast methods would be excluded from treatment. This is one
of many potential applications for AI where an explanation of the output of
the model is needed. Due to this issue, Explainable Artificial Intelligence (XAI)
has become an important research area, which is a very productive but also
challenging area of research [13].

A major contribution towards a formal theory of causality is the work on
causal graphs by Pearl [14]. He models causal relationships with a double-layered
formalism. On the one hand, there are the structural equations which are used
to compute the value of an observable variable from a given set of values for a



2 L. Bengel et al.

fixed number of unobservable background variables. On the other hand, there
is a directed acyclic graph, which represents the causal dependencies between
observable and background variables. A causal explanation is then formalized as
a set of logical statements on causal dependencies. His approach has been widely
recognized and, in particular, has been adopted in recent work on XAI [11,16].

For verifying a given causal explanation one needs a reasoning formalism
which can process causal statements. We propose to use abstract argumentation
frameworks as introduced by Dung in [6]. An abstract argumentation frame-
work consists of a set of arguments—in our case causal statements—and a bi-
nary attack relation between them. An argumentation semantics is applied to
this structure to determine sets of collectively acceptable arguments—so called
extensions—which we use to represent consistent sets of causal statements. As a
non-monotonic formalism, it can handle inconsistent input, which makes it well-
suited for causal reasoning, where additional information can falsify a previously
inferred causal dependency. In our approach, causal statements are interpreted
as arguments in an abstract argumentation framework and the attack relation
represents contradicting causal inferences. This allows us to question the rea-
soning process during a query. A representation of causal inferences with an
argumentation framework offers an intuitive and well-researched access to all
maximal consistent causal theories fitting some given facts.

We present two methods for integrating uncertainty into our causal argu-
mentation frameworks. Our first approach makes use of default reasoning to
accommodate inconsistent assumptions to reason from. This allows us to rea-
son while staying ambiguous with regard to some background variables. We
presented a preliminary discussion of this method in a recent workshop paper
[1]. In the second approach we refine our causal argumentation frameworks by
bringing probabilities into play. In order to represent Pearl’s causal theory to the
full extent with argumentation, we introduce probabilistic causal argumentation
frameworks, which are based on the probabilistic argumentation frameworks by
Hunter [10]. To summarise, our contributions are:

– We demonstrate how causal argumentation frameworks can be used to con-
duct defeasible reasoning on causal statements (Section 3.1), following up on
our work [1].

– We introduce an enhanced version, probabilistic causal argumentation frame-
work and show that it captures Pearl’s probabiblistic causal reasoning ade-
quately (Section 3.2).

– We employ probabilistic argumentation frameworks for reasoning with in-
terventional and counterfactual statements and show they produce the same
results as Pearl’s three-step-method and twin model approach (Section 4).

Moreover, Section 2 introduces the necessary formal context, Section 5 discusses
related works, and Section 7 concludes the paper. Proofs of technical results are
omitted due to space restrictions and can be found in an online appendix.1

1 http://mthimm.de/misc/bbrt_ratio24.pdf

http://mthimm.de/misc/bbrt_ratio24.pdf
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2 Preliminaries

We set L to be the language of propositional logic over a finite set of atoms
At with the usual connectives {∧,∨,¬,→,↔} and ⊢ is the standard entailment
operator. A valuation val : At → {true, false} is an assignment of truth values
to propositional variables. Our causal reasoning framework builds on a well-
known form of default reasoning based on maximal consistent subsets [12]. We
define a knowledge base ∆ as a pair (K,A) where we assume that K ⊆ L is a set
of facts and A ⊆ L is a set of assumptions. Facts are true, thus we assume that
K is consistent while assumptions are statements that we are willing to assume
true unless we have evidence to the contrary.

Definition 1. Let ∆ = (K,A) be a knowledge base and ϕ, ψ ∈ L. A set Σ ⊆ A
is a maximal K-consistent subset of A whenever Σ∪K is consistent and Σ′∪K
is inconsistent for all Σ′ ⊆ A such that Σ ⊂ Σ′. We say that:

– ∆ entails ψ (written ∆ |∼ ψ) whenever Σ ∪ K ⊢ ψ for every maximal K-
consistent subset of A.

– ϕ ∆-entails ψ (written ϕ |∼∆ ψ) whenever (K ∪ {ϕ}, A) entails ψ.

The argumentative part of our causal reasoning method relies on the notion
of the argumentation framework (AF for short) as introduced by Dung [6].

Definition 2. An argumentation framework is a pair AF = (Arg,R) where Arg
is a set of arguments and where R ⊆ A×A is called the attack relation.

We say that an argument a ∈ Arg attacks another argument b ∈ Arg iff we
have that (a, b) ∈ R. We may also use infix notation for attacks and write aRb for
(a, b) ∈ R. Given an AF, a semantics determines sets of jointly acceptable argu-
ments called extensions. In this work, we only make use of the stable semantics,
for other semantics see [6].

Definition 3. Let AF = (Arg,R) be an AF. A set E ⊆ Arg is:

– conflict-free iff for all a, b ∈ E we have (a, b) /∈ R.
– stable iff E is conflict-free and for every a ∈ Arg \ E there is a b ∈ E such

that (b, a) ∈ R.

With stb(AF) we denote the set of stable extensions of an AF. For the argu-
mentative part of our approach to reasoning with a probabilistic causal model,
we use the notion of probabilistic argumentation framework (PAF for short) [9].
In this framework, probabilities are assigned to sets of arguments S ⊆ Arg, called
framework states, which implies that the existence of arguments is not indepen-
dent of each other. Whenever an argument a is part of some framework state S,
i. e., we have that a ∈ S, we say that a is active in S.

Definition 4. A probabilistic argumentation framework is a pair PAF = (AF, PAF)
where AF = (Arg,R) is an argumentation framework and PAF : 2Arg → [0, 1] is a
function with

∑
S∈2Arg PAF(S) = 1.
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Example 1. Consider the PAF in Figure 1. We evaluate the framework by con-
sidering the different framework states and their respective extensions. For in-
stance, the framework state S1 = {a, b} has a probability of 0.4 and only one
stable extension {b}. On the other hand, the framework state S3 = {a, b, c} with
probability 0.2 has two stable extensions {a, c} and {b}.

F : a b c

PAF(S) a b c stb(S)
0.4 ✓ ✓ {{b}}
0.4 ✓ ✓ {{b}, {c}}
0.2 ✓ ✓ ✓ {{a, c}, {b}}

Fig. 1. The PAF (F, PAF) with three frameworks states as depicted in the table.

3 Causal Reasoning

In the following, we will introduce an argumentation-based approach to perform
reasoning with a causal model. The main advantage of this approach is the ability
to not only determine whether some causal statement holds, but also provide an
argumentative explanation on why it holds or not.

In Section 3.1, we introduce our approach for qualitative causal reasoning
from [1], based on a modified version of Pearl’s causal model [14], where we only
consider Boolean-valued variables. In this scenario, we model the uncertainty
via defeasibility which allows us to qualitatively answer queries directly in an
argumentation framework. On the other hand, quantitative causal reasoning
means computing the exact probability that the conclusion holds under the
given observation. For this type of reasoning, we consider probabilistic causal
models [14] and define a novel approach for answering queries with the help of
a probabilistic argumentation framework (Section 3.2).

3.1 Defeasible Causal Reasoning

To model defeasible causal reasoning, we essentially use the causal model of
Pearl [14] except that we restrict our attention to Boolean-valued variables. As
described in Definition 5 below, a causal model2 K is a set of formulas which we
call Boolean structural equations (terminology adopted from [2]). We distinguish
between two types of atoms in these equations: the background atoms U(K) and
explainable atoms V (K). Variables that are determined outside of the model are
represented as background atoms u ∈ U(K) and are considered unobservable
and uncontrollable. An explainable atom v ∈ V (K) is functionally dependent on

2 Here, we deviate from Pearl’s notation for causal models which are defined as the
triple (U, V,K), explicitly listing background and explainable atoms [14]. However,
with (U(K), V (K),K) we recover Pearls notation of a causal model.
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other atoms of the model. We specify this dependency in the form of Boolean
structural equations of the form v ↔ ϕ, where ϕ is a logical formula over the
set of atoms that v is dependent on. Intuitively, a structural equation for some
explainable atom v represents the causal mechanism by which v is determined
by the other atoms in the model. We use bi-implication because the represented
causal mechanism determines not only when v is true, but also when v is false.

Definition 5. A Boolean structural equation for v is a formula of the form
v ↔ ϕ where ϕ is a propositional formula that does not contain v. A causal model
K is a set of Boolean structural equations, exactly one equation κv for each atom
v ∈ V (K). With U(K) we denote the set of background atoms appearing in K
and with V (K) we denote the set of explainable atoms appearing in K.

Furthermore, a causal model induces a causal graph G whose vertices are the
explainable atoms of the model [14]. Background atoms of the model are repre-
sented as a different type of vertex. Given a Boolean structural equation v ↔ ϕ,
we call an atom appearing in ϕ a parent of v. The causal graph G contains an
edge from atom v ∈ U ∪ V to atom v′ ∈ V whenever v is a parent of v′. We say
a causal model K is Semi-Markovian if the causal graph induced is acyclic [14].

Example 2. Suppose we are building a causal model to investigate the cause of
a surfer’s death by drowning at the beach. The explainable variables in this
case could be Vsurf (Ksurf ) = {drowning, cramp, submersion, broken-board}, i. e.,
the fact itself, two physical conditions leading to it, as well as a side-effect.
The background conditions potentially leading to these variables being true are
Usurf (Ksurf ) = {jellyfish, strong-current, giant-wave}. We equip these with the
structural equations Ksurf

κd : drowning ↔ cramp ∨ submersion
κc : cramp ↔ strong-current ∨ jellyfish
κs : submersion ↔ giant-wave ∧ strong-current
κbb : broken-board ↔ giant-wave

Figure 2 depicts the causal graph for this model. The background atoms of the
model are drawn using dotted lines.

giant-wave strong-current jellyfish

broken-board submersion cramp

drowning

Fig. 2. Causal graph for Example 2.
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We now define a causal knowledge base as a knowledge base, where the set of
facts K is a causal model and the set of assumptions A is limited to assumptions
about the background atoms in K.

Definition 6. A causal knowledge base is a knowledge base ∆ = (K,A) where
K is a causal model and where A is a set of background assumptions, at least
one for each background atom. A background assumption for an atom u is a
literal l ∈ {u,¬u}. We denote by l the assumption of the opposite, i. e., u = ¬u
and ¬u = u.

Since the background variables are supposed to be independent, we restrict
the background assumptions to be literals. This allows us to express three pos-
sible stances towards a background atom u: we can assume just u, just ¬u, or
both. Assuming only u (¬u) amounts to assuming that u is true (false), unless
we have evidence to the contrary. On the other hand, if we assume both u and
¬u, this represents a state of uncertainty where we are willing to consider u to
be true as well as false, depending on the evidence.

Example 3. To continue Example 2 we can now construct a causal KB ∆ =
(Ksurf , A) by combining the causal modelKsurf with the set of assumptions A =
{jellyfish, strong-current,¬strong-current, giant-wave}. Intuitively, this expresses
that we assume a giant wave has happened and that there are dangerous jellyfish
present, but are uncertain whether there is a strong current in the area.

Given a causal knowledge base ∆ = (K,A), then ∆-entailment can be under-
stood as the relation between observations and predictions, i. e., an observation
ϕ ∆-entails some prediction ψ, denoted by ϕ |∼∆ ψ, if the underlying causal
model together with the observation ϕ entails the conclusion ψ. These predic-
tions include causes as well as effects of the observation in accordance with the
causal model K and the background assumptions A.

We now describe how we can transform a causal knowledge base into an
argumentation framework and how to compute the ∆-entailment in that frame-
work. For that, we adopt the approach by Cayrol et al. [4] to define an argument
induced by a knowledge base ∆ = (K,A). An induced argument is a pair (Φ,ψ)
where Φ ⊆ A is a minimal set of assumptions (called the premises of the argu-
ment) that, together with K, consistently entails some conclusion ψ. The attacks
between the arguments are given by the undercut relation. We say that an ar-
gument undercuts another if the conclusion of the former is the negation of a
premise of the latter.

Definition 7. Let ∆ = (K,A) be a causal knowledge base. We define the AF
induced by ∆, denoted with F (∆) = (Arg∆,R∆) as follows

– The set of ∆-induced arguments Arg∆ is defined as all arguments of the
form (Φ,ψ) such that ψ ∈ {u,¬u | U(K) ∪ V (K)} and
• Φ ⊆ A,
• Φ ∪K ⊬ ⊥,
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• Φ ∪K ⊢ ψ, and if Ψ ⊂ Φ then Ψ ∪K ⊬ ψ.
– (Φ,ψ)R∆(Φ

′, ψ′), iff for some ϕ′ ∈ Φ′ we have ϕ′ = ψ.

As shown by Cayrol et al. [4], there is a one-to-one correspondence between
the maximal K-consistent subsets of a knowledge base and the stable extensions
of an AF induced according to Definition 7. Given a causal knowledge base
∆ = (K,A), this allows us to answer the question of whether ϕ ∆-entails ψ by
constructing the AF induced by (K ∪ {ϕ}, A) and determining whether every
stable extension contains at least one argument which concludes ψ.

Proposition 1. Let ∆ = (K,A) be a causal knowledge base. Then ϕ |∼∆ ψ
if and only if every stable extension E of F (K ∪ {ϕ}, A) contains an argument
with conclusion ψ.

Example 4. We continue with the causal knowledge base ∆ = (Ksurf , A) from
Example 3. Consider the question whether observing that the surfer has drowned
entails that the drowning has been caused by submersion, i. e., consider the stat-
ment whether drowning |∼∆ submersion. Submersion and a cramp are the two
possible causes of drowning. It depends on the background atoms which one was
the actual cause of drowning. We determine the question and the explanation via
the induced AF F = F ((K ∪{drowning}, A)), shown in Figure 3 (we only depict
arguments relevant to the conclusion of submersion). The two stable extensions
of this AF are {a1, a3} and {a2, a4, a5}. The argument a4 concludes submersion,
but is only included in one of the stable extensions. Thus, drowning does not
entail submersion, given the background assumptions A.

Moreover, note that the statement drowning |∼∆ ¬submersion does also not
hold.

To conclude, we can say if we observe drowning, then submersion is a possible
cause, but not necessary. The explanation for either case is then given by the
corresponding stable extension containing the conclusion.

a1 : ({¬strong-current, κs},¬submersion)

a2 : ({strong-current}, strong-current)

a3 : ({¬strong-current},¬strong-current)

a4 : ({giant-wave, strong-current, κs}, submersion)

a5 : ({strong-current, κc}, cramp)

Fig. 3. The AF F (K ∪ {drowning}, A) from Example 4.
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3.2 Probabilistic Causal Reasoning

A probabilistic causal model [14] is defined as a causal model together with a
probability assignment to every background atom. For some causal statement
ϕ |∼∆ ψ, this allows us to determine exactly the probability that ψ holds given ϕ.
As implied by Definition 8, we assume that the probabilities of the background
atoms are independent, thus the causal model is considered Markovian.

Definition 8. A probabilistic causal model is a pair C = (K,P) where K is a
causal model and P : U → [0, 1] is a probability assignment.

Let C = (K,P) be a probabilistic causal model. A causal state C ∈ 2U(K) is
essentially a specific configuration of the background atoms. So, if u ∈ C, then
u is considered true in the state C, and otherwise u is false. We then define the
probability distribution PC over causal states (which correspond directly to the
valuations of U(K)) as follows

PC(C) =
∏
u∈C

P(u)
∏

u∈U\C

(1− P(u)). (1)

Note that the above defined function is indeed well-defined.

Proposition 2. For any causal model C = (K,P), the probability distribution
PC sums up to 1.

Example 5. Consider again the causal model K introduced in Example 2. The
background atoms of K are giant-wave (g), strong-current (s) and jellyfish (j).
We define the probability assignment P to the background atoms as follows:
P(giant-wave) = 0.8, P(strong-current) = 0.5 and P(jellyfish) = 0.2. Then, for
the probabilistic causal model C = (K,P) we compute the probability distribu-
tion of the causal states via Equation (1) as follows: PC(gsj) = PC(gsj) = 0.32,
PC(gsj) = PC(gsj) = PC(gsj) = PC(gsj) = 0.08 and PC(gsj) = PC(gsj) = 0.02.

For a causal statement ϕ |∼C ψ the probability that ψ is predicted to be true,
given the observation ϕ is given as the conditional probability PC(ψ | ϕ) [14].

Example 6. Consider the causal statement drowning |∼C submersion. We com-
pute the probability PC(submersion|drowning) (i. e., probability of submersion
given that we observe drowning) using the standard causal model approach.
Continuing Example 5, we construct the probability distribution over all valua-
tions of the background atoms, and including all the explainable atoms, whose
values are determined by the background atoms, see Table 1. Computing queries
based on observations simply amounts to computing a conditional probabil-
ity based on the probability distribution given above. Using the definition of
conditional probability we get PC(submersion|drowning) = PC(submersion ∧
drowning)/PC(drowning) = 0.4/0.6 = 2/3. Thus, the probability of submersion
given that we observe drowning is 2/3.
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gsj broken-board submersion cramp drowning Prob
000 0 0 0 0 0.08
001 0 0 1 1 0.02
010 0 0 1 1 0.08
011 0 0 1 1 0.02
100 1 0 0 0 0.32
101 1 0 1 1 0.08
110 1 1 1 1 0.32
111 1 1 1 1 0.08

Table 1. Partial probability distribution PC from Example 6.

In order to determine the probability of a statement ϕ |∼C ψ, we induce a
probabilistic argumentation framework PAF from the probabilistic causal model
C. For that we denote with C(ϕ) the set of causal states in which the observation
ϕ is true, defined as

C(ϕ) = {C ∈ 2U(K) | K ∪ C ∪ {¬u | u /∈ C} ⊢ ϕ}.

Similar to before, an induced argument is a pair (Φ,ψ) consisting of a set of
premises Φ and a conclusion ψ. The set of premises Φ ⊆ {u,¬u | u ∈ U(K)}
must be consistent with some causal state C ∈ C(ϕ), i. e., the union of C and Φ
is not contradictory, and is has to be the minimal K-consistent set to entail the
conclusion ψ. The attacks of PAF are again given by the undercut relation.

We define ArgC(C) as the set of arguments consistent with a causal state
C ∈ 2U , i. e., ArgC(C) = {(Φ,ψ) ∈ ArgC | Φ ∪ C ∪ {¬u | u /∈ C} ⊬ ⊥}, where
ArgC is the set of induced arguments (see Def. 9). With that, the probability of
a framework state S of the PAF is defined as the sum over the probabilities of
all causal states C which are consistent with all arguments that are active in S.

Definition 9. Let C = (K,P) be a probabilistic causal model. We define the
PAF induced by C, given the observation ϕ, denoted with PAFC = (F (C), PAF)
with F (C) = (ArgC ,RC) as follows:

– The set of C-induced arguments ArgC consists of all arguments (Φ,ψ), with
Φ ⊆ {u,¬u | u ∈ U(K)}, such that
• Φ ∪ C ⊬ ⊥ for some C ∈ C(ϕ),
• Φ ∪K ⊬ ⊥,
• Φ ∪K ⊢ ψ, and if Ψ ⊂ Φ then Ψ ∪K ⊬ ψ.

– The set of C-induced attacks RC is defined via the undercut relation, i. e.,
an argument (Φ,ψ) undercuts an argument (Φ′, ψ′) iff for some ϕ′ ∈ Φ′ we
have ϕ′ ≡ ψ.

The probability distribution PAF : 2Arg → [0, 1] over framework states is given as

PAF(S) =
∑

C∈C(ϕ,S)

PC(C).

where C(ϕ, S) = {C ∈ C(ϕ) | S = ArgC(C)}.
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Note that the above defined probability distribution PAF is indeed well-
defined.

Proposition 3. For any causal model C = (K,P) and observation ϕ, the prob-
ability distribution PAF sums up to 1.

Example 7. We continue Example 5. To determine the probability of drowning |∼C
submersion, we construct the induced probabilistic argumentation framework
PAFC = (F (C), PAF ), shown in Figure 4 (only arguments relevant to the query
are depicted). The framework states with non-zero probability are described in
Table 2. Each framework state corresponds to one or more causal state and
consists of a subset of arguments for which we can determine whether all sta-
ble extensions conclude submersion. In this case, only the first framework state
satisfies this.

a7 : ({¬giant-wave, κs} |∼ ¬submersion)

a1 : ({giant-wave} |∼ giant-wave)

a3 : ({¬giant-wave} |∼ ¬giant-wave)

a5 : ({giant-wave, strong-current, κs} |∼ submersion)

a4 : ({¬strong-current} |∼ ¬strong-current)

a2 : ({strong-current} |∼ strong-current)

a6 : ({¬strong-current, κs} |∼ ¬submersion)

Fig. 4. The AF F (K ∪ {drowning}) from Example 7.

C(ϕ, S) PAF(S) a1 a2 a3 a4 a5 a6 a7 S ⊢ ϕ

gsj, gsj 0.4 ✓ ✓ ✓ yes
gsj 0.08 ✓ ✓ ✓ no

gsj,gsj 0.1 ✓ ✓ ✓ no
gsj 0.02 ✓ ✓ ✓ ✓ no

Table 2. The framework states of the induced PAFC = (F (K∪{drowning}), PAF) which
correspond to some C ∈ C(ϕ).
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Let C = (K,P) be a probabilistic causal model and consider some causal
statement ϕ |∼C ψ.

We can compute the probability that ψ holds given that ϕ is true via the
induced probabilistic argumentation framework PAFC = (F (K ∪ {ϕ}), PAF) as
follows. With S[ψ=true] we denote the set of framework states which entail the
conclusion ψ, i. e., for which every stable extension of PAFC contains at least
one argument with the conclusion ψ. In Pearl’s standard causal model ap-
proach, the probability P (ϕ |∼C ψ) is computed as the conditional probabil-
ity PC(ψ|ϕ) = PC(ψ ∧ ϕ)/PC(ϕ). Analogously, in our framework the probability
PC(ψ ∧ ϕ) amounts to the sum of probabilities over all framework states S that
entail ψ, while the probability PC(ϕ) is the sum of probabilities over all causal
states in which ϕ is true. Thus, the probability P (ϕ |∼C ψ) is then computed as

P (ϕ |∼C ψ) =

∑
S∈S[ψ=true]

PAF(S)∑
C∈C(ϕ)

PC(C)
. (2)

Our main theorem below states that probabilistic argumentative reasoning amounts
to the same results as Pearl’s classical approach, with the added value of repre-
senting causal inference through argumentative reasoning.
Theorem 1. Let C = (K,P) be a probabilistic causal model and ϕ |∼C ψ is a
causal statement. Then P (ϕ |∼C ψ) = PC(ψ|ϕ).

In addition to the probability that the statement is true, the induced PAF
also allows us to provide different types of explanations. We can, for example,
provide an explanation for the most likely scenario under which the query holds.
The same can be done for the situation under which the contrary is most likely
to be true. Furthermore, we might also provide an explanation for the scenario
in which both outcomes are possible.

Example 8. We continue Example 7. The probability of drowning |∼C submersion
can then be computed via (2). Considering the framework states in Table 2,
only one framework state with probability 0.4, corresponding to the causal
states gsj and gsj, entails the conclusion submersion. The sum of probabil-
ities over the causal states that are consistent with drowning C(drowning) is
0.6. Thus the probability of submersion given that we observe drowning is
P (drowning |∼C submersion) = 0.4/0.6 = 0.66. In terms of explainability, we
have different angles to give an explanation based on the argumentation frame-
work. A positive explanation would be that a giant wave and a strong current
cause submersion. On the other hand, we can also say that the most likely rea-
son against submersion is that there is no strong current which means no risk of
submersion, as implied by the second framework state.

4 Counterfactual Reasoning

We consider first the interventional statements of the form

if v would be x then ψ would be true. (3)
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The left side of an interventional statement consists of an action where the
atom v is intervened on, i. e., we set v to the truth value x. It is important to
note that this is different from simply observing v or ¬v. Performing the action
of setting v to x means overriding the causal mechanism that usually determines
v. For some causal model K, we denote with K[v=x] the causal model where the
structural equation of κv is replaced with v ↔ x.

Definition 10. Let K be a causal model, let v ∈ V be an explainable atom, and
let x ∈ {⊤,⊥}. We denote by K[v=x] the causal model defined by

K[v=x] = {(v′ ↔ ϕ) ∈ K | v′ ̸= v} ∪ {(v ↔ x)}.

Note that we perform the intervention on the causal model K itself, which
means we can apply this intervention both to a causal knowledge base ∆ =
(K,A) as well as a probabilistic causal model C = (K,P), depending on whether
we want to reason qualitatively or quantitatively. We will then also write ∆[v=x]

and C[v=x] as a shortcut for ∆ = (K[v=X], A) or C = (K[v=x],P) respectively.
A counterfactual statement is of the form

given ϕ, if v had been x then ψ would be true. (4)

Intuitively this means, if we observe ϕ and if v would have been x, then ψ
would have been true. So we reason about a hypothetical or alternative scenario.

In [14], Pearl introduced two approaches to deal with counterfactual state-
ments: a three-step procedure and the twin network method. We base our ap-
proach to counterfactual reasoning on the twin network approach. The general
idea is to construct a twin model which consists of the actual causal model,
representing the actual world, and a second model that represents the counter-
factual world. Both of these worlds share the same background atoms, i. e., we
have U(K) = U(K∗), while for all explainable atoms v ∈ V (K) we introduce a
"counterfactual copy" v∗ ∈ V (K∗) in the counterfactual world.

Definition 11. The twin model for a causal model K is the causal model K∗

defined by
K∗ = K ∪ {(v∗ ↔ ϕ∗) | (v ↔ ϕ) ∈ K}.

Like for the intervention, we may also write ∆∗ and C∗ as a shortcut for
∆ = (K∗, A) or C = (K∗,P) respectively.

First, consider the three-step procedure for evaluating counterfactual state-
ments in a probabilistic causal model as described by Pearl [14].

Definition 12. Given a probabilistic causal model C = (K,P), the truth of a
counterfactual statement

given ϕ, if v had been x then ψ would be true

is determined by:

– Step 1 (abduction) Update PC by the evidence ϕ to obtain PC(u | ϕ).
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– Step 2 (action) Modify K by the action v = x to obtain K[v=x].
– Step 3 (prediction) Use the modified model (K[v=x], PC(u | ϕ)) to compute

the probability of ψ, i. e., PC(ψ | ϕ).

The problem of this procedure lies in the abduction step, where we have to
compute a probability distribution over configurations of the background atoms.
This can be avoided by using the twin network method.

Consider a probabilistic causal model C = (K,P) and a counterfactual state-
ment (4). Our argumentation-based approach consists of the following steps:

1. Compute the twin model C∗ ∪ {ϕ} which includes the observation ϕ,
2. Perform the intervention v∗=x on the counterfactual copy of v to obtain

C∗
[v∗=x] ∪ {ϕ},

3. Construct the induced probabilistic AF PAFC = (F (C∗
[v∗=x] ∪ {ϕ}), PAF),

4. Determine the probability that ψ∗ is true.

Note that the second and fourth step, representing action and prediction step
of the standard three-step procedure, take place in the counterfactual world.
For the third step we induce the probabilistic argumentation framework from
C as described in Definition 9. The probability that ψ would have been true
given ϕ, under the assumption that v = x, is calculated as the sum over the
probabilities of all framework states S ∈ S[ψ∗=true] for which every stable ex-
tension of the induced probabilistic argumentation framework of the twin model
PAFC = (F ((C ∪ {ϕ})), PAF) contains an argument with conclusion ψ∗.

Definition 13. Let C = (K,P) be a probabilistic causal model. For the coun-
terfactual statement ϕ |∼C∗

[v∗=x]
ψ∗, the probability that ψ would have been true,

given ϕ and assuming v=x, is computed as

P (ϕ |∼C∗
[v∗=x]

ψ∗) =
∑

S∈S[ψ∗=true]

PAF(S).

The probabilistic argumentation-based twin network approach is equivalent
to Pearl’s standard three-step procedure.

Theorem 2. Let C = (K,P) be a probabilistic causal model. Given a counter-
factual statement ϕ |∼C∗

[v∗=x]
ψ∗, we have that P (ϕ |∼C∗

[v∗=x]
ψ∗) = PC(ψ | ϕ).

5 Discussion

In this work, we extended our argumentation-based approach for defeasible
causal and counterfactual reasoning from [1] to the probabilistic scenario. The
intention of our approach is to bridge the gap from causal reasoning to formal
argumentation. Our approach provides an argumentative representation of the
causal mechanisms of the model in the context of a specific causal or counter-
factual statement. In the literature, approaches for generating explanations for
the (non-)acceptance of arguments in an argumentation framework have already
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been proposed [5]. The work [8] introduces a new kind of semantics called re-
lated admissibility which computes sets of arguments that are related to a specific
argument. These sets form the basis of different kinds of explanations for the ar-
gument. Based on the same idea, they also introduce dispute forests that can be
used to explain the non-acceptance of an argument. Furthermore, [3] introduce
a general framework for explanations in formal and structured argumentation.
They define different kinds of explanations, for example, an explanation for or
against an argument as well as evidence that supports or is incompatible with
an argument. This approach is especially interesting since they also consider the
structured argumentation formalism ASPIC+ [15], which is very similar to how
we induce argumentation frameworks from causal models in our approach.

There also exist other argumentation-based approaches in the literature that
highlight the interest in explaining causal reasoning. For instance, the work [18] is
concerned with Bayesian networks and introduces the notion of a support graph
that makes d-separation explicit, which eliminates circular causal structures and
helps to explain interdependent causes.

In a recent work [16], Rago et al. introduce an approach for generating bipolar
argumentation frameworks from causal models in the sense of Pearl. They create
so called explanation moulds, that reinterpret desirable properties of semantics
of argumentation frameworks. In their approach, they interpret causal atoms
directly as arguments and causes contribute positively or negatively towards
arguments via attack and support relations, respectively.

6 Limitations

In the following we discuss the limitations of the approach introduced in this
work. First, our approach is built on classical propositional logic. That means,
while being relatively easy to understand, the expressiveness is limited when
compared to other higher-order logics.

Our approach is only focused on the actual reasoning with a causal model.
That means we consider the underlying causal model to be given and crafted by
experts and we assume that the given relations between the variables are indeed
causal and not merely correlations.

Furthermore, the computational complexity of this approach to causal rea-
soning is quite high. Our approach relies on deciding whether some of the argu-
ments are skeptically accepted in the induced argumentation framework. This
problem is naturally difficult and in the case of the stable semantics that we use
it has been shown to be NP-complete [7]. In addition to that, when consider-
ing probabilistic causal reasoning we have to potentially consider exponentially
many framework states (wrt. the set of background variables) which increases
the complexity of the approach significantly.

Finally, it should also be noted that our approach is to be understood as
a groundwork for making causal reasoning explainable. Meaning the induced
(probabilistic) argumentation framework can be the basis for crafting human
understandable explanations. How exactly these explanations should look like,
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is left for future work and some interesting approaches for that matter have
already been highlighted in Section 5. Especially in the case of probabilistic
causal reasoning this is even more difficult since the probabilistic aspect has to
be somehow incorporated into the explanations.

7 Conclusion

We extended our approach for argumentation-based causal reasoning from [1]
to deal with probabilistic causal models. For that, we model probabilistic causal
reasoning in a probabilistic argumentation framework and compute the probabil-
ity that the statement is true by reasoning in the framework states. Furthermore,
we showed that our approach can also be used for reasoning with counterfactuals,
by adapting Pearl’s twin network method. Besides computing the probability,
the generated probabilistic argumentation framework can be used as the basis
for creating explanations of the underlying causal mechanisms of the model in
the context of the statement, since it provides both arguments supporting the
prediction as well as arguments that refute the prediction.

Future work includes determining structural properties of the generated (prob-
abilistic) AFs and looking into concrete application scenarios to investigate the
capabilities of our approach.
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