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Abstract

We consider problems of credulous and skeptical reasoning in abstract
argumentation under a variety of semantics and present algorithms for
heuristically solving these, i. e., we present algorithms that do not nec-
essarily always give the correct answer but are more performant than
correct algorithms. Our algorithms are based on using grounded seman-
tics as a proxy for deciding acceptability wrt. other semantics and on
bounded search for defenders. We perform a comprehensive experimental
evaluation that shows competitive performance of our approaches.

1 Introduction

Abstract argumentation frameworks (AAFs) [14] are approaches for modelling
argumentative scenarios that represent arguments as nodes in a directed graph,
where a directed edge represents an attack from one argument to another. Rea-
soning in AAFs consists of identifying sets of arguments (extensions) that form a
plausible outcome of the argumentation. Several different semantical approaches
for formalising plausibility in this context have been proposed, see e. g. [14, 2].
Central to most of these approaches are the concepts of conflict-freeness and
admissibility, which model the requirements that a plausible outcome should
be free of internal conflicts and defend itself against threats from the outside,
respectively. Many different semantics have been proposed over the years based
on these notions, but also based on different concepts such as rankings [1, 32],
weights [16, 5], or probabilities [26, 21].

In this work, we are concerned with algorithmic aspects of AAFs. Most inter-
esting reasoning problems, such as deciding whether there exists an admissible
set containing a given argument, are computationally hard [17] and therefore
requiring sophisticated algorithms to be solved effectively. In scenarios, where
runtime performance is of a larger concern than correctness, heuristic algorithms
can be used.1 Interest into heuristic algorithms for abstract argumentation in
particular, but also other areas concerned with symbolic reasoning [31, 6, 38],

1Note that we will be using the term heuristic algorithms here in a broad sense to denote
algorithms that solve some decision problem faster than a verified correct algorithm, but give
no formal guarantee whether the result is correct. Note that in previous works on heuristic
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has increased quite a bit with the availability of powerful machine learning-
based models. Works such as [24, 10, 27] use neural networks, which are trained
on large sets of already classified instances, to accurately predict the correct
answers to reasoning problems such as deciding whether there exists an admis-
sible set containing a given argument. However, in this paper, we actually argue
against the need to use machine learning-based models for heuristically solving
abstract argumentation problems and present a series of simple heuristic algo-
rithms, based on insights of the structure of abstract argumentation frameworks
and the different semantics. More precisely, we will be using grounded semantics
[14] as a proxy for deciding reasoning problems with a series of other semantics,
motivated by insights from [8]. Furthermore, we present additional algorithms
that use bounded search to solve instances that cannot be clearly decided by
relying on grounded semantics. These algorithms implement simple exhaus-
tive search algorithms for finding, in particular, admissible sets, but bound the
search to not consider all possibilities and thereby keep the runtime low. We ex-
perimentally compare our approaches with state-of-the-art algorithms and show
that our algorithms are competitive.

To summarise, the contributions of this paper are as follows:

• We present and discuss algorithms using grounded semantics to heuristi-
cally solve a wide range of reasoning problems (Section 4).

• We present and discuss algorithms based on bounded search to heuristi-
cally solve such problems (Section 5).

• We experimentally evaluate these algorithms (Section 6).

In addition, Section 2 presents preliminaries on abstract argumentation, Sec-
tion 3 discusses related works, and Section 7 concludes.

Note that parts of the work described in this paper have already been docu-
mented in the (non-peer reviewed) system descriptions [33, 34]. In addition to
a more detailed discussion of these approaches, the present paper also contains
a comprehensive experimental evaluation.

2 Abstract argumentation

An abstract argumentation framework F is a tuple F = (A,R) where A is a
(finite) set of arguments and R is a relation R ⊆ A×A [14]. For two arguments
a, b ∈ A the relation aRb means that argument a attacks argument b. For a set

algorithms for abstract argumentation, e. g., [24, 10, 27], such algorithms have been presented
using the term approximation algorithm. However, this term is actually not adequate, as
an approximation algorithm is an algorithm for solving an optimisation problem and has a
guaranteed theoretical approximation quality, cf. [37]. Here, we are concerned with decision
problems for which we can usually not provide any formal guarantees on correctness, so we
will be using the term heuristic algorithm, see also [35].
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S ⊆ A we define

S+
F = {a ∈ A | ∃b ∈ S, bRa}

S−
F = {a ∈ A | ∃b ∈ S, aRb}

If S is a singleton set, i. e., S = {a} for some a ∈ A, then we also just write a+F
(resp. a−F ) for {a}

+
F (resp. {a}−F ).

We say that a set S ⊆ A is conflict-free if for all a, b ∈ S it is not the case
that aRb. A set S defends an argument b ∈ A if for all a with aRb there is
c ∈ S with cRa. A conflict-free set S is called admissible if S defends all a ∈ S.

Different semantics [2] can be phrased by imposing certain constraints on
sets of arguments. In particular, a set E

• is a complete (co) extension iff it is admissible and for all a ∈ A, if E
defends a then a ∈ E,

• is a grounded (gr) extension iff it is complete and minimal,

• is a stable (st) extension iff it is conflict-free and E ∪ E+
F = A,

• is a preferred (pr) extension iff it is admissible and maximal.

• is a semi-stable (sst) extension iff it is complete and E ∪ E+
F is maximal.

• is a stage (stg) extension iff it is conflict-free and E ∪ E+
F is maximal.

• is an ideal (id) extension iff it is admissible, E ⊆ E′ for each preferred
extension E′, and E is maximal.

All statements on minimality/maximality are meant to be with respect to set
inclusion.

Given an abstract argumentation framework F = (A,R) and a semantics
σ ∈ {co, gr, st, pr, sst, stg, id} we are interested in the following computational
problems [36, 17]:

DC-σ: For a given argument a, decide whether a is in at least one σ-extension
of F .

DS-σ: For a given argument a, decide whether a is in all σ-extensions of F .

Here DC stands for the decision problem for credulous reasoning and DS stands
for the decision problem for skeptical reasoning.

Note that DC-σ=DS-σ for σ ∈ {gr, id} as both the ideal and the grounded
extension is uniquely defined [2]. Moreover, we have DC-co=DC-pr as every
preferred extension is complete and every complete extension can be extended
to a preferred extension [14]. Furthermore, DS-co=DC-gr as the intersection of
all complete extensions is the grounded extension [14]. Since reasoning with
grounded semantics can be done in polynomial time [17], we do not consider it
here for the purpose of developing heuristic algorithms. Due to DC-id=DS-id,
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we only consider DS-id and not DC-id. In the remainder of this paper, we will
therefore consider the computational problems

ProbC = {DC-co,DC-st,DC-sst,DC-stg}

for credulous reasoning and the problems

ProbS = {DS-pr,DS-st,DS-sst,DS-stg,DS-id}

for skeptical reasoning. Let furthermore Prob = ProbC ∪ ProbS .

3 Related works

There exist several approaches for solving problems in Prob exactly, as witnessed
by the International Competition on Computational Models of Argumentation2

(ICCMA). Most popular and successful are approaches based on reductions to
the satisfiability problem or using answer set programming, see [7] for a survey
and [22] for some recent developments.

The first works on heuristically solving (some) problems in Prob are based
on using neural networks [24, 10, 27]. These works use (standard or specifically
tailored versions of) graph convolutional neural networks [23] to represent prob-
lems in Prob as classification problems. These approaches have to be trained on
automatically generated training data, which can introduce bias issues [25]. In
our experimental evaluation (see Section 6), we include the AFGCNv2 solver
[28], which was the only participant in the approximate track of ICCMA23 that
was based on a neural network architecture.

Further heuristic approaches are founded on the observation that, at least
empirically, reasoning with any semantics often is very close to reasoning with
grounded semantics [8]. More precisely, the grounded extension coincides quite
often with the set of skeptically accepted arguments wrt. any semantics. The
algorithmic approach of harper++ [34] is based on this observation and only
uses a reasoner for grounded semantics (which runs in polynomial time) to
heuristically solve all problems in Prob. We will discuss this approach in more
detail in Section 4. Recently, Delobelle, Mailly, Rossit [11] refined this idea
by considering additional heuristics for cases, where using only the grounded
reasoning approach is insufficient. This work resulted in two working systems
ARIPOTER-Degrees [12] and ARIPOTER-HCAT [13] that also partici-
pated in the approximate track of ICCMA23. For arguments that are neither
included in nor attacked by the grounded extension, ARIPOTER-Degrees
uses the ratio of in- and out-degree of the arguments to decide their acceptance
(the larger the out-degree and smaller the in-degree, the more likely the argu-
ment is accepted). The solver ARIPOTER-HCAT uses the values from the
h-categorizer approach [3] to decide the acceptance of those arguments instead
(larger values of the h-categorizer approach indicate a more likely acceptance).

2http://argumentationcompetition.org
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Algorithm 1 GR-DC algorithm for credulous reasoning wrt. σ ∈ {co, st, sst, stg}
Input: F = (A,R), a ∈ A
Output: True iff a is contained in a σ-extension.
GR-DC(F, a)
1: S = grounded(F )
2: if a ∈ S+

F then return False

3: return True

Yet another approach is implemented in the fargo solver [33], which also par-
ticipated in the approximate track of ICCMA23. In contrast to ARIPOTER-
Degrees and ARIPOTER-HCAT, fargo does not rely on graph-theoretic
features but uses an incomplete approach to decide admissibility of sets. We
will discuss that approach in detail in Section 5.

4 Using grounded semantics as a heuristic

It is well-known that the grounded extension Egr of an abstract argumentation
framework F = (A,R) is contained in every complete, preferred, stable, semi-
stable, and ideal extension [14, 15]. It follows that, if the answer to DC-gr for
an argument a in a framework F is True—so if a ∈ Egr—, then the answer
for DC-co, DC-sst, DS-pr, DS-st, DS-sst, and DS-id is True as well.3 Moreover,
if we have an argument a that is attacked by the grounded extension—so if
a ∈ E+

gr—, then it is also clear that it cannot be contained in any complete,
preferred, stable, semi-stable, and ideal extension (as such extensions contain
Egr and are conflict-free). So in that case, we necessarily have that the answer
to DC-co, DC-st, DC-sst, DS-pr, DS-sst, and DS-id is False.4

Besides the two theoretically valid facts from above, the work [8] also moti-
vates the use of grounded semantics as a heuristic from an empirical perspective.
In essence, [8] shows that for a series of random graph models (in particular those
used in the ICCMA competitions) skeptically reasoning with, e. g., preferred se-
mantics is identical (or very close) to reasoning with grounded semantics, since
cases where an argument is contained in all preferred extensions but not in the
grounded extension are very rare.

By the above motivation, we consider the algorithms GR-DC (see Algo-
rithm 1) resp. GR-DS (see Algorithm 2) as heuristic approaches to solve all
problems in ProbC , resp. ProbS . Note that although stage semantics is not
included in the (theoretical) discussion above, we still consider it here and also
empirically evaluate it in Section 6. Our approaches for credulous (GR-DC) and
skeptical (GR-DS) reasoning based on grounded semantics are very similar and

3Note that this is not necessarily true for DC-st since F may not have a stable extension.
However, note that the statement is indeed true for DS-st, as in the case st(F ) = ∅, every
argument is, by definition, skeptically accepted wrt. stable semantics.

4Note that this is not necessarily true for DS-st but is indeed true for DC-st due to the
reasoning in the previous footnote.
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Algorithm 2 GR-DS algorithm for skeptical reasoning wrt. σ ∈
{pr, st, sst, stg, id}
Input: F = (A,R), a ∈ A
Output: True iff a is contained in all σ-extensions.
GR-DS(F, a)
1: S = grounded(F )
2: if a ∈ S then return True
3: return False

differ only in one aspect. For both algorithms, upon input F and a, we first
determine the grounded extension of F (with grounded(F ) in line 1 of both Algo-
rithm 1 and 2). This can be done in polynomial time using, e. g., the algorithm
from [30]. For GR-DC we answer with False if the argument a is attacked by
the grounded extension. In all other cases (so if a is in the grounded extension
or not connected to it at all) we answer with True. For GR-DS we answer with
True only if a is in the grounded extension. In all other cases we answer with
False.

5 Bounded search

While using grounded semantics as a heuristic for solving problems in Prob

can be practically successful (see Section 6), there are still some cases where
Algorithms GR-DC and GR-DS provide an uninformed answer. In particular, the
algorithm GR-DC defaults to the answerTrue and GR-DC defaults to the answer
False for arguments that are neither contained in nor attacked by the grounded
extension. Addressing these cases is the focus of the algorithms developed in
this section.

The core of our approach lies in (two variants of) an algorithm for heuris-
tically determining whether an argument a is contained in an admissible set
(recall that a set S is admissible if it is conflict-free and defends all its ele-
ments). The general algorithm is an implementation of an exhaustive search
algorithm that tries to extend a given set (initialised with a set just containing
the query argument a) by arguments that defend arguments from the set that
are not yet defended. This search algorithm is given a bound on the runtime
and therefore is not guaranteed to find an admissible set if one exists. The two
variants we will discuss differ in the type of bound that is given. In Section 5.1
we discuss an algorithm that bounds the depth of the search and in Section 5.2
we discuss a variant that bounds the number of calls of the search routine.

5.1 Depth-bounded search

The general depth-bounded search algorithm DB-SEARCH is shown in Algo-
rithm 3, which is a variant of the standard DPLL-search algorithm [4], where
the search direction is influenced by the attack directions. This algorithm has
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Algorithm 3 DB-SEARCH algorithm for verifying whether a given subset can
be extended to an admissible set

Input: F = (A,R), S ⊆ A, n ∈ N ∪ {∞}
Output: True iff there is admissible S′ with S ⊆ S′.
DB-SEARCH(F, S, n)
1: if S is admissible then
2: return True
3: if n ≤ 0 then
4: return False
5: for b ∈ S−

F \ S+
F do

6: if b−F \ (S−
F ∪ S+

F ) = ∅ then
7: return False
8: for c ∈ b−F \ (S−

F ∪ S+
F ) do

9: if DB-SEARCH(F, S ∪ {c}, n− 1) then
10: return True
11: return False

three parameters F = (A,R), S ⊆ A, n ∈ N ∪ {∞} and is supposed to return
True if and only if there is an admissible set S′ with S ⊆ S′. The third pa-
rameter n gives a bound on the search depth that may impair the correctness
of the algorithm. More precisely, if the search depth is not ∞, it may happen
that the algorithm does not find an admissible set, even if it exists.

The algorithm DB-SEARCH works on input F , a, and n as follows. If S is
admissible (which can be checked in polynomial time), we are already finished
and terminate with True (lines 1–2). If we have reached the bound of the
search, we terminate with False (lines 3–4). Otherwise (lines 5–10), for each
argument b that is attacking some argument in S but not attacked back5 (i. e.,
those arguments in S−

F \ S+
F ), we check if there is a potential defender c, i. e.,

an argument that could be added to S without violating conflict-freeness of S
and that attacks b. For each such candidate, we recursively check whether the
set S ∪ {c} can be extended to an admissible set. If the search fails, we return
False (line 11).

We summarise the formal properties of DB-SEARCH(F, S, n) in the following
result, which is given without proof but should be clear from the discussion
above.

Proposition 1. Let F = (A,R), S ⊆ A, and n ∈ N ∪ {∞}.

1. If DB-SEARCH(F, S, n) = True then there is an admissible set S′ with
S ⊆ S′.

2. If DB-SEARCH(F, S, n) = False and n = ∞ then there is no admissible
set S′ with S ⊆ S′.

5Since S is not admissible, either such a b must exist or S is not conflict-free. In the latter
case, the algorithm right away returns False in line 11.
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Algorithm 4 DB-DC algorithm for credulous reasoning wrt. σ ∈ {co, st, sst, stg}
Input: F = (A,R), a ∈ A, n ∈ N ∪∞
Output: True iff a is contained in a σ-extension.
DB-DC(F, a,N)
1: S = grounded(F )
2: if a ∈ S then return True
3: if a ∈ S+

F then return False

4: return DB-SEARCH(F, S ∪ {a}, n)

Algorithm 5 DB-DS algorithm for skeptical reasoning wrt. σ ∈
{pr, st, sst, stg, id}
Input: F = (A,R), a ∈ A, n ∈ N ∪∞
Output: True iff a is contained in all σ-extensions.
DB-DS(F, a,N)
1: S = grounded(F )
2: if a ∈ S then return True
3: if a ∈ S+

F then return False

4: if not DB-SEARCH(F, S ∪ {a}, n) then return False

5: for b ∈ a−F \ S+
F do

6: if DB-SEARCH(F, S ∪ {b}, n) then return False

7: return True

So note that the algorithm DB-SEARCH is, in general, an incomplete algo-
rithm. If the algorithm returns True, we can be sure that this is the correct
answer. If the algorithm returns False, the answer may be correct or not (only
for n = ∞ it is guaranteed that the answer is correct).

We embed the algorithm DB-SEARCH in the algorithm DB-DC for solv-
ing problems in ProbC as shown in Algorithm 4. In lines 1–3 we first check
whether the query argument is contained in or attacked by the grounded exten-
sion and return the corresponding answer (see Section 4). For the remaining
cases, we check whether we can find an admissible set containing S ∪ {a} us-
ing DB-SEARCH. Therefore, this algorithm uses admissibility as a heuristic for
all semantics to solve problems in ProbC (while it is generally true, that if an
argument a is contained in an admissible set, it is necessarily also contained in
a complete and preferred extension, this is not generally true for semi-stable,
stable, and stage semantics; but note that any such extension must necessarily
also contain the grounded extension, which is why we start from S ∪ {a} with
S being the grounded extension).

As for skeptical reasoning, we embed the algorithm DB-SEARCH in the algo-
rithm DB-DS as shown in Algorithm 5. Lines 1–3 are as for DB-DC and cover the
cases where grounded semantics makes an informed decision. In order to decide
skeptical acceptance for the remaining cases, we employ the following heuristic:
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Algorithm 6 IB-SEARCH algorithm for verifying whether a given subset can
be extended to an admissible set

Input: F = (A,R), S ⊆ A
Output: True iff there is admissible S′ with S ⊆ S′.
Global: n ∈ N ∪ {∞}
IB-SEARCH(F, S)
1: if S is admissible then
2: return True
3: n := n− 1
4: if n ≤ 0 then
5: return False
6: for b ∈ S−

F \ S+
F do

7: if b−F \ (S−
F ∪ S+

F ) = ∅ then
8: return False
9: for c ∈ b−F \ (S−

F ∪ S+
F ) do

10: if IB-SEARCH(F, S ∪ {c}) then
11: return True
12: return False

if the argument a is contained in an admissible set (which again must contain
the grounded extension) and no attacker b of a is contained in an admissible
set (that contains the grounded extension and is not attacked by it), then a is
skeptically accepted wrt. σ ∈ {pr, st, sst, stg, id}. Note that this heuristic actu-
ally captures a necessary (but not sufficient) condition for skeptical acceptance
under preferred and ideal semantics. Lines 4–7 of Algorithm 5 implement this
approach.

5.2 Iteration-bounded search

We present now an alternative implementation of a bounded search algorithm.
Instead of bounding the search depth we now bound the number of calls to the
search function.

The general iteration-bounded search algorithm IB-SEARCH is shown in Al-
gorithm 6 and is structurally similar to the algorithm DB-SEARCH from above.
This algorithm has two parameters F = (A,R) and S ⊆ A and accesses an
additional parameter n ∈ N ∪ {∞} that is shared among multiple instances of
IB-SEARCH. The algorithm is supposed to return True if and only if there is an
admissible set S′ with S ⊆ S′. The parameter n gives a bound on the number
of iterations that may impair the correctness of algorithm. As before, if the
iteration bound is not ∞, it may happen that the algorithm does not find an
admissible set, even if it exists.

The algorithm IB-SEARCH works on input F and a as follows. If S is ad-
missible, we are already finished and terminate with True (lines 1–2). We then
decrement the global parameter n and check if we have reached the bound of
the search (lines 3–5). Otherwise (lines 6–12), we proceed exactly as for DB-
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Algorithm 7 IB-DC algorithm for credulous reasoning wrt. σ ∈ {co, st, sst, stg}
Input: F = (A,R), a ∈ A, N ∈ N ∪∞
Output: True iff a is contained in a σ-extension.
IB-DC(F, a,N)
1: S = grounded(F )
2: if a ∈ S then return True
3: if a ∈ S+

F then return False

4: set global n = N
5: return IB-SEARCH(F, S ∪ {a})

Algorithm 8 IB-DS algorithm for skeptical reasoning wrt. σ ∈
{pr, st, sst, stg, id}
Input: F = (A,R), a ∈ A, N ∈ N ∪∞
Output: True iff a is contained in all σ-extensions.
IB-DS(F, a,N)
1: S = grounded(F )
2: if a ∈ S then return True
3: if a ∈ S+

F then return False

4: set global n = N/2
5: if not IB-SEARCH(F, S ∪ {a}) then return False

6: for b ∈ a−F \ S+
F do

7: set global n = N/(2 ∗ |a−F |)
8: if IB-SEARCH(F, S ∪ {b}) then return False

return True

SEARCH and consider defenders of undefended arguments. The design of the
algorithm ensures that IB-SEARCH can be called only a maximum number of n
times (it terminates earlier if an admissible set has been found).

We summarise the formal properties of IB-SEARCH(F, S) in the following
result, which is given without proof but should be clear from the discussion
above.

Proposition 2. Let F = (A,R), S ⊆ A, and n ∈ N ∪ {∞}.

1. If IB-SEARCH(F, S) = True then there is an admissible set S′ with S ⊆
S′.

2. If IB-SEARCH(F, S) = False and n = ∞ then there is no admissible set
S′ with S ⊆ S′.

As with DB-SEARCH, the algorithm IB-SEARCH is an incomplete algorithm.
If it returns True, we can be sure that this is the correct answer. If the
algorithm returns False, the answer may be correct or not (only for n = ∞ it
is guaranteed that the answer is correct).
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We embed the algorithm IB-SEARCH in the algorithm IB-DC for solving
problems in ProbC as shown in Algorithm 7, which is almost exactly the same
as DB-DC (Algorithm 4). The main difference is line 4, where we set the global
parameter n.

As for skeptical reasoning, we embed the algorithm IB-SEARCH in the al-
gorithm IB-DS as shown in Algorithm 8, cf. also DB-DS (Algorithm 5). Here,
we distribute the allocated number of iterations N over the different calls for
the subproblems. In particular, for deciding whether the query argument a is
contained in an admissible set we allot a maximum number of N/2 iterations
(line 4). To check whether any of the attackers of a is contained in an admissible
set, we allot a maximum number of N/(2 ∗ |a−F |) iterations each. Note that the
maximum total number of iterations is indeed N .6

6 Experiments

Algorithms DB-DC, DB-DS, IB-DC, and IB-DS are each parametrised with a
bound parameter. In a first experiment (Section 6.1) we experimentally test
the behaviour of these algorithms for different values of n/N . In a second
experiment (Section 6.2), we compare the performance of DB-DC, DB-DS, IB-
DC, and IB-DS (with the best parameters found before) with GR-DC, GR-DS
and other approaches from the literature.

For all experiments, we use the ICCMA’23 main data set7, which contains
308–329 (depending on the problem and the semantics) verified instances, i. e.,
pairs of an argumentation framework and a query argument, where the true an-
swer to the corresponding computational problems is known. Algorithms GR-DC
and GR-DS have been implemented in the solver Harper++8 and algorithms
DB-DC, DB-DS, IB-DC, and IB-DS have been implemented in the solver fargo9.
Raw results of all experiments and the used scripts can be found online.10

6.1 Parameter selection

Given the theoretical discussion in Section 5, it should be clear that for larger
values of n/N the algorithms DB-SEARCH and IB-SEARCH are more likely to
give a correct answer, but will also require more time to run. With the following
experiments, we seek to find the optimal value for n/N , such that the algorithms
give a maximal number of correct answers within a given time limit. For the
latter, we use the same time limit as was used in the approximate track of
ICCMA’23, namely 60 seconds. For reasons of simplicity, we only evaluate DB-
DC and IB-DC on stable semantics and use the obtained optimal values for all
semantics and the skeptical variants as well in the next section.

6This distribution of iterations over the sub-problems has been empirically determined and
other distributions may be better for other data sets.

7http://argumentationcompetition.org/2023/benchmarks.html
8https://github.com/aig-hagen/taas-harperpp
9https://github.com/aig-hagen/taas-fargo

10http://mthimm.de/misc/heuristic_solvers_2024_mt.zip
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Figure 1: Relationship between the number of timeouts (#TO), the number of in-
correctly solved instances (#IN), and the number of correctly solved instances within
the time limit (#SO) for varying values of n when using algorithm DB-DC for stable
semantics.

We first consider DB-DC for stable semantics. Figure 1 shows the relation-
ship between the number of timeouts (#TO) and the number of incorrectly
solved instances (#IN) for varying values of n. As expected, for increasing
values of n, the number of timeouts increases while the number of incorrectly
solved instances decreases. The figure also shows the number of correctly solved
instances within the time limit (#SO), which has its maximum at n = 2, which
will be used in the experiments in Section 6.2.

We now consider IB-DC for stable semantics. Note first that, in contrast to
the search depth, the value of N here is much more dependent on the size of the
argumentation framework. In particular, preliminary tests showed that using a
constant parameter N for frameworks of all sizes gives quite poor results. We
therefore parametrise the used value N for each call to IB-DC via N = N̂

󰁳
|A|

(where A is the set of arguments in the framework F = (A,R) under considera-
tion) and evaluated different values for N̂ . Correspondingly, Figure 2 shows the
relationship between the number of timeouts (#TO), the number of incorrectly
solved instances (#IN), and the number of correctly solved instances within the
time limit (#SO) for varying values of N̂ . Here, #SO has its maximum value
at N̂ = 3000, which will be used in the experiments in Section 6.2.
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Figure 2: Relationship between the number of timeouts (#TO), the number of incor-
rectly solved instances (#IN), and the number of correctly solved instances within the
time limit (#SO) for varying values of N̂ .

6.2 Performance evaluation

We now experimentally evaluate the performance of our approaches with ex-
isting systems, in terms of both accuracy, i. e., the number of correctly solved
instances within the time limit (which is again set to 60 seconds), and runtime
performance, i. e., the average runtime on all instances solved within the time
limit.

We consider the following implementations of algorithms from the current
work:

• Harper++: This solver implements the algorithms GR-DC and GR-DS
from Section 4.

• Fargo2-DB-2: This solver implements the algorithms DB-DC and DB-DS
from Section 5.1 with n = 2 (see previous section).

• Fargo2-IB-3000: This solver implements the algorithms IB-DC and IB-DS
from Section 5.2 with N = 3000

󰁳
|A| for each F = (A,R) (see previous

section).

We also consider the earlier version of Fargo that participated in the approxi-
mation track of ICCMA’23 and only differs from the above version in the value
used for the iteration bound:
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• Fargo1-500: This solver implements the algorithms IB-DC and IB-DS
from Section 5.2 with N = 500|A| for each F = (A,R).

In addition, we also consider all further systems that participated in the ap-
proximation track of ICCMA’23:

• ARIPOTER-Degrees: This solver works like Harper++ for instances
where the query argument a is contained in or attacked by the grounded
extension. In other cases, the solver answers True iff |{a}+| ≥ k|{a}−|
where k is some meta parameter [12].

• ARIPOTER-HCAT: This solver works likeHarper++ for instances where
the query argument a is contained in or attacked by the grounded exten-
sion. In other cases, the solver answers True iff the h-categorizer [3] value
of a is larger than a given threshold that is given as a meta parameter [13]

• AFGCNv2: This solver uses a graph convolutional neural network (with
4 layers and 128 neurons per layer) that has been trained on benchmarks
from previous ICCMA competitions [28].

We refer to the set of the last three solvers also as the state-of-the-art solvers
(sota-solvers).

Finally, we also consider the ICCMA’23 version11 of µ-toksia [29], which is a
state-of-the-art complete solver for the same abstract argumentation problems.
Note that µ-toksia is expected to always provide the correct answer, but will
more often time out under the stricter time limit of 60 seconds.

Tables 1–9 show the results of the experimental evaluation. Here, the value
#SO refers to the number of instances correctly solved within the time limit,
#TO to the number of instances with a timeout, #IN to the number of incor-
rectly solved instances within the time limit, #ERR to the number instances
that resulted in some error (e. g., memory issues), CRT to the cumulative run-
time (in milliseconds) on all correctly solved instances, and AVG to the average
runtime (in milliseconds) over all instances that were solved within the time limit
(not necessarily correct) by all solvers in that track. For each track, solvers are
ordered by their ranking in that track, which is given by their values #SO and
(in cases of ties wrt. #SO) CRT.

Let us first discuss the results for credulous reasoning (Tables 1–4). The first
thing to note is that the first place for all four semantics is taken by one of our
approaches. Moreover, for all semantics based on admissibility (co, st, and sst),
the solver Fargo2-IB-3000 wins that track. Moreover, only that solver features
a single timeout, all other of our solvers could solve all instances in time, in con-
trast to the sota-solvers, which all have 23 or more timeouts. This observation
on the runtime performance is also reflected on the average runtime for instances
solved within the time limit. Here, all our solvers are almost up to two orders of
magnitude faster than the sota-solvers. As for accuracy, Fargo2-IB-3000 im-
proves upon the runner-up from the sota-solvers (ARIPOTER-HCAT) for co,

11https://bitbucket.org/andreasniskanen/mu-toksia/
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DC-co (n = 316)
Rank Solver #SO #TO #IN #ERR CRT AVG (n′ = 197)
1 Fargo2-IB-3000 290 1 25 0 204097.03 38.69
2 µ-toksia 290 26 0 0 821087.19 102.61
3 Fargo1-500 286 0 30 0 119927.58 40.87
4 Fargo2-DB-2 264 0 52 0 100807.85 37.67
5 Harper++ 221 0 95 0 81106.80 26.24
6 ARIPOTER-HCAT 211 47 58 0 862004.68 3046.57
7 AFGCNv2 192 23 64 36 947482.26 3648.85
8 ARIPOTER-Degrees 181 35 100 0 633082.10 1658.33

Table 1: Results for DC-co on the ICCMA’23 data set.

DC-st (n = 315)
Rank Solver #SO #TO #IN #ERR CRT AVG (n′ = 198)
1 Fargo2-IB-3000 297 1 17 0 644064.12 38.51
2 Fargo1-500 293 0 22 0 225191.61 40.77
3 µ-toksia 291 24 0 0 708770.37 96.13
4 Fargo2-DB-2 283 0 32 0 186448.21 37.90
5 ARIPOTER-HCAT 219 46 50 0 1249174.73 3029.09
6 ARIPOTER-Degrees 196 35 84 0 910502.90 1645.83
7 AFGCNv2 192 23 64 36 1005081.15 3638.10
8 Harper++ 187 0 128 0 52966.34 26.28

Table 2: Results for DC-st on the ICCMA’23 data set.

st, and sst by up to almost 30% more solved instances (297 solved instances for
Fargo2-IB-3000 compared to 219 for ARIPOTER-HCAT on DC-st). The only
exception is credulous reasoning with stage semantics, which is not surprising as
stage extensions are not necessarily admissible and the heuristic used for Fargo
is not generally plausible. For that track, the solver Harper++ outperforms all
other solvers. It should also be noted that the complete solver µ-toksia behaves
significantly better than one might expect. In particular, µ-toksia outperforms
all sota-solvers and always scores second or third place. Our new approaches
only marginally improve upon µ-toksia in terms of number of solved instances,
but one can also observe a significant gap in the average runtime (for example
38.51ms for Fargo2-IB-3000 compared to 96.13ms for µ-toksia on DC-st).

Let us consider now the results for skeptical reasoning (Tables 5-9). We
first note that the complete solver µ-toksia wins the track for DS-st, which is
a remarkable result given the strict time constraints. For the remaining tracks,
our approaches outperform all other solvers (and µ-toksia is still better than
the sota-solvers, while having a significantly larger average runtime than our
approaches). Observations regarding runtime are as above, but overall the field
is a bit more condensed than for credulous reasoning, i. e., the difference in the
number of correctly solved instances between the best and worst solver is 98 for
DC-sst and only 60 for DS-sst.

In general, all results also show that the additional effort the Fargo solver
invests for arguments that are neither contained in nor attacked by the grounded
extension is worthwhile. For example, while Harper++ only solved 221 in-
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DC-sst (n = 302)
Rank Solver #SO #TO #IN #ERR CRT AVG (n′ = 198)
1 Fargo2-IB-3000 286 0 16 0 233139.82 38.40
2 µ-toksia 286 16 0 0 691922.17 103.41
3 Fargo1-500 282 0 20 0 123814.60 41.45
4 Fargo2-DB-2 272 0 30 0 138702.85 37.79
5 ARIPOTER-HCAT 217 36 49 0 1018422.10 3089.13
6 Harper++ 199 0 103 0 55187.21 26.71
7 AFGCNv2 194 23 62 23 1022674.68 3669.37
8 ARIPOTER-Degrees 188 26 88 0 800302.43 1683.19711

Table 3: Results for DC-sst for on the ICCMA’23 data set.

DC-stg (n = 299)
Rank Solver #SO #TO #IN #ERR CRT AVG (n′ = 191)
1 Harper++ 269 0 30 0 75898.55 27.00
2 µ-toksia 265 34 0 0 680462.88 486.30
3 ARIPOTER-Degrees 240 34 25 0 1007898.58 1721.04
4 ARIPOTER-HCAT 230 45 24 0 1264308.16 3158.27
5 Fargo2-IB-3000 204 1 94 0 232963.75 38.91
6 Fargo1-500 200 0 99 0 112317.53 40.93
7 Fargo2-DB-2 190 0 109 0 126506.61 38.21
8 AFGCNv2 165 23 82 29 717816.26 3704.86

Table 4: Results for DC-stg on the ICCMA’23 data set.

stances correctly for DC-co (see Table 1), Fargo2-IB-3000 could solve 290 in-
stances correctly. This is also true, albeit a bit less pronounced, for skeptical
reasoning, e. g., Fargo2-DB-2 could solve 8 more instances than Harper++
for DS-sst (see Table 7). It can also be observed that the IB-SEARCH approach
(Fargo2-IB-3000) performs better for credulous reasoning tasks, while DB-
SEARCH (Fargo2-DB-2) performs better for skeptical reasoning with stable,
semi-stable, and stage semantics and IB-SEARCH (Fargo2-IB-3000) performs
better for skeptical reasoning with preferred and ideal semantics. However, the
reasons for this is not so apparent and the differences are also mostly marginal.

7 Summary and conclusion

We presented heuristic algorithms for solving credulous and skeptical reasoning
problems wrt. complete, stable, semi-stable, preferred, stage, and ideal seman-
tics. Our algorithms were based on using grounded semantics as a proxy and
using bounded search in two variants. Our experimental evaluation showed that
our approaches outperform the state of the art in most cases.

A key insight of our work is that simple domain-dependent heuristics can
be better suited than sophisticated but general approaches based on modern
machine learning-techniques. Our evaluation showed that our approaches out-
performed existing approaches, in particular those based on neural network tech-
nology, both in terms of accuracy and runtime. Moreover, this evaluation did
not even take into account the resources, in terms of time and energy, required
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DS-pr (n = 306)
Rank Solver #SO #TO #IN #ERR CRT AVG (n′ = 188)
1 Fargo1-500 305 0 1 0 200407.69 39.81
2 Fargo2-IB-3000 304 1 1 0 417060.15 39.19
3 Harper++ 303 0 3 0 90675.86 25.79
4 Fargo2-DB-2 292 0 14 0 194895.14 36.87
5 µ-toksia 272 34 0 0 782212.95 495.60
6 ARIPOTER-Degrees 268 35 3 0 1236232.01 1644.31
7 ARIPOTER-HCAT 257 46 3 0 1617031.39 3069.07
8 AFGCNv2 238 23 9 36 1214603.06 3301.24

Table 5: Results for DS-pr on the ICCMA’23 data set.

DS-st (n = 307)
Rank Solver #SO #TO #IN #ERR CRT AVG (n′ = 189)
1 µ-toksia 276 31 0 0 779818.32 154.72
2 Fargo2-DB-2 204 0 103 0 164862.70 37.28
3 Fargo1-500 199 0 108 0 111863.40 39.87
4 Fargo2-IB-3000 198 1 108 0 147113.30 39.22
5 Harper++ 196 0 111 0 59889.24 26.16
6 ARIPOTER-Degrees 180 35 92 0 961229.40 1637.07
7 ARIPOTER-HCAT 167 46 94 0 1133795.09 3053.44
8 AFGCNv2 158 23 90 36 774614.10 3310.42

Table 6: Results for DS-st on the ICCMA’23 data set.

for training such approaches. So while using modern neural network technology
may be attractive due to its success, its applicability to a new problem has to
be thoroughly tested first. Our work also shows that many computational hard
problems in abstract argumentation can be solved fast and accurately in many
cases. So using our heuristic approaches to guide complete solvers, may be a
worthwhile avenue for future work, cf. [20]. Another avenue for future work is
to apply our ideas to other formalisms and problems. The general paradigm of
our approach is that by using the right search methodology, a positive answer to
a problem can often be found quickly and if the effort (e. g., the search depth)
required to find a solution is too large, then we can often safely return a negative
answer. Problems in other formalisms could be heuristically solved in a similar
manner. For example, problems in Answer Set Programming [19] are formalised
as logic programs and usually follow a guess-and-check modelling approach, i. e.,
the general structure of solutions (answer sets) are first defined and constraints
define valid solutions. Solvers such as clingo [18] then, basically, guess solutions
iteratively and verify their correctness. By further relying on domain-dependent
heuristics [9] one can apply our approach in this context and avoid exhaustive
search. Answers to queries such as asking whether a certain atom is contained
in some answer set or all answer sets (so variants of our DC and DS queries)
could then be answered similarly in a probably reliable manner.

Acknowledgements. The research reported here was partially supported by
the Deutsche Forschungsgemeinschaft (grant 550735820).
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DS-sst (n = 298)
Rank Solver #SO #TO #IN #ERR CRT AVG (n′ = 189)
1 Fargo2-DB-2 293 0 5 0 195941.83 36.97
2 Fargo1-500 288 0 10 0 156697.30 39.54
3 Fargo2-IB-3000 288 0 10 0 345588.51 38.93
4 Harper++ 285 0 13 0 73404.50 26.00
5 µ-toksia 266 32 0 0 525384.43 403.52
6 ARIPOTER-Degrees 255 31 12 0 1037413.71 1657.98
7 ARIPOTER-HCAT 245 42 11 0 1344020.22 3091.45
8 AFGCNv2 233 23 14 28 1180091.90 3311.43

Table 7: Results for DS-sst on the ICCMA’23 data set.

DS-stg (n = 301)
Rank Solver #SO #TO #IN #ERR CRT AVG (n′ = 188)
1 Fargo2-DB-2 296 0 5 0 217205.34 36.96
2 Fargo1-500 291 0 10 0 186996.18 39.70
3 Fargo2-IB-3000 290 1 10 0 385304.64 39.34
4 Harper++ 288 0 13 0 84181.83 26.14
5 µ-toksia 265 36 0 0 703607.28 495.57
6 ARIPOTER-Degrees 255 34 12 0 1058817.06 1658.93
7 ARIPOTER-HCAT 245 45 11 0 1397425.50 3094.37
8 AFGCNv2 232 23 14 32 1218799.84 3310.96

Table 8: Results for DS-stg on the ICCMA’23 data set.
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[12] Jérôme Delobelle, Jean-Guy Mailly, and Julien Rossit. ARIPOTER-
Degrees: ARgumentatIon apPrOximaTE Reasoning using In/Out Degrees
of Arguments. In Fifth International Competition on Computational Mod-
els of Argumentation (ICCMA’23), 2023.

19
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