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Abstract

We consider abstract argumentation frameworks and, in par-
ticular, the problem of skeptical reasoning wrt. preferred se-
mantics, i. e., deciding whether a given argument is contained
in every preferred extension of the argumentation framework.
We introduce a novel SAT-based approach, building on re-
cent results from the literature, that searches through com-
plete extensions to efficiently decide this problem. It also em-
ploys effective simplification procedures to shorten computa-
tion times. As our experimental evaluation shows, our algo-
rithm significantly outperforms state-of-the-art approaches.

1 Introduction
Formal argumentation is a research field within the area of
knowledge representation and reasoning that offers a great
variety of formalisms (Brewka, Polberg, and Woltran 2014),
and the (abstract) argumentation framework (AF) intro-
duced by Dung (1995) is a core area of research. In an AF,
arguments are modelled as abstract entities and we consider
directed attacks between them as the only relation. Reason-
ing in AFs is via acceptability semantics, which are func-
tions that return sets of arguments, called extensions, con-
sidered jointly acceptable. A fundamental property of ac-
ceptable sets is admissibility, which requires that a set of
arguments is conflict-free and also defends all of its mem-
bers against attacks from the other arguments. For instance,
the preferred extensions are then simply defined as the ⊆-
maximal admissible sets (Dung 1995). One can then de-
fine different reasoning problems based on these seman-
tics (Dvorák and Dunne 2017). One of the most prominent
ones is the problem of skeptical reasoning wrt. some seman-
tics, i. e., deciding whether a given argument is contained in
every extension wrt. the given semantics. In general, most
of these reasoning problems are non-tractable (Dvorák and
Dunne 2017). Especially because of that, algorithms to ef-
ficiently compute these problems are of great importance in
order to apply argumentation in practice.

In this work, we introduce a SAT-based algorithm for
solving the problem of skeptical reasoning wrt. preferred
semantics. Our algorithm is built upon recent results on
the characterisation of preferred semantics as a vacuous-
reduct semantics (Thimm 2023). Essentially, our algorithm
searches through complete extensions and looks for one that
disproves the skeptical acceptance of the query argument by

being incompatible with it. In contrast to existing work,
our algorithm does not maximise each complete extension
and instead searches for new complete extensions containing
unvisited arguments. Our algorithm also employs effective
preprocessing measures to simplify computation. Thus, our
algorithm is able to solve the problem of skeptical preferred
reasoning without having to actually compute the preferred
extensions. Moreover, we show that our algorithm is sound
and complete and our experiments show that it significantly
outperforms current state-of-the-art solvers. To summarise,
the contribution of this work is twofold:
• We introduce a novel algorithm for skeptical reasoning

wrt. preferred semantics and show that it is sound and
complete (Section 3),

• We implement our algorithm and evaluate it against state-
of-the-art argumentation solvers (Section 4).
In Section 2 we introduce the necessary background on

abstract argumentation and Section 5 concludes the pa-
per. Omitted proofs, the underlying SAT-encoding and
an extended evaluation can be found in the extended ver-
sion (Bengel, Sander, and Thimm 2025)1.

2 Preliminaries
We consider abstract argumentation (Dung 1995). The cen-
tral notion is the abstract argumentation framework (AF),
which is a tuple F = (A,R) where A is a finite set of ar-
guments and R is the attack relation R ⊆ A × A. For
any two arguments a, b ∈ A, we say that a attacks b iff
(a, b) ∈ R, sometimes also written as aRb. For a set of
arguments S ⊆ A we denote with F|S = (S,R∩ (S × S))
the restriction of F to S. For a set S ⊆ A we define
the set of arguments attacked by S (attacking S) in F re-
spectively as S+

F = {a ∈ A | ∃b ∈ S : bRa} and
S−
F = {a ∈ A | ∃b ∈ S : aRb}. Moreover, we say

that S is conflict-free iff we have S ∩S+
F = ∅. The set S de-

fends an argument a ∈ A iff for all b ∈ {a}−F there is some
c ∈ S such that cRb. Furthermore, S is called admissible
iff it is conflict-free and S defends all a ∈ S, i. e., we have
that S ∩ S+

F = ∅ and S−
F ⊆ S+

F .
Consequently, an admissible set E ⊆ A is called a com-

plete (CO) extension iff E includes every argument a ∈ A
1https://doi.org/10.5281/zenodo.16022973

https://doi.org/10.5281/zenodo.16022973


that it defends, and it is called a preferred (PR) exten-
sion iff there exists no admissible E′ with E ⊊ E′. The
grounded (GR) extension is then the ⊆-minimal complete
extension. For a given AF F = (A,R) and a seman-
tics σ ∈ {CO,PR}, we denote with σ(F) the set of σ-
extensions of F .

The focus of this work is the reasoning problem of skep-
tical acceptance wrt. some semantics σ (Dvorák and Dunne
2017), defined as:

DS-σ Given an argument a ∈ A, decide whether a
is contained in all σ-extensions of F .

The computational complexity of this problem has been
well studied (Dvorák and Dunne 2017) and the prevalent
strategy to solve it is a reduction to satisfiability problems
(SAT) and using a dedicated SAT-solver for solving those,
cf. (Cerutti et al. 2017). In particular, the problem of skep-
tical reasoning wrt. preferred semantics (DS-PR) is ΣP

2 -
complete. Most importantly, that means it cannot be solved
by a single SAT-call and it is one of the more difficult deci-
sion problems in abstract argumentation.

3 The Vacuous Reduct-based Approach to
Skeptical Preferred Reasoning

In this section, we present our main contribution, a novel
algorithm for skeptical reasoning wrt. preferred seman-
tics. Our approach is built on the concept of counterex-
ample guided abstraction refinement (CEGAR) (Clarke et
al. 2003). This concept is widely used by argumentation
solvers (Niskanen and Järvisalo 2020; Thimm, Cerutti, and
Vallati 2021) and has been pioneered by the CEGARTIX
system (Dvorák et al. 2012) for the domain of abstract argu-
mentation. Given an AFF and a query argument a, the gen-
eral idea is to find complete extensions of sub-frameworks of
F attacking the query argument a. The general procedure of
our algorithm consists of the following steps:

(1) Simplify the AF by removing irrelevant arguments and
“resolving” the grounded extension,

(2) Iterate through complete extensions of the remaining AF
in search of a counterexample for the skeptical acceptance
of the query,

(3) Combine partial results of the previous steps to a proper
counterexample.
During each step, we actively check whether the query ar-

gument is attacked by the current (partial) counterexample,
which can allow us to terminate sooner.

Simplifying the Argumentation Framework The first
step in our approach is simplifying the problem instance,
without affecting the result, to accelerate the subsequent
problem solving process. This kind of preprocessing is an
important part of many problem solving paradigms, for in-
stance SAT-solving (Biere, Järvisalo, and Kiesl 2021).

The first simplification step is based on the Directionality
of argumentation semantics and has already been outlined
by Liao and Huang (2013). For some AF F = (A,R), we
define the set of unattacked sets ofF as UA(F) = {S ⊆ A |

∄a ∈ (A \ S) : a ∈ S−
F }. Based on that, the Directionality

principle has been defined (Baroni and Giacomin 2007).
Principle 1. Let σ be a semantics. We say that σ satisfies
Directionality if and only if for all AFs F and every set U ∈
UA(F) it holds that σ(F|U ) = {E ∩ U | E ∈ σ(F)}.

Essentially, the above principle states that the computa-
tion of an extension for a semantics σ should only depend
on its attackers (and in turn on their attackers and so on). As
has been shown by Baroni and Giacomin (2007), both the
complete and preferred semantics satisfy Directionality.
Proposition 1. Complete and preferred semantics satisfy
Directionality.

Now we can determine an unattacked set U ∈ UA(F)
that contains the query argument a and restrict the AF to U
to simplify the computation without affecting the acceptance
status of the query argument.

A simple but effective way to achieve this is to consider
the arguments relevant for a. For two arguments a, b ∈ A
we say that b is relevant for a iff there exists a directed path
from b to a. We then define the set of arguments relevant
for a in F as follows.

RelF (a) = {a} ∪ {b ∈ A | b is relevant for a} (1)

For convenience, we explicitly define that a is always rel-
evant for itself. Notably, this notion of relevance has already
been used in (Liao and Huang 2013), but also recently been
defined in the context of acceptance explanations by Borg
and Bex (2024). It is then easy to see that RelF (a) is an
unattacked set of F for any argument a.
Corollary 1. For all AFs F = (A,R) and arguments a ∈
A it holds that RelF (a) ∈ UA(F).

This allows us to restrict the input AF to just the argu-
ments relevant for the query a before performing further
calculations, which not only allow us to ignore arguments
that are only attacked by the query, but also enables us to
disregard unrelated components of the AF entirely.

The second simplification we perform is explicitly com-
puting the grounded extension of the AF, which can be done
in polynomial time (Dvorák and Dunne 2017). For that
we utilise the simple iterative procedure for computing the
grounded extension that has been outlined by (Dung 1995).

Iterating Complete Extensions As shown by Thimm,
Cerutti, and Vallati (2021), it is not necessary to explicitly
consider preferred extensions to solve the DS-PR problem.
Instead, we will primarily consider complete extensions.

The main notion underlying our algorithm is the S-reduct
introduced by Baumann, Brewka, and Ulbricht (2020).
Definition 1. Let F = (A,R) be an AF and S ⊆ A. We
define the S-reduct of F as the AF F|A\(S∪S+

F ).

Essentially, the reduct allows us to remove the part of the
AF F that is already “resolved” by S. Based on this con-
cept, the notion of vacuous reduct semantics has been intro-
duced (Thimm 2023).
Definition 2. Let σ be a semantics and F is an AF. We say
that F is σ-vacuous iff σ(F) ⊆ {∅}.
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Definition 3. Let σ, τ be argumentation semantics and F =
(A,R) is an AF. A set S ⊆ A is a στ -extension iff S is a
σ-extension and it holds that FS is τ -vacuous.

A set S is a στ extension of F iff it is σ-extension of F
and in the reduct FS there exists no non-empty τ -extension.
Denote with στ (F) the set of all στ -extensions of F .

Of particular interest to us, is the fact that the preferred se-
mantics can be characterised as a vacuous reduct semantics,
as shown by (Thimm 2023; Blümel and Thimm 2024).
Proposition 2. For any AF F = (A,R). It holds that

PR(F) = COCO(F).
We will utilise this in our algorithm to verify whether

some complete extension E is preferred by checking
whether the reduct FE is CO-vacuous.

Constructing the Counterexample During the algorithm
we construct different complete extensions in different re-
strictions and reducts of the original AF. The concept
of Modularisation of argumentation semantics (Baumann,
Brewka, and Ulbricht 2022) allows us to combine them to
construct a proper counterexample for skeptical acceptance.
Principle 2. Let σ be a semantics. We say that σ satisfies
Modularisation if and only if for all AFs F it holds that, if
E1 ∈ σ(F) and E2 ∈ σ(FE1) then E1 ∪ E2 ∈ σ(F).

Modularisation is satisfied by complete and preferred se-
mantics (Baumann, Brewka, and Ulbricht 2022).
Proposition 3. Complete and preferred semantics satisfy
Modularisation.

Algorithm for Skeptical Preferred Reasoning Our algo-
rithm for skeptical preferred reasoning, like most state-of-
the-art approaches, utilises a reduction to SAT. The atom
ina represents that argument a is contained in the corre-
sponding extension. We denote with ΨCO

F the SAT-encoding
of the complete semantics, cf. (Besnard and Doutre 2004;
Cerutti, Giacomin, and Vallati 2019), for some AF F , such
that each model of ΨCO

F corresponds to a complete extension
of F . We write WITNESS(Ψ) for a call to the SAT-solver
that returns a witness E of Ψ, if Ψ is satisfiable, otherwise
it returns FALSE. SAT(Ψ) simply returns TRUE iff Ψ is sat-
isfiable and FALSE otherwise. GROUNDED(F) denotes the
iterative algorithm computing the grounded extension.

Our algorithm for deciding skeptical acceptance wrt. pre-
ferred semantics is shown in Algorithm 1. For the input
F = (A,R) and some argument a ∈ A, the algorithm re-
turns either YES iff a is skeptically accepted wrt. preferred
semantics in F , otherwise it returns a complete extension E
of F that serves as a witness for the non-acceptance of a. In
detail, the procedure of our algorithm works as follows:

(1) Restrict F to the arguments relevant for a and compute
grounded extension EGR of F|RelF (a) (lines 1-2). If a ∈
EGR terminate with YES, if a ∈ E+

GR,F terminate with
EGR. Otherwise move to (F|RelF (a))

EGR (lines 3-7).

(2) If (F|RelF (a))
EGR possesses no non-empty complete ex-

tensions at all, EGR is a counterexample (lines 9-10).

Algorithm 1 Algorithm for DS-PR.

Input: F = (A,R), a ∈ A
Output: E ⊆ A, otherwise YES
1: F ← F|RelF (a)

2: EGR ← GROUNDED(F)
3: if a ∈ EGR then
4: return YES
5: if a ∈ E+

GR,F then
6: return EGR

7: F ← FEGR

8: Ψ← ΨCO
F ∧

∨
a∈A ina

9: if SAT(Ψ) = FALSE then
10: return EGR

11: while TRUE do
12: E ← WITNESS(Ψ ∧ ¬ina)
13: if E = FALSE then
14: return YES
15: if a ∈ E+

F then
16: return EGR ∪ E

17: E′ ← WITNESS(ΨCO
FE ∧

∨
a∈AE ina)

18: if E′ = FALSE then
19: return EGR ∪ E

20: if a ∈ E′+
F then

21: return EGR ∪ E ∪ E′

22: if a ∈ E′ then
23: Ψ← Ψ ∧

∨
a∈A\(E∪E′) ina

24: else
25: Ψ← Ψ ∧

∨
a∈A\E ina

(3) Compute a non-empty complete extension E of F that
does not contain a (line 12).

(4) If no further complete extension E is found, terminate
with YES (lines 13-14).

(5) If E attacks a, then EGR ∪ E is a counterexample for
skeptical acceptance of a (lines 15-16).

(6) Otherwise, check whether there exists a non-empty com-
plete extension E′ in the reduct FE (lines 17-25).

(a) If not, EGR ∪ E is a preferred extension of F and a
counterexample for skeptical acceptance (lines 18-19).

(b) If there is a complete extension E′ and E′ attacks a,
then EGR ∪ E ∪ E′ is a counterexample (lines 20-21).

(c) Otherwise, add a complement clause and continue with
(2) (lines 22-25).

The algorithm is sound and complete. So, for some input
(F ,a), it returns YES if and only if the query argument a is
skeptically accepted wrt. preferred semantics in F .
Theorem 1. Algorithm 1 is sound and complete for the
problem DS-PR.

4 Empirical Evaluation
To evaluate the performance of our algorithm for skeptical
preferred reasoning, we conducted an evaluation and com-
pared its runtime to that of current state-of-the-art solvers.
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Solver #TO RT PAR2 #VBS

VBS 18 3,281.75 141.28 –
reducto 23 5,198.47 183.58 182
µ-TOKSIA (GLUCOSE) 30 6,795.78 239.50 44
CRUSTABRI 33 11,295.75 275.06 17
µ-TOKSIA (CMSAT) 39 12,202.34 321.59 21
FUDGE 59 10,885.23 463.48 45
PORTSAT 171 11,620.18 1,282.74 2

Table 1: Results for the ICCMA’23 dataset (329 instances). #TO
gives the number of time-outs; RT gives the total runtime on all
correctly solved instances; PAR2 gives the average runtime where
time-outs are counted double, i. e., 2,400 seconds; #VBS gives the
number of instances contributed to the virtual best solver (VBS).

Experimental Setup We implemented Algorithm 1 in
C++ as part of an argumentation solver which we called
reducto. For all calls of the form SAT(·), WITNESS(·)
reducto uses the SAT-solver CADICAL 2.1.3 (Biere et
al. 2024). The computation of F|RelF (a) and the function
GROUNDED(F) are implemented directly in C++ via sim-
ple iterative procedures. The implementation is open source
and available on GitHub2.

For the evaluation of our algorithm, we consider the
benchmark datasets of the International Competition on
Computational Models of Argumentation3 (ICCMA). We
consider the decision problem DS-PR and make use of the
appropriate dataset from ICCMA’23 (Järvisalo, Lehtonen,
and Niskanen 2025), which consists of 329 instances.

We consider the runtime per instance and compare it to
that of current state-of-the-art argumentation solvers. Beside
our own solver reducto (v2.13), we consider all competi-
tors from the latest ICCMA’23 for the evaluation:
µ-TOKSIA (Niskanen and Järvisalo 2020): written in C++,

iterative SAT-based CEGAR approach. Available are
two versions, one with GLUCOSE (Audemard and Simon
2018) and one with CRYPTOMINISAT (Soos, Nohl, and
Castelluccia 2009) as the SAT-solver.

FUDGE (Thimm, Cerutti, and Vallati 2021): written
in C++, iterative SAT-based approach with CADI-
CAL (Biere et al. 2024) as the SAT-solver that solves the
problem by computing admissible sets attacking admissi-
ble sets that contain the query argument.

CRUSTABRI (Lagniez, Lonca, and Mailly 2024): writ-
ten in Rust, iterative SAT-based approach with CADI-
CAL (Biere et al. 2024) as the SAT-solver.

PORTSAT (Declercq et al. 2023): written in Rust, enu-
merates preferred extensions with the help of a portfolio
of different SAT-solvers.
The experimental evaluation has been conducted with the

probo2 benchmarking suite for argumentation solvers (Klein
and Thimm 2022). All experiments where executed on a
machine running Ubuntu 20.04 with an Intel Xeon E5 3.4

2https://github.com/aig-hagen/reducto
3https://argumentationcompetition.org
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Figure 1: Number of solved instances given the per-instance run-
time by each solver for skeptical reasoning wrt. preferred semantics
on the ICCMA’23 dataset.

GHz CPU and 192 GB of RAM. We used a per-instance
time-out of 1200 seconds.

Results The results of our experiments are summarised in
Table 1 and Figure 1. In general, reducto solves the most
instances out of all the considered solvers and has the low-
est total runtime. Moreover, reducto also has the best
PAR2 score and contributes the most instances to the VBS,
i. e., it has the fastest runtime of any solver on the most in-
stances. The simplification steps outlined in Section 3 allow
us to reduce the size |A| of an instance by 58.2% on aver-
age. More specifically, restricting the AF to the arguments
relevant for the query removes on average 38.2% of the ar-
guments, and “resolving” the grounded extension removes
another 31.7% of the remaining arguments. Figure 1 shows
the number of solved instances of each solver given the per-
instance runtime for the ICCMA’23 dataset and we can see
that reducto performs best out of all competitors.

5 Conclusion
In this work, we considered the problem of skeptical reason-
ing wrt. preferred semantics, i. e., deciding whether every
preferred extension of an AF contains a query argument. We
introduced a novel algorithm that first simplifies the prob-
lem instance and subsequently searches through non-empty
complete extensions of the simplified AF. Instead of max-
imising these extensions, our approach checks whether they
directly attack the query argument and continues searching
for extensions that contain unvisited arguments. We imple-
mented this approach in the solver reducto. As our ex-
perimental results show, the combination of these simplifi-
cations and the search procedure allows reducto to out-
perform current state-of-the-art solvers.

Regarding future work, the simplification steps offer an
interesting point for further research. First of all, there
are other possibilities for more sophisticated preprocess-
ing (Dvorák et al. 2019) that could be of use. Moreover, pre-
processing is not used at all by many of the existing solvers
and thus it would be interesting to study its effectiveness in
the context of the other applicable algorithms.
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